CHAPTER 3

CHAPTER3 FUZZY RELATION EQUATIONS ON FUZZY SETS

In this chapter we study a theory of fuzzy relation equations, when the fuzzy relations are defined on fuzzy sets instead of crisp sets.

3.1 FUZZY RELATIONS AND THEIR COMPOSITIONS:

This section deals with fuzzy relations defined on fuzzy sets and four types of compositions along with their properties.

Definition 3.1.1 [F]: Let A and B be two fuzzy sets in X. The cartesian product of A and B , is a fuzzy set, $\mathrm{A} \times \mathrm{B}$, on $\mathrm{X} \times \mathrm{X}$ defined as follows:
$A \times B(x, y)=\min \{A(x), B(y)\}$, for all $x, y \in X$.

Definition 3.1.2 [F]: Let A and B be two fuzzy sets in X. Then the fuzzy set $\mathrm{P}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{I}$ is called a fuzzy relation from A to B , if $\mathrm{P}(\mathrm{x}, \mathrm{y}) \leq \min \{\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{y})\}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

We shall denote the set of all fuzzy relations from fuzzy set A to fuzzy set B by $F(A \times B)$.

Definition 3.1.3: Let $P \in F(A \times B)$ be a fuzzy relation from a fuzzy set A to a fuzzy B.
Then the fuzzy set P^{-1} defined as follows:

$$
P^{-1}(y, x)=P(x, y)
$$

is a fuzzy relation from a fuzzy set B to a fuzzy set A. i. e. $P^{-1} \in F(B \times A)$.
It is obvious that $\left(\mathrm{P}^{-1}\right)^{-1}=\mathrm{P}$.

Theorem 3.1.4: Let $P \in F(A \times B)$ and $Q \in F(B \times C)$ be two fuzzy relations and T be any continuous t-norm. Define a fuzzy set $\mathrm{P} \mathrm{o}_{\mathrm{T}} \mathrm{Q}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{I}$ by

$$
\begin{aligned}
& P_{o r} Q(x, y)=\sup \{T(P(x, z), Q(z, y))\}, \text { for all } x, y \in X . \\
& z \in X
\end{aligned}
$$

Then $\mathrm{Po}_{\mathrm{T}} \mathrm{Q}$ is a fuzzy relation from fuzzy set A to fuzzy set C .
Proof: Since $P \in F(A \times B)$ and $Q \in F(B \times C)$,
$\mathrm{P}(\mathrm{x}, \mathrm{z}) \leq \min \{\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{z})\}$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{X}$ and
$\mathrm{Q}(\mathrm{z}, \mathrm{y}) \leq \min \{\mathrm{B}(\mathrm{z}), \mathrm{C}(\mathrm{y})\}$, for all $\mathrm{z}, \mathrm{y} \in \mathrm{X}$.

$$
\mathrm{Po}_{T} \mathrm{Q}(\mathrm{x}, \mathrm{y})=\sup _{\mathrm{z} \in \mathrm{X}}\{\mathrm{~T}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{x}, \mathrm{y}))\}
$$

$\leq \sup \{T(\min (A(x), B(z), \min (B(z), C(y))\}$ $z \in X$

```
\(\leq \sup \{\min (\min (\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{z})), \min (\mathrm{B}(\mathrm{z}), \mathrm{C}(\mathrm{y})))\}\)
    \(z \in X\)
```

$\leq \sup \{\min (\mathrm{A}(\mathrm{x}), \mathrm{C}(\mathrm{y}))\}$
$z \in X$

Thus, $\mathrm{Po}_{\mathrm{T}} \mathrm{Q}(\mathrm{x}, \mathrm{y}) \leq \min (\mathrm{A}(\mathrm{x}), \mathrm{C}(\mathrm{y}))$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Definition 3.1.5 [F]: Let $P \in F(A \times B)$ and $Q \in F(B \times C)$ be two fuzzy relations and T be any continuous t-norm. The fuzzy set $\mathrm{P} \mathrm{o}_{\mathrm{T}} \mathrm{Q}$ is called sup- T composition of P and Q.

Theorem 3.1.6: Let $P \in F(A \times B)$ and $Q \in F(B \times C)$ be two fuzzy relations. Then $\left(\mathrm{Po}_{\mathrm{T}} \mathrm{Q}\right)^{-1}=\mathrm{Q}^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{P}^{-1}$

Following theorem is obvious

Theorem 3.1.7 [F]: Let $P \in F(A \times B)$ and $Q \in F(B \times C)$ be two fuzzy relations and S be any continuous t-conorm. Define a fuzzy set P so $Q: X \times X \rightarrow I$ by

$$
P_{s o} Q(x, y)=\min \left\{\inf _{z \in X}\{S(P(x, z), Q(z, y))\},(A \times C)(x, y)\right\}, \forall x, y \in X
$$

Then $\mathrm{P}_{\mathrm{s} O} \mathrm{Q}$ is a fuzzy relation from a fuzzy set A to a fuzzy set C .

Definition 3.1.8 $[F]$: Let $P \in F(A \times B)$ and $Q \in F(B \times C)$ be two fuzzy relations and S be any continuous t-conorm. The fuzzy set P so Q is called inf- S composition of P and Q.

Theorem 3.1.9 [F]: Let $P, P_{1}, P_{2} \in F(A \times B)$ and $Q, Q_{1}, Q_{2} \in F(B \times C)$
(i) $\quad P_{\text {so }}\left(Q_{1} \cap Q_{2}\right)=\left(P_{\text {SO }} Q_{1}\right) \cap\left(P_{S O} Q_{2}\right)$
(ii) If $P_{1} \subseteq P_{2}$, then $P_{1 \text { so }} Q \subseteq P_{2}$ so Q
(iii) $\quad\left(\mathrm{P}_{\mathrm{s} O} \mathrm{Q}\right)^{-1}=\mathrm{Q}^{-1}$ so P^{-1}

Proof: i) Let $x, y \in X$.
$\left[\mathrm{P}_{\mathrm{SO}}\left(\mathrm{Q}_{1} \cap \mathrm{Q}_{2}\right)\right](\mathrm{x}, \mathrm{y})$
$=\min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{S}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{1} \cap \mathrm{Q}_{2}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$=\min \left\{\inf _{z \in X}\left\{S\left(P(x, z), \min \left\{Q_{1}(z, y), Q_{2}(z, y)\right\}\right)\right\}, A \times C(x, y)\right\}$
$=\min \left\{\inf _{z \in X}\left\{\min \left\{S\left(P(x, z), Q_{1}(z, y)\right), S\left(P(x, z), Q_{2}(z, y)\right)\right\}, A \times C(x, y)\right\}\right.$
$\left.=\min \left\{\min \left\{\inf _{z \in X}\left\{S\left(P(x, z), Q_{1}(z, y)\right)\right\}, \quad \inf _{z \in X}\left\{S\left(P(x, z), Q_{2}(z, y)\right)\right\}\right\}, A \times C(x, y)\right\}\right\}$
$=\min \left\{\min \left\{\inf \left\{\mathrm{S}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{1}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}, \min \left\{\inf \left\{\mathrm{S}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{2}(\mathrm{z}, \mathrm{y})\right)\right\}\right.\right.$, $z \in X \quad z \in X$ $A \times C(x, y)\}\}$
$=\min \left\{\mathrm{P}_{\mathrm{so}} \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}), \mathrm{P}_{\mathrm{sO}} \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y})\right\}$
$=\left(P_{\mathrm{sO}} \mathrm{Q}_{1}\right) \cap\left(\mathrm{P}_{\mathrm{sO}} \mathrm{Q}_{2}\right)(\mathrm{x}, \mathrm{y})$
ii) Let $P_{1} \subseteq P_{2}$
$\left.P_{1 \text { SO }} Q(x, y)=\min _{z \in X}\left\{\inf _{z \in X}\left\{S_{1}(x, z), Q(z, y)\right)\right\}, A \times C(x, y)\right\}$
$\leq \min \left\{\inf \left\{S\left(\mathrm{P}_{2}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X$
$=P_{2} \mathrm{SO} \mathrm{Q}(\mathrm{x}, \mathrm{y})$.
iii) $\left(P_{\text {so }} Q^{-1}(x, y)=\left(P_{\text {so }} Q\right)(y, x)\right.$
$=\min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\{\mathrm{S}(\mathrm{P}(\mathrm{y}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{x}))\}, \mathrm{A} \times \mathrm{C}(\mathrm{y}, \mathrm{x})\right\}$
$=\min \left\{\inf _{z \in X}\left\{S\left(P^{-1}(z, y), Q^{-1}(x, z)\right)\right\}, C \times A(x, y)\right\}$
$=\min _{z \in X}\left\{\inf _{\mathrm{X}}\left\{\mathrm{S}\left(\mathrm{Q}^{-1}(\mathrm{x}, \mathrm{z}), \mathrm{P}^{-1}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{C} \times \mathrm{A}(\mathrm{x}, \mathrm{y})\right\}$
$=\left(\mathrm{Q}^{-1}\right.$ so $\left.\mathrm{P}^{-1}\right)(\mathrm{x}, \mathrm{y})$

