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CHAPTER3 FUZZY RELATION EQUATIONS ON FUZZY
SETS

In this chapter we study a theory of fuzzy relation equations, when the fuzzy 

relations are defined on fuzzy sets instead of crisp sets.

3.1 FUZZY RELATIONS AND THEIR COMPOSITIONS:

This section deals with fuzzy relations defined on fuzzy sets and four types of 

compositions along with their properties.

Definition 3.1.1 [F]: Let A and B be two fuzzy sets in X. The cartesian product of A 

and B, is a fuzzy set, A x B, on X x X defined as follows:

A x B(x, y) = min{A(x), B(y)}, for all x, y e X.

Definition 3.1.2 [F]: Let A and B be two fuzzy sets in X. Then the fuzzy set 

P: X x X -¥ I is called a fuzzy relation from A to B, if 

P(x, y) < min{A(x), B(y)}, for all x, y e X.

We shall denote the set of all fuzzy relations from fuzzy set A to fuzzy set B by 

F(A x B).

Definition 3.1.3: Let P e F(A x B) be a fuzzy relation from a fuzzy set A to a frizzy B. 

Then the fuzzy set P4 defined as follows: 

p-'(y,x) = P(x,y)

is a fuzzy relation from a fuzzy set B to a frizzy set A. i. e. P -1 6 F(B x A).

It is obvious that (P -1)4 = P.
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Theorem 3.1.4: Let P g F(A x B) and Q g F(B x C) be two fuzzy relations and T be

any continuous t-norm. Define a fuzzy set P orQ: X x X —> I by

P or Q(x, y) = sup{T(P(x, z), Q(z, y))}, for all x, y e X. 
ze X

Then Pox Q is a fuzzy relation from fuzzy set A to fuzzy set C.

Proof: Since P e F (A x B) and Q e F(B x C),

P(x, z) < min{A(x), B(z)}, for all x, z e X and

Q(z. y) < min{B(z), C(y)}, for all z, y e X.

PoTQ (x, y) = sup {T(P(x, z), Q(x, y))} 
z g X

< sup (T(min(A(x), B(z), min(B(z), C(y))} 
z g X

< sup {min(min(A(x), B(z)), min(B(z), C(y)))} 
z g X

< sup (min(A(x), C(y))}
Z G X

Thus, Pox Q (x, y) < min(A(x), C(y)) for all x, y g X.

Definition 3.1.5 [F]: Let P g F(A x B) and Q g F(B x C) be two fuzzy relations and T 

be any continuous t-norm. The fuzzy set P ox Q is called sup-T composition of P and

Q.

Theorem 3.1.6: Let P g F(A x B) and Q g F(B x C) be two fuzzy relations. Then 

(PoxQ) _1 = Q 'oxP'1
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Following theorem is obvious

Theorem 3.1.7 [F]: Let P e F(A x B) and Q e F(B x C) be two fuzzy relations and S

be any continuous t-conorm. Define a fuzzy set P soQ: X x X -> I by

P so Q(x, y) - min{ inf (S(P(x, z), Q(z, y))}, (A x C) (x, y)},Vx,ye X.
Z € X

Then P so Q is a fuzzy relation from a fuzzy set A to a fuzzy set C.

Definition 3.1.8 [F]: Let P e F(A x B) and Q e F(B x C) be two frizzy relations and S 

be any continuous t-conorm. The fuzzy set P so Q is called inf-S composition of P and

Q.

Theorem 3.1.9 [F]s Let P, Pj, P2 e F(A x B) and Q, Qi, Q2 e F(B x C)

(i) Pso (QioQ2) = (PsoQi)n(PsoQ2)

(ii) If Pj c P2, then Pi so Q c P2 so Q

(hi) (P So Q) 1 = Q 1 so P 1

Proof: i) Let x, y e X.