Definition 3.1.10 [F]: Let A, B, C be fuzzy sets in X and $P \in F(A \times B), Q \in F(B \times C)$
be fuzzy relations. The $\inf -\mathrm{w}_{\mathrm{T}}$ composition of P and Q is a fuzzy relation $\mathrm{P}^{\mathrm{o}}{ }_{w_{T}} \mathrm{Q} \in \mathrm{F}(\mathrm{A} \times \mathrm{C})$ defined as follows:
$P^{O_{w T}} \mathrm{Q}(\mathrm{x}, \mathrm{y})=\min \left\{\inf \left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y}))\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ $z \in X$

If $P \in F(A \times B)$ and $Q \in F(B \times C)$ be fuzzy relations, then $\left(P^{0} W_{T} Q\right)^{-1}$ is a fuzzy relation from a fuzzy set C to A .

Theorem 3.1.11 [F]: Let $P, P_{1}, P_{2} \in F(A \times B)$ and $Q, Q_{1}, Q_{2} \in F(B \times C)$ be such that $\mathrm{P}_{1} \subseteq \mathrm{P}_{2}$ and $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$. Then
i) $P^{o}{ }_{W_{T} Q_{1} \subseteq} \subseteq P^{o}{ }_{W_{T}} Q_{2}$
ii) $P_{1}{ }^{\mathrm{o}}{ }_{\mathrm{w}_{\mathrm{T}} \mathrm{Q} \supseteq \mathrm{P}_{2}}{ }^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}$.

Proof i) $\mathrm{P}^{\mathrm{O}}{ }_{\mathrm{w}}^{\mathrm{T}} \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y})=\min \left\{\inf \left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{1}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$

$$
z \in X
$$

$\leq \min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{2}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$, by Theorem 1.2.8(iv)
$\leq \mathrm{P}^{\mathrm{o}}{ }_{\mathrm{w}}^{\mathrm{W}} \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y})$.
ii) $P_{1}{ }^{\circ}{ }_{w_{T}} Q(x, y)$
$=\min \left\{\inf _{z \in X}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}_{1}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$\left.\geq \underset{\mathrm{m} \in \mathrm{X}}{\min }\left\{\inf _{\mathrm{T}}\left(\mathrm{P}_{2}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$, by Theorem 1.2.8(iv)
$\geq \mathrm{P}_{2}{ }^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}(\mathrm{x}, \mathrm{y})$.

Theorem 3.1.12 [F]: Let $P \in F(A \times B), Q \in F(B \times C)$ and $R \in F(A \times C)$ be fuzzy relations. Then
i) $\mathrm{P} \subseteq\left(\mathrm{P}^{\mathrm{o}}{ }_{W_{T}} \mathrm{Q}\right){ }^{\mathrm{o}}{ }^{W_{T}} \mathrm{Q}^{-1}$
ii) $R \subseteq\left(R^{o}{ }_{w_{T}} Q^{-1}\right){ }^{o}{ }_{w_{T}} Q$.

Proof: i) $\left(\mathrm{P}^{\mathrm{o}}{ }_{\mathrm{w}_{\mathrm{T}} \mathrm{Q}}\right)^{\mathrm{o}}{ }_{\mathrm{w}_{\mathrm{T}}} \mathrm{Q}^{-1}(\mathrm{x}, \mathrm{y})=\min \left\{\inf \left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{y}, \mathrm{z})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}$ $z \in X$
$\left.\left.=\underset{\mathrm{z} \in \mathrm{X}}{\min \left\{\inf _{\mathrm{T}}\right.}\left\{\mathrm{w}_{\mathrm{T}}\left(\min \left\{\inf _{\mathrm{t} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{z}))\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{z})\right\}\right), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}$.
$\geq \min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}\left(\inf _{\mathrm{t} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{z}))\right\}, \mathrm{Q}(\mathrm{y}, \mathrm{z})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}$,
$\geq \min _{z \in X}\left\{\inf _{\mathrm{z}}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{Q}(\mathrm{y}, \mathrm{z})), \mathrm{Q}(\mathrm{y}, \mathrm{z})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}$
$\geq \min \left\{\inf _{z \in X}\{P(x, y)\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}$, By Theorem 1.2.8(ii)
$=P(x, y)$, Since $P \in F(A \times B)$
ii) Follows similarly.

Theorem 3.1.13 [F]: Let $P \in F(A \times B), Q \in F(B \times C)$ and $R \in F(A \times C)$ be fuzzy relations. Then
i) $Q \subseteq P^{-1}{ }^{\circ} W_{T}\left(P o_{T} Q\right)$
ii) $R \supseteq P o_{T}\left(P^{-1}{ }^{\circ}{ }_{W_{T} R}\right)$
iii) $\mathrm{P} \subseteq\left[\mathrm{Q}^{\mathrm{O}}{ }_{\mathrm{WT}}(\operatorname{Por} \mathrm{Q})^{-1}\right]^{-1}$
iv) $R \supseteq\left(Q^{\circ}{ }^{w_{T}} R^{-1}\right)^{-1} o_{T} Q$

Proof: i) $\mathrm{P}^{-1}{ }^{\mathrm{O}} \mathrm{w}_{\mathrm{T}}\left(\mathrm{P}_{\mathrm{o}} \mathrm{Q}\right)(\mathrm{x}, \mathrm{y})$
$=\min \left\{\inf _{z \in X}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}^{-1}(\mathrm{x}, \mathrm{z}), \mathrm{P}\right.\right.\right.$ or $\left.\left.\left.\mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$=\min \left\{\inf _{z \in X}\left\{\mathrm{w}_{-}^{-}\left(\mathrm{P}^{-1}(\mathrm{x}, \mathrm{z}), \sup _{\mathrm{t} \in \mathrm{X}}\{\mathrm{T}(\mathrm{P}(\mathrm{z}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{y}))\}\right)\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$=\min \left\{\inf \left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}^{-1}(\mathrm{x}, \mathrm{z}), \max [\mathrm{T}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{x}, \mathrm{y})), \sup \{\mathrm{T}(\mathrm{P}(\mathrm{z}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{y}))\}\}\right\}\right.\right.$, $z \in X$

$$
t \neq x
$$

$$
(\mathrm{B} \times \mathrm{C})(\mathrm{x}, \mathrm{y})\}
$$

$\geq \min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{T}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{x}, \mathrm{y})))\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$\geq \min \left\{\inf _{z \in X}\{Q(x, y), B \times C(x, y)\}\right.$,
$\geq \mathrm{Q}(\mathrm{x}, \mathrm{y})$
Hence, $\mathrm{Q} \subseteq \mathrm{P}^{-1} \mathrm{O}_{\mathrm{w}_{\mathrm{T}}}(\mathrm{P}$ ot Q$)$
ii) $\mathrm{P} \mathrm{o}_{\mathrm{o}}\left(\mathrm{P}^{-1} \mathrm{O}_{\mathrm{w}_{\mathrm{T}}} \mathrm{R}\right)(\mathrm{x}, \mathrm{y})$
$=\sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{P}^{-1 \mathrm{O}} \mathrm{w}_{\mathrm{T}} \mathrm{R}(\mathrm{z}, \mathrm{y})\right)\right\}$
$=\sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \min \left\{\inf _{\mathrm{t} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{t}, \mathrm{z}), \mathrm{R}(\mathrm{t}, \mathrm{y}))\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\right)\right\}$
$\leq \sup \left\{\mathrm{T}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \inf \left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{t}, \mathrm{z}), \mathrm{R}(\mathrm{t}, \mathrm{y}))\right\}\right)\right\}$, Since $\min \mathrm{x}_{\mathrm{i}} \leq \mathrm{x}_{\mathrm{i}}$ $z \in X \quad t \in X$
$\leq \sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{x}, \mathrm{y}))\right)\right\}$, By monotonicity of T .
$\leq \mathrm{R}(\mathrm{x}, \mathrm{y})$,
Hence, $R \supseteq P o_{T}\left(P^{-1}{ }^{o} w_{T} R\right)$.