[Pso(Q.oQ2)] (x, y)

= min{ inf (S(P(x, z), Qi n Q2 (z, y))}, A x C(x, y)} 
z e X

= min{ inf (S(P(x, z), min{Q,(z, y), Q2(z, y)})>, A x C(x, y)} 
ze X

= min{ inf {min{S(P(x, z), Qi(z, y», S(P(x, z), Q2(z, y))}, A x C(x, y)} 
z e X

= min{min{ inf^S(P(x, z), Qi(z, y))}, inf^{S(P(x, z), Q2(z, y))}}, A x C (x, y)}}

= min{min{ inf {S(P(x, z), Q,(z, y))}, A x C(x, y)}, min{ inf {S(P(x, z), Q2(z, y))}, 
zeX z e X

A x C(x, y)} }
= min{P so Qi(x, y), P so Q2(x, y)}

= (P so Qi) n (P so Q2)(x, y)
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ii) Let Pi c P2

Pi so Q(x, y) = min{ inf {S(Pi(x, z), Q(z, y))}, A x C(x, y)} 
ze X

< min{ inf {S(P2(x, z), Q(z, y))}, A x C(x, y)}
Z G X

= P2 SO Q(x, y).

iii) (P so Q)4 (x, y) = (P so Q)(y, x)

= min{ inf {S(P(y, z), Q(z, x))}, A x C(y, x)} 
z e X

= min{ inf {S(P'!(z, y), Q1 (x, z))}, C x A(x, y)}
Z € X

- min{ inf { S(Q4(x, z), P4(z, y))}, C x A(x, y)}
Z G X

= (Q 1 so P"1) (x, y)

Definition 3.1.10 [F]: Let A, B, C be fuzzy sets in X and P e F(A x B), Q g F(B x C) 

be fuzzy relations. The inf-wr composition of P and Q is a fuzzy relation

P °wT Q e F(A x C) defined as follows:

P °wT Q(x, y) = min { inf {wT(P(x, z), Q(z, y))}, A x C(x, y)}, for all x, y e X
z e X

If P g F(A x B) and Q g F(B x C) be fuzzy relations, then (P °wt Q) 4 is a 

fuzzy relation from a fixzzy set C to A.

Theorem 3.1.11 [F]: Let P, Pi, P2 g F (A x B) and Q, Qi, Q2 g F (B x C) be such that 

Pi c P2 and Qi c Q2. Then

o o
i) P wtQicP wt Q2

o o
ii) Pi wj Q □ P2 wj Q.
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Proof i) P °wT Qi(x, y) = min{ inf {wT(P(x, z), Qi(z, y))}, A x C(x, y)}
z € X

< min{ inf {wT(P(x, z), Q2(z, y))}, A x C(x, y)}, by Theorem 1.2.8(iv)
zgX

< P °wtQ2(x, y). 

ii) Pi °wT Q(x, y)

= min{ inf {wT (Pi(x, z), Q(z, y))}, A x C(x, y)} 
z g X

> min{ inf {wt (P2(x, z), Q(z, y))}, A x C (x, y)}, by Theorem 1.2.8(iv)
Z G X

> P2 °wT Q(x, y).

Theorem 3.1.12 [F]: Let PgF(Ax B), Q g F(B x C) and R g F(A x C) be fuzzy 

relations. Then

i) Pc (P °wt Q) °wt Q"1

ii) R c (R ^tQ'1) °wt Q.

Proof: i) (P °wT Q) 'VrQ'^x, y) = min{inf{wr(P °wT Q(x, z), Q(y, z))}, A x B(x, y)}
z g X

= min{inf {wT(min{ inf {wT(P(x, t), Q(t, z))}, A x C(x, z)}), Q(z, y))}, A x B(x, y)}.
Z G X t G X

> min{ inf {wT ( inf {wT(P(x, t), Q(t, z))}, Q(y, z))}, A x B(x, y)},
Z G X t G X

> min{ inf {wT(wT(P(x, y), Q(y, z)), Q(y, z))}, A x B(x, y)}
Z G X

>min{inf {P(x, y)}, A x B(x, y)}, By Theorem 1.2.8(ii) 
z g X

= P(x, y), Since P g F(A x B) 

ii) Follows similarly.