$$
\begin{aligned}
& \text { iii) }\left[Q^{0}{ }^{\mathrm{W}} \text { (}\left(\mathrm{P}_{\mathrm{or}} \mathrm{Q}\right)^{-1}\right]^{-1}(\mathrm{x}, \mathrm{y}) \\
& =\left[Q^{O} W_{T}\left(P_{o_{T}} Q\right)^{-1}\right](y, x) \\
& =\min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{Q}(\mathrm{y}, \mathrm{z}),\left(\mathrm{P} \mathrm{o}_{\mathrm{T}} \mathrm{Q}\right)^{-1}(\mathrm{z}, \mathrm{x})\right)\right\}, \mathrm{B} \times \mathrm{A}(\mathrm{y}, \mathrm{x})\right\} \\
& =\min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{Q}(\mathrm{y}, \mathrm{z}),\left(\mathrm{P} \mathrm{o}_{\mathrm{T}} \mathrm{Q}\right)(\mathrm{x}, \mathrm{z})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\} \\
& =\min \left\{\inf _{z \in X}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{Q}(\mathrm{y}, \mathrm{z}), \sup _{\mathrm{t} \in \mathrm{X}}\{\mathrm{~T}(\mathrm{P}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{z}))\}\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\} \\
& =\min \left\{\inf _{z \in X}\left\{W_{T}\left(Q(y, z), \max \left\{T(P(x, y), Q(y, z)), \sup _{t \neq y}\{T(P(x, t), Q(t, z))\}\right\}\right)\right\},\right. \\
& \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\} \\
& \geq \min \left\{\inf _{z \in X}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{Q}(\mathrm{y}, \mathrm{z}), \mathrm{T}(\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{Q}(\mathrm{y}, \mathrm{z})))\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\} \\
& \geq \min \{\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\} \\
& \geq P(x, y), \text { Since } P \in F(A \times B) \\
& \text { Hence, } P \subseteq\left[Q^{0}{ }^{0}{ }_{T}(\operatorname{Por} Q)^{-1}\right]^{-1} \\
& \text { iv) }\left(Q^{o}{ }^{W} R_{T}\right)^{-1} o_{T} Q(x, y) \\
& =\sup \left\{\mathrm{T}\left(\left(\mathrm{Q}^{\mathrm{O}} \mathrm{w}_{\mathrm{T}} \mathrm{R}^{-1}\right)^{-1}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\} \\
& z \in X \\
& \left.=\sup \left\{\mathrm{T}\left(\mathrm{Q}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{R}^{-1}\right)(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\} \\
& z \in X \\
& =\sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{~T}\left(\min \left\{\inf _{t \in X}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{Q}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{x}, \mathrm{t}))\right\}, \mathrm{B} \times \mathrm{A}(\mathrm{x}, \mathrm{y})\right\}, \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\} \\
& \leq \sup \left\{\mathrm{T}\left(\inf \left\{\mathrm{w}_{\mathrm{T}}(\mathrm{Q}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{x}, \mathrm{t}))\right\}, \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\} \\
& z \in X \quad t \in X \\
& \leq \sup \left\{\mathrm{T}\left(\mathrm{w}_{\mathrm{T}}(\mathrm{Q}(\mathrm{z}, \mathrm{y}), \mathrm{R}(\mathrm{x}, \mathrm{y})), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\} \\
& z \in X \\
& \leq \mathrm{R}(\mathrm{x}, \mathrm{y}) \text {, By Theorem 1.2.8(x) } \\
& \text { Hence, } \mathrm{R} \supseteq\left(\mathrm{Q}^{\mathrm{O}}{ }_{\mathrm{W}_{\mathrm{T}}} \mathrm{R}^{-1}\right)^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{Q}
\end{aligned}
$$

Definition 3.1.14 [F]: Let A, B, C be fuzzy sets in X and $P \in F(A \times B), Q \in F(B \times C)$ be fuzzy relations. The sup- ω_{S} composition of P and Q is a fuzzy relation $\mathrm{P}^{\circ} \omega_{\mathrm{s}} \mathrm{Q} \in \mathrm{F}(\mathrm{A} \times \mathrm{C})$ defined as follows:

$$
\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}(\mathrm{x}, \mathrm{y})=\min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{S}}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y}))\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}, \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{X}
$$

Theorem 3.1.15 [F]: Let $P, P_{1}, P_{2} \in F(A \times B)$ and $Q, Q_{1}, Q_{2} \in F(B \times C)$ be such that $\mathrm{P}_{1} \subseteq \mathrm{P}_{2}$ and $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$. Then
i) ${ }^{\circ} \omega_{s} Q_{1} \subseteq P^{\circ} \omega_{S} Q_{2}$.
ii) $\mathrm{P}_{1}{ }^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q} \supseteq \mathrm{P}_{2}{ }^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}$.

Proof: i) Since $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}, \mathrm{Q}_{1}(\mathrm{z}, \mathrm{y}) \leq \mathrm{Q}_{2}(\mathrm{z}, \mathrm{y})$, for all $\mathrm{z}, \mathrm{y} \in \mathrm{X}$.
$\Rightarrow \omega_{\mathrm{S}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{1}(\mathrm{z}, \mathrm{y})\right) \leq \omega_{\mathrm{S}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{2}(\mathrm{z}, \mathrm{y})\right)$, by Theorem 1.2.10(iv)

Thus, $\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y})=\min \left\{\sup \left\{\omega_{\mathrm{S}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{1}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$ $z \in X$
$\leq \min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{s}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{Q}_{2}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$\leq \mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y})$
Hence, $\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{S}} \mathrm{Q}_{1} \subseteq \mathrm{P}^{\circ} \omega_{\mathrm{S}} \mathrm{Q}_{2}$.
ii) Since $P_{1} \subseteq P_{2}, P_{1}(x, z) \leq P_{2}(x, z), \forall x, z \in X$.
$\Rightarrow \omega_{\mathrm{s}}\left(\mathrm{P}_{1}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y}) \geq \omega_{\mathrm{s}}\left(\mathrm{P}_{2}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right.$, By Theorem 1.2.10(iv)

Thus, $\mathrm{P}_{1}{ }^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}(\mathrm{x}, \mathrm{y})=\min \left\{\sup \left\{\omega_{\mathrm{S}}\left(\mathrm{P}_{1}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X$
$\geq \min \left\{\sup \left\{\omega_{\mathrm{s}}\left(\mathrm{P}_{2}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X$
$\geq \mathrm{P}_{2}{ }^{\mathrm{o}} \omega_{\mathrm{S}} \mathrm{Q}(\mathrm{x}, \mathrm{y})$

Hence, $\mathrm{P}_{1}{ }^{\mathrm{o}} \omega_{\mathrm{S}} \mathrm{Q} \supseteq \mathrm{P}_{2}{ }^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}$.

Theorem 3.1.16 [F]: Let $P \in F(A \times B), Q \in F(B \times C)$ and $R \in F(A \times C)$ be fuzzy relations. Then
i) $\mathrm{Q} \supseteq \mathrm{P}^{-1 \mathrm{O}} \omega_{\mathrm{S}}\left(\mathrm{P}_{\mathrm{s} \circ} \mathrm{Q}\right)$
i) $\mathrm{P} \supseteq\left(\mathrm{Q}^{\circ} \omega_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{s} O} \mathrm{Q}\right)^{-1}\right)^{-1}$
iii) $\mathrm{Q} \supseteq \mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}}\left(\mathrm{P}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}\right)$
iv) $R \subseteq P^{\circ}{ }_{W_{T}}\left(P^{-1} o_{T} R\right)$
v) $\mathrm{R} \supseteq \mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}}\left(\mathrm{P}^{-1}{ }_{\mathrm{so}} \mathrm{R}\right)$