Theorem 3.1.13 [F]: Let PgF(Ax B), Q g F(B x C) and R g F(A x C) be fuzzy

relations. Then
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i) Q c P°wT (P ot Q)

ii) R 3 P or (P"1 °wj R)

iii) Pc[Q°wT (PotQ)"1]'1

iv) R 3 (Q °wx R’1)1 Ot Q

Proof: i) P 4°wt (P Ot Q) (x, y)

= ram{ inf (wT(P'l(x, z), P oT Q(z, y))}, B x C(x, y)} 
zeX

min{ inf (w~(P ~’(x, z), 
zgX

sup ^T(P(z, t), Q(t, y))})}, B x C(x, y)}

= min{ inf {wt(P4(x, z), max[T(P(z, x), Q(x, y)), sup (T(P(z, t), Q(t, y))}]}, 
z e X t * x

(B x C) (x, y)}

> min{ inf (wT(P(z, x), T(P(z, x), Q(x, y)))}, B x C(x,y)}
Z G X

>min{ inf {Q(x, y), B x C(x, y)}, 
z € X

> Q(x, y)
Hence, QcP'1 °wt(P OtQ)

ii) P Ot (P*1 °wt R)(x, y)

= sup {T(P(x, z), P4°wt R(z,y))} 
z € X

- sup {T(P(x, z), min{ inf {wT(P(t, z), R(t, y))}, B x C(x, y)})}
Z G X t G X

< sup (T(P(x, z), inf (wT(P(t, z), R(t, y))})}, Since min Xj < x;
Z G X t G X

< sup {T(P(x, z), wt(P(x, z), R(x, y)))}, By monotonicity of T. 
z g X

< R(x, y),
Hence, R 3 P or (P'1 °wt R).
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iii) [Q °wT (P or Q)'1]'1 (x, y)

= [Q °wt (P or Q)-1] (y, x)

= min{ inf {wT(Q(y, z), (P Oj Q)'’(z, x))}, B x A(y, x)} 
z t X

= min{ inf {wT(Q(y, z), (P oT Q)(x, z))}, A x B(x, y)}
Z € X

= min{ inf ^wT(Q(y, z), sup^T(P(x, t), Q(t, z))»}, A x B(x, y)}

= min{ inf {wT(Q(y,z), max{T(P(x, y), Q(y, z)), sup {T(P(x, t), Q(t, z))}})}, 
z € X t * y

A x B(x, y)}

>min{ inf {wT(Q(y, z), T(P(x, y), Q(y, z)))}, A x B(x, y)}
Z £ X

> min (P(x, y), A x B(x, y)}

> P(x, y), Since P e F(A x B)

Hence, Pc[Q°wt (PotQ)’1]’1

iv) (Q °wT R'1) or Q (x, y)

= sup {T((Q°wx R"1)'1 (x, z), Q(z, y))}

Z G X

= sup (T((Q °wT R'1) (z, x), Q(z, y))} 
zeX

= sup {T(min{ inf {wx(Q(z, t), R(x, t»}, B x A(x, y)}, Q(z, y))} 
z e X t e X

< sup {T( inf {wt(Q(z, t), R(x, t))}, Q(z, y))} 
zeX teX

< sup {T(wx(Q(z, y), R(x, y)), Q(z, y))} 
Z € X

< R(x, y), By Theorem 1.2.8(x) 

Hence, Ro(Q°wt R"1)'1 oxQ
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Definition 3.1.14 [F]: Let A, B, C be fuzzy sets in X and P € F(A x B), Q G F(B x C) 

be fuzzy relations. The sup-©s composition of P and Q is a fuzzy relation

P °©s Q g F(A x C) defined as follows:

P °©s Q (x, y) = min { sup {©s (P(x, z), Q(z, y))}, A x C(x, y)}, for all x, y g X
zg X

Theorem 3.1.15 [F]: Let P, Pi, P2 g F (A x B) and Q, Qi, Q2 g F (B x C) be such that 

Pi c P2and Qi c Q2. Then

i) P°COsQic P°C0sQ2.

ii) Pi°COs Q a P2°©SQ-

Proof: i) Since Qi c Q2, Qi(z, y) < Q2(z, y), for all z, y g X.

=> ©s (p(x, 2), Qi(z, y)) < ©s (p(x, z), Q2(z, y)), by Theorem 1.2.10(iv)

Thus, P °©s Qi(x, y) = min{ sup { C0S (P(x, z), Qi(z, y))}, A x C (x, y) }
z g X

< min{ sup { ©s (P(x, z), Q2(z, y))}, A x C(x, y)}
z g X

< P °C0S Q2(x, y)

Hence, P °©s Qi c P °©s Q2.

ii) Since Pi c P2, Pi(x, z) < P2(x, z), V x, z g X.

=> ©s (P,(x, z), Q(z,y) > ©s (P2(x, z), Q(z, y)), By Theorem 1.2.10(iv)

Thus, Pi °©s Q(x, y) = min{ sup { ©s (Pi(x, z), Q(z, y))}, A x C(x, y)}
ZG X

> min{ sup {©s (P2(x, z), Q(z, y))}, A x C(x, y)}
z g X

> P2 °©s Q(x, y)

Hence, Pi °©s Qd P2 °©s Q.
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Theorem 3.1.16 [F]: Let P g F(A x B), Q g F(B x C) and R e F(A x C) be fuzzy 

relations. Then

i) Q 3 P'1 °COs(P soQ)

i) P3(Q°©s(PsoQ)V

iii) Q □ P'1 ox (P °wT Q)

iv) R c: P °wT (P4 oT R)

v) RdP°0)s (P4soR)

Proof: i)FlOC0s (PsoQ)(x,y)

= min{ sup {C0S (P4(x, z), P soQ(z, y))}, B x C(x, y)} 
z e X

= min( sup (G)s(P(z, x), min[ inf {S(P(z,1), Q(t, y))}, A x C(z, y)]), (B x C) (x, y)} 
z g X t e X

< min{ sup {C0S (P(z, x), inf (S(P(z, t), Q(t, y)))), B x C(x, y)}, zeX
t e X

< min{ sup {G)s(P(z, x), min[(S(P(z, x), Q(x, y)), inf {S(P(z, t), Q(t, y))}],
z g X t ^ x

B x C(x, y)}.

< min{ sup {C0s(P(z, x), S(P(z, x), Q(x, y)))}, B x C(x, y)}
z e X

< min{Q(x, y), B x C(x, y)},

< Q(x, y), since Q g F(B x C)

Hence, Q 3 P'1 °G)S (P so Q)

ii) (Q °C0S (P so Q) 4) -’(x, y) - (Q °C0S (P so Q) -1 )(y, x)

- min{ sup {CDS (Q(y, z), (Pso Q)4(z, x))}, BxA(y, x)}
Z G X
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= min{ sup (COs (Q(y, z), Pso Q(x, z))}, A x B(x, y)}
ZG X

= min{ sup (C0S (Q(y, z), min [ inf {S(P(x, t), Q(t, z))}, A x C(x, z)],Ax B(x, y)} 
zeX teX

- min{ sup {CQS (Q(y, z), min[min[ S(P(x, y). Q(y, z)), inf S(P(x, t), Q(t, z))], 
z e X t * y

A x B(x, y)} A x C(x, z)],

< min{ sup {(Ds (Q(y, z), S(P(x, y), Q(y, z)))}, A x B(x, y)} 
z e X

< min{P(x, y), A x B(x, y)}

= P(x, y), Since P g F(A x B).

iii) P"1 oT (P°wT Q)(x, y)

= sup {T(P4(x. z), P°wt Qfz, y)} 
z e X

= sup {T(P(z, x), min [ inf {wT(P(z, t), Q(t, y))}, A x C(z, y)])} 
z e X teX

< sup {T(P(z, x), inf {wx(P(z, t), Q(t, y))})}, By Mono tonicity of T.
z e X t e X

< sup {T(P(z, x), wt (P(z, x), Q(x, y)))}, By Monotonicity of T.
Z £ X

2S Q(X, y)
Hence, Q 3 P'1 or (P °wx Q). 

iv) P °wx (P’1 Ot R) (x, y)

= min { inf {wT(P(x, z), P^oj R(z, y))}, A x C(x, y)} 
z e X

= min { inf { wT (P(x, z), sup {T(P'’(z, t), R(t, y))})>, A x C(x, y)} 
z e X t g X

; min {inf { wT (P(x, z), max (T(P'’(z, x), R(x, y)), sup {T(P4(z, t), R(t, y))})}, 
Z € X t ^ X

Ax C(x, y)}.