Proof: i) $\mathrm{P}^{-1 \mathrm{o}} \omega_{\mathrm{s}}$ ($\left.\mathrm{P}_{\text {so }} \mathrm{Q}\right)(\mathrm{x}, \mathrm{y})$
$=\min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{s}}\left(\mathrm{P}^{-1}(\mathrm{x}, \mathrm{z}), \mathrm{P}_{\mathrm{s}} \mathrm{OQ}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$=\min \left\{\sup _{z \in X}\left\{\omega_{s}\left(P(z, x), \min \left[\inf _{t \in X}\{S(P(z, t), Q(t, y))\}, A \times C(z, y)\right]\right),(B \times C)(x, y)\right\}\right.$
$\leq \min \left\{\sup _{t \in X}\left\{\omega_{\mathrm{S}}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \inf (\mathrm{S}(\mathrm{P}(\mathrm{z}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{y})))), \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}, \mathrm{z} \in \mathrm{X}\right.$
$\leq \min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{s}}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \min [(\mathrm{S}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{x}, \mathrm{y})), \underset{\mathrm{inf}}{\mathrm{if}}\{\mathrm{S}(\mathrm{P}(\mathrm{z}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{y}))\}]\right.\right.$, $B \times C(x, y)\}$.
$\leq \min \left\{\sup \left\{\omega_{\mathrm{s}}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{S}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{x}, \mathrm{y})))\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$ $z \in X$
$\leq \min \{\mathrm{Q}(\mathrm{x}, \mathrm{y}), \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}$,
$\leq Q(x, y)$, since $Q \in F(B \times C)$
Hence, $\mathrm{Q} \supseteq \mathrm{P}^{-1 \mathrm{O}} \omega_{\mathrm{s}}(\mathrm{P}$ so Q$)$
ii) $\left(Q^{0} \omega_{S}\left(P_{s \circ} Q\right)^{-1}\right)^{-1}(x, y)=\left(Q^{o} \omega_{s}\left(P_{S O} Q\right)^{-1}\right)(y, x)$
$=\min \left\{\sup \left\{\omega_{s}\left(\mathrm{Q}(\mathrm{y}, \mathrm{z}),\left(\mathrm{P}_{\mathrm{s} O} \mathrm{Q}\right)^{-1}(\mathrm{z}, \mathrm{x})\right)\right\}, \mathrm{B} \times \mathrm{A}(\mathrm{y}, \mathrm{x})\right\}$ $z \in X$

```
\(=\min \left\{\sup \left\{\omega_{\mathrm{s}}\left(\mathrm{Q}(\mathrm{y}, \mathrm{z}), \mathrm{P}_{\mathrm{s} O} \mathrm{Q}(\mathrm{x}, \mathrm{z})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}\)
    \(z \in X\)
\(=\min \left\{\sup \left\{\omega_{\mathrm{s}}(\mathrm{Q}(\mathrm{y}, \mathrm{z}), \min [\inf \{\mathrm{S}(\mathrm{P}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{z}))\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{z})], \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\}\right.\right.\)
        \(z \in X \quad t \in X\)
\(=\min \left\{\sup _{z \in X}\left\{\omega_{S}\left(Q(y, z), \min \left[\min \left[S(P(x, y), Q(y, z)), \inf _{t \neq y}^{S}(P(x, t), Q(t, z))\right]\right.\right.\right.\right.\),
        \(\mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\} \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{z})]\),
\(\leq \min \left\{\sup _{z \in X}\left\{\omega_{s}(Q(y, z), S(P(x, y), Q(y, z)))\right\}, A \times B(x, y)\right\}\)
\(\leq \min \{\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\}\)
\(=P(x, y)\), Since \(P \in F(A \times B)\).
iii) \(\mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}}\left(\mathrm{P}^{\mathrm{O}} \mathrm{W}_{\mathrm{T}} \mathrm{Q}\right)(\mathrm{x}, \mathrm{y})\)
\(=\sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}^{-1}(\mathrm{x}, \mathrm{z}), \mathrm{P}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}(\mathrm{z}, \mathrm{y})\right\}\right.\)
\(=\sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}(\mathrm{z}, \mathrm{x}), \min \left[\inf _{\mathrm{t} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{z}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{y}))\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{z}, \mathrm{y})\right]\right)\right\}\)
\(\leq \sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}(\mathrm{z}, \mathrm{x}), \inf _{\mathrm{t} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{z}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{y}))\right\}\right)\right\}\), By Monotonicity of T .
\(\leq \sup _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{x}, \mathrm{y}))\right)\right\}\), By Monotonicity of T .
\(\leq \mathrm{Q}(\mathrm{x}, \mathrm{y})\)
Hence, \(\mathrm{Q} \supseteq \mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}}\left(\mathrm{P}^{\mathrm{O}} \mathrm{W}_{\mathrm{T}} \mathrm{Q}\right)\).
iv) \(\mathrm{P}^{\mathrm{O}}{ }_{\mathrm{w}}\left(\mathrm{P}^{-1}\right.\) or R\()(\mathrm{x}, \mathrm{y})\)
\(=\min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{R}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\)
\(=\min \left\{\inf _{z \in X}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \sup _{\mathrm{t} \in \mathrm{X}}\left\{\mathrm{T}\left(\mathrm{P}^{-1}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{t}, \mathrm{y})\right)\right\}\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\)
\(=\min \left\{\inf _{z \in X}\left\{\mathrm{w}_{\mathrm{T}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \max \left\{\mathrm{T}\left(\mathrm{P}^{-1}(\mathrm{z}, \mathrm{x}), \mathrm{R}(\mathrm{x}, \mathrm{y})\right), \sup _{\mathrm{t} \neq \mathrm{x}}\left\{\mathrm{T}\left(\mathrm{P}^{-1}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{t}, \mathrm{y})\right)\right\}\right)\right\}\right.\right.\),
                                    \(\mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}\).
\(\geq \min \left\{\inf _{\mathrm{z} \in \mathrm{X}}\left\{\mathrm{w}_{\mathrm{T}}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{x}, \mathrm{y})))\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\)
\(\geq \min \{R(x, y), A \times C(x, y)\}\)
\(=R(x, y)\)
```

```
v) \(\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{S}}\left(\mathrm{P}^{-1}\right.\) so R\()(\mathrm{x}, \mathrm{y})=\min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{s}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{P}^{-1}\right.\right.\right.\) so \(\left.\left.\left.\mathrm{R}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\)
\(\left.=\min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{S}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \min _{\mathrm{t} \in \mathrm{X}} \inf _{X}\left\{\mathrm{~S}\left(\mathrm{P}^{-1}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{t}, \mathrm{y})\right)\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{z}, \mathrm{y})\right\}\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\).
\(\leq \min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{S}}\left(\mathrm{P}(\mathrm{x}, \mathrm{z}), \inf _{\mathrm{t} \in \mathrm{X}}\{\mathrm{S}(\mathrm{P}(\mathrm{t}, \mathrm{z}), \mathrm{R}(\mathrm{t}, \mathrm{y}))\}\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\)
\(\leq \min \left\{\sup _{\mathrm{z} \in \mathrm{X}}\left\{\omega_{\mathrm{s}}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{S}(\mathrm{P}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{x}, \mathrm{y})))\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\)
\(\leq \min \{\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}\),
\(=R(x, y)\).
```

Theorem 3.1.17 [F]: Let $P \in F(A \times B)$ and $R \in F(A \times C)$

```
If \(\sup A(z) \leq \min \{B(x), C(y)\}\), for all \(x, y \in X\), then \(\mathrm{P}^{-10} \omega_{s} R \in F(B \times C)\).
    \(z \in X\)
```

Proof: We claim that for $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \operatorname{Sup}\{\max (\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{R}(\mathrm{z}, \mathrm{y}))\} \leq \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})$. $z \in X$

We have,

```
\(\operatorname{Sup}\{\max (\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{R}(\mathrm{z}, \mathrm{y}))\} \leq \operatorname{Sup}\{\max \{\min \{\mathrm{A}(\mathrm{z}), \mathrm{B}(\mathrm{x})\}, \min \{\mathrm{A}(\mathrm{z}), \mathrm{C}(\mathrm{y})\}\}\}\)
\(z \in X \quad z \in X\)
\(=\operatorname{Sup}\{\max \{\mathrm{A}(\mathrm{z}), \mathrm{A}(\mathrm{z})\}\}\)
    \(z \in X\)
\(=\operatorname{Sup}\{\mathrm{A}(\mathrm{z})\}\)
    \(z \in X\)
\(\leq \min \{\mathrm{B}(\mathrm{x}), \mathrm{C}(\mathrm{y})\}\)
\(=B \times C(x, y)\)
```

Now $\mathrm{P}^{-1 \mathrm{O}} \omega_{\mathrm{s}} \mathrm{R}(\mathrm{x}, \mathrm{y})=\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{R}(\mathrm{z}, \mathrm{y}))\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X$
$\leq \min \{\operatorname{Sup}\{\max (\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{R}(\mathrm{z}, \mathrm{y}))\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}$
$z \in X$
$=\operatorname{Sup}\{\max (\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{R}(\mathrm{z}, \mathrm{y}))\}$
$z \in X$
$=B \times C(x, y)$.

Therefore, $\mathrm{P}^{-1 \mathrm{o}} \omega_{\mathrm{s}} \mathrm{R} \in \mathrm{F}(\mathrm{B} \times \mathrm{C})$.