> min { inf { wT (P(x, z), T(P(x, z), R(x, y)))}, A x C(x, y)} 
Z G X

> min {R(x, y), A x C(x, y)} 

= R(x, y)
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v) P °0)s (P'1 so R)(x, y) = min{ sup {G)s (P(x, z), F1 so R(z, y))}, A x C(x, y)}
z e X

= min{ sup (C0S (P(x, z), min{ inflSCP'^z, t), R(t, y))}, B x C(z, y)})}, A x C(x, y)}. 
Z G X t € X

< min{ sup^{COs (P(x, z), inf ^S(P(t, z), R(t, y))})}, A x C(x, y)}

< min{ sup {CDs(P(x, z), S(P(x, z), R(x, y)))}, A x C(x, y)}
z g X

< min {R(x, y), A x C(x, y)},

= R(x,y).

Theorem 3.1.17 [F]: Let P e F(A x B) and R e F(A x C)

If sup A(z) < min{B(x), C(y)}, for all x, y e X, then P"lOC0s R e F(B x C). 
z e X

Proof: We claim that for x, y 6 X, Sup {max(P(z, x), R(z, y))} < B x C(x, y).
z e X

We have,

Sup {max(P(z, x), R(z, y))} < Sup {max{min{A(z), B(x)}, min{A(z), C(y)}}} 
z g X z g X

= Sup (max{A(z), A(z)}}
Z G X

= Sup {A(z)}
Z G X

< min{B(x), C(y)}

= B x C(x, y)

Now P'1 °C0S R(x, y) = min{ Sup {0)s (P(z, x), R(z, y))}, B x C(x, y)}
Z G X

< min{ Sup {max(P(z, x), R(z, y))>, B x C(x, y)}
Z G X

= Sup {max(P(z, x), R(z, y))}
Z G X

= B x C(x, y).

13748
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Therefore, P'1 °0)s R g F(B x C).

Theorem 3.1.18 [F]: Let P g F(A x B), R e F(A x C) and

sup A(z) < min{B(x), C(y)}, for all x, y e X, then RcPso(P"lOC0sR) 
zgX

Proof: Pso(P'lOC0sR)(x,y)

= min{ inf {S(P(x, z), P4°COs R(z, y))}, A x C(x, y)}
Z G X

= min{ inf{S(P(x, z), min{ Sup {C0S (P4(z, t), R(t, y))}, B x C(x, y)})}, A x C(x, y)} 
zeX t e X

= min{ inf {S(P(x, z), Sup (C0S (P~’(z, t), R(t, y))})}, A x C(x, y)}
Z G X t € X

= min{ inf {S(P(x, z), max[(Os (P(x, z), R(x, y)), Sup {C0S (P(t, z), R(t, y))}])}, 
z € X t*x

A x C(x, y)}

> min{ inf {S(P(x, z), (0S (P(x, z), R(x, y)))}, A x C(x, y)}.
Z G X

> min{ inf {R(x, y)}, A x C(x, y)},
zg X

= min{R(x, y), A x C(x, y)}

= R(x, y), Since R g F(A x C)

Therefore, RcPso(P'1 °C0S R)

Theorem 3.1.19 [F]: Let Q g F(B x C), R g F(A x C) and

Sup C(z) < min {B(x), A(y)}, for all x, y g X. Then Q °(0S R"1 g F(B x A) 
z g X

Proof: We claim that Sup {max(Q(x, z), R*1 (z, y))} < B x A(x, y), for all x, y g X. 
Z G X
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We have,

Sup {max(Q(x, z), R'1 (z, y))} = Sup {max(Q(x, z), R(y, z))}
Z G X z € X

< Sup {max {min{B(x), C(z)}, min{A(y), C(z)}}}
Z G X

= Sup {max {C(z), C(z)}
Z G X

= Sup {C(z)}
ZG X

< B x A(x, y)

Now Q °<DS R_1(x, y) - min{ Sup {(Os (Q(x, z), R'1 (z, y))}, B x A(x, y)}
Z G X

< min{ Sup {max(Q(x, z), R'1 (z, y))}, B x A(x, y)}
z e X

= Sup {max(Q(x, z), R'1 (z, y))} 
zg X

< B x A(x, y)

Therefore, Q °C0S R'1 g F(B x A).