Theorem 3.1.18 [F]: Let $P \in F(A \times B), R \in F(A \times C)$ and


```
z\inX
Proof: P so (P
=min{\operatorname{inf}{\textrm{S}(\textrm{P}(\textrm{x},\textrm{z}),\mp@subsup{\textrm{P}}{}{-10}\mp@subsup{\omega}{\textrm{S}}{}\textrm{R}(\textrm{z},\textrm{y}))},\textrm{A}\times\textrm{C}(\textrm{x},\textrm{y})}
    z}\in\mathbb{X
=min{\operatorname{inf}{S(P(x,z),\operatorname{min}{\operatorname{Sup}{\mp@subsup{\omega}{\textrm{S}}{}(\mp@subsup{\textrm{P}}{}{-1}(\textrm{z},\textrm{t}),\textrm{R}(\textrm{t},\textrm{y}))},\textrm{B}\times\textrm{C}(\textrm{x},\textrm{y})})},A\times\textrm{C}(\textrm{x},\textrm{y})}
    z\inX t\inX
=min{\operatorname{inf}{S(P(x,z),\operatorname{Sup}{\mp@subsup{\omega}{\textrm{s}}{}(\mp@subsup{\textrm{P}}{}{-1}(\textrm{z},\textrm{t}),R(\textrm{t},\textrm{y}))})},A\timesC(x,y)}
        z\inX t
= min{ inf {S(P(x,z), max[\mp@subsup{\omega}{S}{}(P(x,z),R(x,y)), Sup {\mp@subsup{\omega}{\textrm{S}}{}(\textrm{P}(\textrm{t},\textrm{z}),\textrm{R}(\textrm{t},\textrm{y}))}])},
        z\inX t
```

 \(\mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}\)
 $\geq \min \left\{\inf \left\{S\left(P(x, z), \omega_{S}(P(x, z), R(x, y))\right)\right\}, A \times C(x, y)\right\}$.
$z \in X$
$\geq \min \{\inf \{R(x, y)\}, A \times C(x, y)\}$,
$z \in X$
$=\min \{\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}$
$=R(x, y)$, since $R \in F(A \times C)$
Therefore, $\mathrm{R} \subseteq \mathrm{P}$ so $\left(\mathrm{P}^{-1 \mathrm{o}} \omega_{\mathrm{s}} \mathrm{R}\right)$

Theorem 3.1.19 [F]: Let $Q \in F(B \times C), R \in F(A \times C)$ and

$$
\text { Sup } C(z) \leq \min \{B(x), A(y)\} \text {, for all } x, y \in X \text {. Then } Q^{\circ} \omega_{s} R^{-1} \in F(B \times A)
$$

$$
z \in X
$$

Proof: We claim that $\operatorname{Sup}\left\{\max \left(\mathrm{Q}(\mathrm{x}, \mathrm{z}), \mathrm{R}^{-1}(\mathrm{z}, \mathrm{y})\right)\right\} \leq \mathrm{B} \times \mathrm{A}(\mathrm{x}, \mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. $z \in X$

We have,

```
    \(\operatorname{Sup}\left\{\max \left(\mathrm{Q}(\mathrm{x}, \mathrm{z}), \mathrm{R}^{-1}(\mathrm{z}, \mathrm{y})\right)\right\}=\operatorname{Sup}\{\max (\mathrm{Q}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{y}, \mathrm{z}))\}\)
\(z \in X \quad z \in X\)
\(\leq \operatorname{Sup}\{\max \{\min \{B(x), C(z)\}, \min \{A(y), C(z)\}\}\}\)
    \(z \in X\)
\(=\operatorname{Sup}\{\max \{C(z), C(z)\}\)
    \(z \in X\)
\(=\operatorname{Sup}_{z \in X}\{C(z)\}\)
\(\leq \mathrm{B} \times \mathrm{A}(\mathrm{x}, \mathrm{y})\)
Now \(\mathrm{Q}^{\circ} \omega_{\mathrm{s}} \mathrm{R}^{-1}(\mathrm{x}, \mathrm{y})=\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{S}}\left(\mathrm{Q}(\mathrm{x}, \mathrm{z}), \mathrm{R}^{-1}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{B} \times \mathrm{A}(\mathrm{x}, \mathrm{y})\right\}\)
                                    \(z \in X\)
\(\leq \min \left\{\operatorname{Sup}\left\{\max \left(\mathrm{Q}(\mathrm{x}, \mathrm{z}), \mathrm{R}^{-1}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{B} \times \mathrm{A}(\mathrm{x}, \mathrm{y})\right\}\)
        \(z \in X\)
\(=\operatorname{Sup}\left\{\max \left(\mathrm{Q}(\mathrm{x}, \mathrm{z}), \mathrm{R}^{-1}(\mathrm{z}, \mathrm{y})\right)\right\}\)
    \(z \in X\)
\(\leq \mathrm{B} \times \mathrm{A}(\mathrm{x}, \mathrm{y})\)
Therefore, \(\mathrm{Q}^{\circ} \omega_{\mathrm{S}} \mathrm{R}^{-1} \in \mathrm{~F}(\mathrm{~B} \times \mathrm{A})\).
```

Theorem 3.1.20 [F]: Let $Q \in F(B \times C), R \in F(A \times C)$ and
Sup $C(z) \leq \min \{B(x), A(y)\}$, for all $x, y \in X$. Then $R \subseteq\left(Q^{\circ} \omega_{s} R^{-1}\right)^{-1}$ so Q.
$z \in X$
Proof: $\left(Q^{0} \omega_{s} R^{-1}\right)^{-1}$ so $Q(x, y)$
$\left.=\min \left\{\inf \left\{S\left(\mathrm{Q}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{R}^{-1}\right)(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X$
$\left.=\min \left\{\inf \left\{S\left(\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}(\mathrm{Q}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{x}, \mathrm{t}))\right\}, \mathrm{B} \times \mathrm{A}(\mathrm{z}, \mathrm{x})\right\}\right), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X \quad t \in X$
$=\min \left\{\inf \left\{S\left(\operatorname{Sup}\left\{\omega_{\mathrm{S}}(\mathrm{Q}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{x}, \mathrm{t}))\right\}, \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X \quad t \in X$

```
\(=\min \left\{\inf \left\{S\left(\max \left[\omega_{\mathrm{S}}(\mathrm{Q}(\mathrm{z}, \mathrm{y}), \mathrm{R}(\mathrm{x}, \mathrm{y})), \operatorname{Sup}\left\{\omega_{\mathrm{S}}(\mathrm{Q}(\mathrm{z}, \mathrm{t}), \mathrm{R}(\mathrm{x}, \mathrm{t}))\right]\right\}, \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}\right.\),
    \(z \in X\)
                            \(t \neq x\)
                                    \(\mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\).
\(\geq \min \left\{\inf \left\{\mathrm{S}\left(\omega_{\mathrm{S}}(\mathrm{Q}(\mathrm{z}, \mathrm{y}), \mathrm{R}(\mathrm{x}, \mathrm{y})), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\)
        \(z \in X\)
\(\geq \min \{\inf \{R(x, y)\}, A \times C(x, y)\}\),
        \(z \in X\)
\(=\min \{\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}\)
\(=\mathrm{R}(\mathrm{x}, \mathrm{y})\)
```

Theorem 3.1.21 $[F]:$ Let $P \in F(A \times B)$ and $Q \in F(B \times C)$
If $\sup B(z) \leq \min (A(x), C(y)), \forall x, y \in X$, then $Q \subseteq P^{-1}$ so $\left(P^{0} \omega_{s} Q\right)$.
$z \in X$
Proof: P^{-1} so $\left(\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}\right)(\mathrm{x}, \mathrm{y})$
$=\min \left\{\inf \left\{S\left(\mathrm{P}^{-1}(\mathrm{x}, \mathrm{z}), \min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{S}}(\mathrm{P}(\mathrm{z}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{y}))\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{z}, \mathrm{y})\right\}\right), \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\right.$
$z \in X \quad t \in X$
$=\min \left\{\inf \left\{S\left(P(z, x), \sup \left\{\omega_{S}(P(z, t), Q(t, y))\right\}\right)\right\}, B \times C(x, y)\right\}$
$z \in X \quad t \in X$
$=\min \left\{\inf \left\{S\left(P(z, x), \max \left[\omega_{s}(P(z, x), Q(x, y)), \operatorname{Sup}\left\{\omega_{s}(P(z, t), Q(t, y))\right\}\right]\right\}\right.\right.$,
$z \in X \quad t \neq x$
$\mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}$
$\geq \min \left\{\inf \left\{\mathrm{S}\left(\mathrm{P}(\mathrm{z}, \mathrm{x}), \omega_{\mathrm{s}}(\mathrm{P}(\mathrm{z}, \mathrm{x}), \mathrm{Q}(\mathrm{x}, \mathrm{y}))\right)\right\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$
$z \in X$
$\geq \min \{\inf \{\mathrm{Q}(\mathrm{x}, \mathrm{y})\}, \mathrm{B} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}$,
$z \in X$
$=\mathrm{Q}(\mathrm{x}, \mathrm{y})$.

Theorem 3.1.22 [F]: Let $P \in F(A \times B)$ and $Q \in F(B \times C)$
i) If $\operatorname{Sup} B(z) \leq \min \{A(x), C(y)\}$, for $x, y \in X$, then $P \supseteq\left(P^{\circ} \omega_{s} Q\right)^{\circ} \omega_{s} Q^{-1}$.

$$
z \in X
$$

ii) If $\operatorname{Sup} C(z) \leq \min \{A(x), B(y)\}$, for $x, y \in X$, then $R \supseteq\left(R^{\circ} \omega_{s} Q^{-1}\right)^{\circ} \omega_{s} Q$. $z \in X$

Proof: i) $\left[\left(\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{S}} \mathrm{Q}\right){ }^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}^{-1}\right](\mathrm{x}, \mathrm{y})$
$\left.=\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}\left(\mathrm{P}^{\mathrm{O}} \omega_{\mathrm{s}} \mathrm{Q}\right)(\mathrm{x}, \mathrm{z}), \mathrm{Q}^{-1}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}$ $z \in X$
$=\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}\left(\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}(\mathrm{P}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{z}))\right\}, \mathrm{Ax} \mathrm{C}(\mathrm{x}, \mathrm{z})\right)\right\}, \mathrm{Q}(\mathrm{y}, \mathrm{z})\right)\right\}$, $z \in X \quad t \in X$

$$
\begin{aligned}
& \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\} \\
& =\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}\left(\operatorname{Sup}\left\{\omega_{\mathrm{s}}(\mathrm{P}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{z}))\right\}, \mathrm{Q}(\mathrm{y}, \mathrm{z})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\} \\
& z \in X \quad t \in X \\
& =\min \left\{\operatorname { S u p } \left\{\omega_{\mathrm{s}}\left(\max \left[\omega_{\mathrm{s}}(\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{Q}(\mathrm{y}, \mathrm{z})), \operatorname{Sup}\left\{\omega_{\mathrm{S}}(\mathrm{P}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{t}, \mathrm{z}))\right\}\right], \mathrm{Q}(\mathrm{y}, \mathrm{z})\right\},\right.\right. \\
& z \in X \quad t \neq y
\end{aligned}
$$

$\leq \min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{S}}\left(\omega_{\mathrm{S}}(\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{Q}(\mathrm{y}, \mathrm{z})), \mathrm{Q}(\mathrm{y}, \mathrm{z})\right)\right\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\right\}$ $z \in X$
$\leq \min \{\operatorname{Sup}\{\mathrm{P}(\mathrm{x}, \mathrm{y})\}, \mathrm{A} \times \mathrm{B}(\mathrm{x}, \mathrm{y})\}$ $z \in X$
$\leq \mathrm{P}(\mathrm{x}, \mathrm{y})$.
ii) $\left[\left(R^{\circ} \omega_{s} Q^{-1}\right){ }^{0} \omega_{s} Q\right](x, y)$
$=\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}\left(\mathrm{R}^{\mathrm{o}} \omega_{\mathrm{S}}\left(\mathrm{Q}^{-1}(\mathrm{x}, \mathrm{z}), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}\right.$ $\mathrm{z} \in \mathrm{X}$
$=\min \left\{\sup \left\{\omega_{\mathrm{s}}\left(\min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{S}}(\mathrm{R}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{z}, \mathrm{t}))\right\}, \mathrm{AxB}(\mathrm{x}, \mathrm{z})\right\}, \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$ $z \in X \quad t \in X$
$=\min \left\{\sup \left\{\omega_{\mathrm{s}}\left(\operatorname{Sup}\left\{\omega_{\mathrm{s}}(\mathrm{R}(\mathrm{x}, \mathrm{t}), \mathrm{Q}(\mathrm{z}, \mathrm{t}))\right\}, \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$, $z \in X \quad t \in X$

```
= min{ sup { ( 
    z\inX t\not=y
```

 \(\mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\}\)
 $\leq \min \left\{\operatorname{Sup}\left\{\omega_{\mathrm{s}}\left(\omega_{\mathrm{s}}(\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{Q}(\mathrm{z}, \mathrm{y})), \mathrm{Q}(\mathrm{z}, \mathrm{y})\right)\right\}, \mathrm{A} \times \mathrm{C}(\mathrm{x}, \mathrm{y})\right\}$.
$z \in X$
$\leq \min \{\operatorname{Sup}\{R(x, y)\}, A \times C(x, y)\}$
$z \in X$
$\leq R(x, y)$.

3.2 FUZZY RELATION EQUATIONS

Throughout this section A, B and C denote fuzzy sets in the universal set X .
Definition 3.2.1: Let $P \in F(A \times B), Q \in F(B \times C)$ and $R \in F(A \times C)$ be three fuzzy relations. Then the equation $P \circ Q=R$ is called a fuzzy relation equation, where o denote composition of fuzzy relations.

If $o=o_{T}\left(o=\right.$ so,$o={ }^{o} W_{T}$ and $o={ }^{\circ} \omega_{\mathrm{S}}$ respectively $)$, then the fuzzy relation equation $P \circ Q=R$ is called $\sup -T\left(\inf -S, \inf -W_{T}\right.$ and $\sup -\omega_{S}$ respectively) fuzzy relation equation.

3.2(a) SUP-T FUZZY RELATION EQUATIONS

In this section we will discuss solution of a given sup-T fuzzy relation equation $\mathrm{P}_{\mathrm{o}_{\mathrm{T}}} \mathrm{Q}=\mathrm{R}$, when any two of the fuzzy relations are given. Followings are the cases:
I) Given P and Q, R can be obtained by using the definition of sup- T composition. In this case R is unique.
II) If P and R are given, then the set $S(P, R)=\left\{Q \in F(B \times C) \mid P o_{T} Q=R\right\}$ is called the solution set of $P o_{T} Q=R$ for Q.

Theorem 3.2.2 [F]: If $S(P, R) \neq \phi$, then the fuzzy relation $P^{-1}{ }^{\circ}{ }_{W_{T}} R \in F(B \times C)$ is the maximum solution of the fuzzy relation equation P or $_{T} \mathrm{Q}=\mathrm{R}$ for Q .

Proof: Let $\mathrm{Q} \in \mathrm{S}(\mathrm{P}, \mathrm{R})$. Then P or $\mathrm{Q}=\mathrm{R}$.
Therefore, $\mathrm{Q} \subseteq \mathrm{P}^{-1} \mathrm{o}_{\mathrm{W}}\left(\mathrm{P} \mathrm{o}_{\mathrm{T}} \mathrm{Q}\right)$, By Theorem 3.1.13(i)

Hence, $\mathrm{Q} \subseteq \mathrm{P}^{-1}{ }^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{R}$

Thus, $\mathrm{Po}_{T} \mathrm{Q} \subseteq \mathrm{Po}_{\mathrm{T}}\left(\mathrm{P}^{-1} \mathrm{o}_{\mathrm{w}_{\mathrm{T}}} \mathrm{R}\right)$

Therefore, $\mathrm{R} \subseteq \mathrm{P} \mathrm{o}_{\mathrm{T}}\left(\mathrm{P}^{-1} \mathrm{o}_{\mathrm{w}_{\mathrm{T}}} \mathrm{R}\right)$

But then $\mathrm{R} \subseteq \mathrm{P}_{\mathrm{C}}\left(\mathrm{P}^{-1}{ }^{\mathrm{O}} \mathrm{W}_{\mathrm{T}} \mathrm{R}\right) \subseteq \mathrm{R}$

Hence, $\mathrm{P}_{\mathrm{o}}\left(\mathrm{P}^{-1}{ }^{\mathrm{O}} \mathrm{W}_{\mathrm{T}} \mathrm{R}\right)=\mathrm{R}$
III) If Q and R are given, then the set $S(Q, R)=\left\{P \in F(A \times B) \mid P o_{T} Q=R\right\}$ is called the solution set of $\mathrm{P} \mathrm{o}_{\mathrm{T}} \mathrm{Q}=\mathrm{R}$ for P . The solution of this type of equation can be obtained by using above type and by using inverse relation. For example we want to find a solution of $P o_{T} Q=R$ for P. Consider the equation $Q^{-1} o_{T} P^{-1}=R^{-1}$, the solution of this equation, P^{-1}, can be obtained by using above type (II). The fuzzy relation $\mathrm{P}=\left(\mathrm{P}^{-1}\right)^{-1}$ will be required solution of $\mathrm{P} \mathrm{o}_{\mathrm{T}} \mathrm{Q}=\mathrm{R}$ for P .

Theorem 3.2.3 [F]: If $S(Q, R) \neq \phi$, then the fuzzy relation $\left(Q^{\circ}{ }^{o} W_{T} R^{-1}\right)^{-1} \in F(A \times B)$ is the maximum solution of the fuzzy relation equation P or $Q=R$ for P.

Proof: Let $P \in F(A \times B)$ such that $P o_{T} Q=R$
Then by Theorem 3.1.13 (iii), $\mathrm{P} \subseteq\left[\mathrm{Q}^{\mathrm{O}} \mathrm{w}_{\mathrm{T}}\left(\mathrm{P}_{\mathrm{o}} \mathrm{Q}\right)^{-1}\right]^{-1}$

Thus, $\mathrm{P} \subseteq\left(\mathrm{Q}^{\mathrm{o}}{ }_{\mathrm{w}_{\mathrm{T}}} \mathrm{R}^{-1}\right)^{-1}$

Therefore, $\mathrm{Po}_{\mathrm{T}} \mathrm{Q} \subseteq\left(\mathrm{Q}{ }^{\mathrm{O}} \mathrm{w}_{\mathrm{T}} \mathrm{R}^{-1}\right)^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{Q}$

Thus, $\mathrm{R}=\mathrm{Po}_{\mathrm{T}} \mathrm{Q} \subseteq\left(\mathrm{Q}^{\mathrm{O}} \mathrm{w}_{\mathrm{T}} \mathrm{R}^{-1}\right)^{-1} \mathrm{or}_{\mathrm{T}} \mathrm{Q}$

Hence, $\mathrm{R} \subseteq\left(\mathrm{Q}^{\mathrm{O}}{ }^{\mathrm{w}} \mathrm{R}^{-1}\right)^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{Q} \subseteq \mathrm{R}$, by Theorem 3.1.13(iv)
i. e. $\left(Q^{o}{ }^{W} R^{-1}\right)^{-1} o_{T} Q=R$

3.2(b) INS-S FUZZY RELATION EQUATIONS

In this section we will discuss the solutions of the inf-S fuzzy relation equations P so $Q=R$.
I) Given P and Q, R can be obtained by using the definition of inf-S composition. In this case R is unique.
II) If P and R are given, then the set $S(P, R)=\{Q \in F(B \times C) \mid P$ so $Q=R\}$ is called the solution set of $P_{s o} Q=R$ for Q.

Theorem 3.2.4 [F]: Let $P \in F(A \times B), R \in F(A \times C)$ such that
Sup $A(z) \leq \min (B(x), C(y))$ for all $x, y \in X$.
$z \in X$

If $\mathrm{S}(\mathrm{P}, \mathrm{R}) \neq \phi$, then the fuzzy relation $\mathrm{P}^{-1}{ }^{\circ} \omega_{\mathrm{S}} \mathrm{R} \in \mathrm{F}(\mathrm{B} \times \mathrm{C})$ is the minimum solution of the fuzzy relation equation $P_{S O} Q=R$ for Q.

Proof: Let $\mathrm{Q} \in \mathrm{F}(\mathrm{B} \times \mathrm{C})$ be such that P so $\mathrm{Q}=\mathrm{R}$.
Then by Theorem 3.1.16(i), $\mathrm{Q} \supseteq \mathrm{P}^{-1 \mathrm{o}} \omega_{\mathrm{S}}(\mathrm{P}$ so Q$)$
Thus, $\mathrm{Q} \supseteq \mathrm{P}^{-1 \mathrm{o}} \omega_{\mathrm{s}} \mathrm{R}$

Therefore, $\mathrm{P}_{\text {so }} \mathrm{Q} \supseteq \mathrm{P}_{\text {so }}\left(\mathrm{P}^{10} \omega_{\mathrm{s}} \mathrm{R}\right)$

Thus, $\mathrm{R}=\mathrm{P}_{\mathrm{SO}} \mathrm{Q} \supseteq \mathrm{Q}_{\mathrm{so}}\left(\mathrm{Q}^{\mathrm{I}^{\mathrm{O}}} \omega_{\mathrm{s}} \mathrm{R}\right)$

Therefore, $\mathrm{R} \supseteq \mathrm{Q}$ so $\left(\mathrm{Q}^{1 \mathrm{O}} \omega_{\mathrm{s}} \mathrm{R}\right) \supseteq \mathrm{R}$, by Theorem 3.1.16(iv)

Hence, $\mathrm{P}_{\mathrm{so}}\left(\mathrm{P}^{10} \omega_{\mathrm{S}} \mathrm{R}\right)=\mathrm{R}$
III) If Q and R are given, then the set $S(Q, R)=\{P \in F(A \times B) \mid P$ so $Q=R\}$ is called the solution set of P so $Q=R$ for P. The solution of this type of equation can be obtained by using above type and by using inverse relation. For example we want to find a solution of $P_{s O} Q=R$ for P. Consider the equation Q^{-1} so $P^{-1}=R^{-1}$, the solution of this equation, P^{-1}, can be obtained by using above type (II). The fuzzy relation $P=\left(P^{-1}\right)^{-1}$ will be required solution of $P_{s O} Q=R$ for P.

Theorem 3.2.5 [F]: Let $Q \in F(B \times C)$ and $R \in F(A \times C)$ be such that

$$
\sup _{z \in X} C(z) \leq \min (B(x), A(y)) \text {, for all } x, y \in X
$$

If $S(Q, R) \neq \phi$, then the fuzzy relation $\left(Q^{\circ} \omega_{S} R^{-1}\right)^{-1} \in F(A \times B)$ is the minimum solution of the fuzzy relation equation $P_{\text {so }} Q=R$

Proof: Let $P \in S(Q, R)$ be such that, P so $Q=R$.
Then $\left(\mathrm{Q}^{\circ} \omega_{\mathrm{S}}(\mathrm{P} \text { SO } \mathrm{Q})^{-1}\right)^{-1} \subseteq \mathrm{P}$, by Theorem 3.1.16(ii)

Therefore, $\left(\mathrm{Q}^{\mathrm{O}} \omega_{\mathrm{s}} \mathrm{R}^{-1}\right)^{-1} \subseteq \mathrm{P}$

But then $\left(\mathrm{Q}^{\circ} \omega_{\mathrm{s}} \mathrm{R}^{-1}\right)^{-1}$ so $\mathrm{Q} \subseteq \mathrm{P}_{\text {so }} \mathrm{Q}$

Thus, $\left(\mathrm{Q}^{\circ} \omega_{\mathrm{s}} \mathrm{R}^{-1}\right)^{-1}$ so $\mathrm{Q} \subseteq \mathrm{P}$ so $\mathrm{Q}=\mathrm{R}$

But by Theorem 3.1.20, $\mathrm{R} \subseteq\left(\mathrm{Q}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{R}^{-1}\right)^{-1}$ so Q

Hence, $\left(\mathrm{Q}^{0} \omega_{\mathrm{s}} \mathrm{R}^{-1}\right)^{-1}$ so $\mathrm{Q}=\mathrm{R}$

3.2(c) INF-W W $_{\mathrm{T}}$ FUZZY RELATION EQUATIONS

In this section we will discuss solution of a given inf- w_{T} fuzzy relation equation $P{ }^{\circ}{ }_{w_{T}} \mathrm{Q}=\mathrm{R}$, when any two of the fuzzy relations are given. Followings are the cases:
I) Given P and Q, R can be obtained by using the definition of inf- w_{T} composition. In this case R is unique.
II) If P and R are given, then the set $S(P, R)=\left\{Q \in F(B \times C) \mid P{ }^{\circ}{ }_{w_{T}} Q=R\right\}$ is called the solution set of $\mathrm{P}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}=\mathrm{R}$ for Q .

Following theorem gives the minimum element of $\mathrm{S}(\mathrm{P}, \mathrm{R})$.

Theorem 3. 2. $6[F]$: Let $P \in F(A \times B), R \in F(A \times C)$ be two fuzzy relations. If $S(P$, $R) \neq \phi$, then the fuzzy relation $P^{-1} o_{T} R \in F(B \times C)$ is the minimum solution of the fuzzy relation equation $P{ }^{\circ}{ }_{W_{r}} Q=R$ for Q.

Proof. Let $\mathrm{Q} \in \mathrm{S}(\mathrm{P}, \mathrm{R})$ be a solution of $\mathrm{P}^{\mathrm{o}}{ }_{\mathrm{w}} \mathrm{Q}=\mathrm{R}$.

Then by Theorem 3.1.16(iii), $\mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}}\left(\mathrm{P}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}\right) \subseteq \mathrm{Q}$

Thus, $\mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{R} \subseteq \mathrm{Q}$.
Therefore, $\mathrm{P}^{\mathrm{o}}{ }_{\mathrm{w}_{\mathrm{T}}}\left(\mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{R}\right) \subseteq \mathrm{P}^{\mathrm{o}}{ }_{\mathrm{W}} \mathrm{Q}$
i. e. $\mathrm{P}^{\mathrm{o}}{ }_{\mathrm{w}_{T}}\left(\mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{R}\right) \subseteq \mathrm{P}^{\mathrm{o}}{ }^{W_{T}} \mathrm{Q}=\mathrm{R}$

But by Theorem 3.1.16(iv), $\mathrm{R} \subseteq \mathrm{P}^{\mathrm{O}}{ }_{\mathrm{W}}^{\mathrm{T}}\left(\mathrm{P}^{-1} \mathrm{o}_{\mathrm{T}} \mathrm{R}\right)$

Hence, $\mathrm{P}^{\mathrm{O}}{ }_{\mathrm{w}_{\mathrm{T}}}\left(\mathrm{P}^{-1} \mathrm{O}_{\mathrm{T}} \mathrm{R}\right)=\mathrm{R}$
III) If Q and R are given, then the set $S(Q, R)=\left\{P \in F(A \times B) \mid P{ }^{\circ} W_{T} Q=R\right\}$ is called the solution set of $\mathrm{P}^{\circ}{ }_{w_{T}} \mathrm{Q}=\mathrm{R}$ for P .

Following theorem gives the maximum element of $\mathrm{S}(\mathrm{Q}, \mathrm{R})$.
Theorem 3.2.7 [F]: Let $Q \in F(B \times C), R \in F(A \times C)$ be two fuzzy relations. If $S(Q$, $\mathrm{R}) \neq \phi$, then the fuzzy relation $\mathrm{R}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}^{-1} \in \mathrm{~F}(\mathrm{~A} \times \mathrm{B})$ is the maximum solution of the fuzzy relation equation $\mathrm{P}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}=\mathrm{R}$ for P .

Proof: Let $P \in S(Q, R)$ be such that $P{ }^{0}{ }_{W} Q=R$.

Then $P \subseteq\left(P^{o}{ }^{w_{T} Q}\right)^{o}{ }^{w_{T}} Q^{-1}$

Thus, $P \subseteq R^{o}{ }_{W_{T}} Q^{-1}$

Therefore, $\mathrm{P}^{\mathrm{o}}{ }_{\mathrm{w}_{\mathrm{T}} \mathrm{Q}} \mathrm{Q}\left(\mathrm{R}^{\mathrm{o}}{ }_{\mathrm{w}_{\mathrm{T}}} \mathrm{Q}^{-1}\right){ }^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}$
i. e. $R \supseteq\left(R^{o}{ }_{W_{T}} Q^{-1}\right){ }^{o} W_{T} Q$

But by Theorem 3.1.12(ii), (($\left.\left.\mathrm{R}^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}^{-1}\right)^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}\right) \supseteq \mathrm{R}$

Hence, $\left(\mathrm{R}^{\circ}{ }_{\mathrm{w}_{\mathrm{T}}} \mathrm{Q}^{-1}\right)^{\mathrm{o}} \mathrm{w}_{\mathrm{T}} \mathrm{Q}=\mathrm{R}$.

3.2(d) SUP - $\omega_{\text {S }}$ FUZZY RELATION EQUATIONS

In this section we will discuss solution of a given $\sup -\omega_{\mathrm{s}}$ fuzzy relation equation $\mathrm{P}^{\circ} \omega_{\mathrm{s}} \mathrm{Q}=\mathrm{R}$, when any two of the fuzzy relations are given. Followings are the cases:
I) Given P and Q, R can be obtained by using the definition of sup- ω_{s} composition. In this case R is unique.
II) If P and R are given, then the set $S(P, R)=\left\{Q \in F(B \times C) \mid P^{\circ} \omega_{s} Q=R\right\}$ is called the solution set of $\mathrm{P}^{\circ} \omega_{\mathrm{S}} \mathrm{Q}=\mathrm{R}$ for Q .

Following theorem gives the maximum element of $\mathrm{S}(\mathrm{P}, \mathrm{R})$.
Theorem 3.2.8 [F]: Let $P \in F(A \times B), R \in F(A \times C)$ be such that

$$
\operatorname{Sup}_{z \in X} B(z) \leq \min (A(x), C(y)) \text {, for all } x, y \in X
$$

If $S(P, R) \neq \phi$, then the fuzzy relation P^{-1} so $R \in F(B \times C)$ is the maximum solution of the fuzzy relation equation $\mathrm{P}^{\circ} \omega_{\mathrm{s}} \mathrm{Q}=\mathrm{R}$ for Q .

Proof - Let $\mathrm{Q} \in \mathrm{F}(\mathrm{B} \times \mathrm{C})$ such that $\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}=\mathrm{R}$. Then $\mathrm{Q} \subseteq \mathrm{P}^{-1}$ so $\left(\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}\right)$

Thus, $\mathrm{Q} \subseteq \mathrm{P}^{-1}$ so R

Therefore, $\mathrm{P}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q} \subseteq \mathrm{P}^{\mathrm{o}} \omega_{\mathrm{S}}\left(\mathrm{P}^{-1}\right.$ so R$)$
i. e. $\mathrm{R} \subseteq \mathrm{P}^{\mathrm{O}} \omega_{\mathrm{S}}\left(\mathrm{P}^{-1} \mathrm{~S}^{\mathrm{O} R}\right)$

But by Theorem 3.1.16(iv), $\mathrm{P}^{0} \omega_{\mathrm{S}}\left(\mathrm{P}^{-1} \mathrm{soR}\right) \subseteq \mathrm{R}$

Hence, $\mathrm{P}^{0} \omega_{\mathrm{s}}\left(\mathrm{P}^{-1}\right.$ so R$)=\mathrm{R}$
III) If Q and R are given, then the set $S(Q, R)=\left\{P \in F(A \times B) \mid P{ }^{0} \omega_{s} Q=R\right\}$ is called the solution set of $\mathrm{P}^{\circ} \omega_{S} \mathrm{Q}=\mathrm{R}$ for P .

Following theorem gives the minimum element of $S(Q, R)$.
Theorem 3.2.9 [F]: Let $Q \in F(B \times C), R \in F(A \times C)$ be such that the following conditions hold:

1) $\operatorname{Sup} \mathrm{B}(\mathrm{z}) \leq \min (\mathrm{A}(\mathrm{x}), \mathrm{C}(\mathrm{y}))$ $z \in X$
2) $\operatorname{Sup} C(z) \leq \min (A(x), B(y))$, for all $x, y \in X$ $z \in X$

If $S(Q, R) \neq \phi$, then the fuzzy relation $R^{\circ} \omega_{s} Q^{-1} \in F(A \times B)$ is the minimum solution of the fuzzy relation equation $\mathrm{P}^{\circ} \omega_{S} \mathrm{Q}=\mathrm{R}$ for P .

Proof: Let $\mathrm{P} \in \mathrm{S}(\mathrm{Q}, \mathrm{R})$ be such that $\mathrm{P}^{\circ} \omega_{\mathrm{s}} \mathrm{R}=\mathrm{R}$. Then $\mathrm{P} \supseteq\left(\mathrm{P}^{\circ} \omega_{\mathrm{S}} \mathrm{Q}\right){ }^{\mathrm{O}} \omega_{\mathrm{S}} \mathrm{Q}^{-1}$.

Thus, $\mathrm{P} \supseteq \mathrm{R}^{\circ} \omega_{\mathrm{s}} \mathrm{Q}$

Therefore, $\mathrm{P}^{\circ} \omega_{\mathrm{s}} \mathrm{Q} \subseteq\left(\mathrm{R}{ }^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}^{-1}\right)^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}$
i. e. $R \subseteq\left(R^{0} \omega_{s} Q^{-1}\right)^{0} \omega_{s} Q$

But by Theorem 3.2.22(ii), $\left(\mathrm{R}^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}^{-1}\right)^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q} \subseteq \mathrm{R}$

Hence, $\left(\mathrm{R}^{0} \omega_{\mathrm{s}} \mathrm{Q}^{-1}\right)^{\mathrm{o}} \omega_{\mathrm{s}} \mathrm{Q}=\mathrm{R}$