Theorem 3.1.20 [F]: Let Q € F(B x C), ReF(Ax C) and

Sup C(z) <mb {B(x), A(y)}, for allx, y g X. ThenRc(Q °C0S R"1)'1 soQ. 
z e X

Proof: (Q °C0S R'1)"1 so Q (x, y)

- min{ rnf {S(Q °0)s R'‘)(z, x), Q(z, y))}, A x C(x, y)}
z g X

- min{ inf{S(mb{ Sup {(Ds (Q(z, t), R(x, t))}, B x A(z, x)}), Q(z, y))}, A x C(x, y)}
Z G X t G X

= min{ inf {S( Sup {Os (Q(z, t), R(x, t))}, Q(z, y))}, A x C(x, y)} 
z g X t g X



44

= min{ inf {S(max[COs (Q(z, y), R(x, y)), Sup {0)s (Q(z, t), R(x, t))]}, Q(z, y))},
Z G X t*x

A x C(x, y).
> min { inf {S(G)s (Q(z, y), R(x, y)), Q(z, y))}, A x C(x, y)}

z g X

> min { inf {R(x, y)}, A x C(x, y)},
ZG X

= min{R(x, y), A x C(x, y)}

= R(x, y)

Theorem 3.1.21 [F]: Let PeF(AxB) and Q g F(B x C)

If sup B(z) < min (A(x), C(y)), V x,yeX, then Q <z P'1 so (P°G)S Q). 
z g X

Proof: P4 so (P °0)s Q)(x, y)

= min{ inf {S(P_1(x, z), min { Sup {G)s (P(z, t), Q(t, y))}, A x C(z, y)}), B x C (x, y)} 
Z G X t G X

= min{ inf {S(P(z, x), sup {(Os(P(z, t), Q(t, y))})>, B x C(x, y)} 
Z G X t G X

- min{ inf {S(P(z, x), max [C0S (P(z, x), Q(x, y)), Sup {C0S (P(z, t), Q(t, y))}]},
Z G X t ^ X

B x C(x, y)}

> min{ inf {S(P(z, x), C0S (P(z, x), Q(x, y)))}, B x C(x, y)}
z g X

> min{ inf {Q(x, y)}, B x C(x, y)},
zgX

= Q(*, y).

Theorem 3.1.22 [F]: Let P g F(A x B) and Q g F(B x C)

i) If Sup B(z) < min (A(x), C(y)}, for x,yeX, then P 3 (P °C0S Q) °CDS Q 4.
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zeX

ii) If Sup C(z) < min (A(x), B(y)}, for x, y € X, then R 3 (R °(0S Q-1) °C0s Q. 

Z G X

Proof: i) [(P°(DS Q) °0)s Q'1] (x, y)

- min{ Sup {(Ds (P°(0S Q)(x, z), Q'*(z, y))}, A x B(x, y)} 

zeX

= min{ Sup {C0S ( min{ Sup {C0S (P(x, t), Q(t, z))}, A x C(x, z))}, Q(y, z))}, 
zeX teX

A x B(x, y)}

= min{ Sup {(0S ( Sup {(Ds (P(x, t), Q(t, z))}, Q(y, z))}5 A x B(x, y)} 
z e X t e X

- min{ Sup (C0S (max [C0S (P(x, y), Q(y, z)), Sup (C0S (P(x, t), Q(t, z))}], Q(y, z)}, 
z € X t * y

A x B(x, y)}

< min{ Sup {(0S (C0S (P(x, y), Q(y, z)), Q(y, z))}, A x B(x, y)}
z g X

< min{ Sup (P(x, y)},Ax B(x, y)}
Z G X

<P(x, y).

ii) [(R °G)S Q'1) °G)S Q] (x, y)

= Sup (G>s (R °©s (Q_1(x, z), Q(z, y))}, A x C(x, y)}
Z G X

= min{ sup{COs (min{ Sup{COs (R(x, t), Q(z, t))}, A x B(x, z)}, Q(z, y))}, A x C(x, y)} 
Z G X t G X

= min{ sup (0)s(Sup {G)s (R(x, t), Q(z, t))}, Q(z, y))}, A x C(x, y)}, 
Z G X t G X
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= min{ sup {C0S! max [C0S (R(x, y), Q(z, y)), Sup {C0S (R(x, t), Q(z, t))], Q(z, y))}, 
zeX t*y

A x C(x, y)}

< min{ Sup {C0S (C0S (R(x, y), Q(z, y)), Q(z, y))}, A x C(x, y)}.
Z€ X

< min{ Sup {R(x, y)}, A x C(x, y)}
z e X

< R(x, y).

3.2 FUZZY RELATION EQUATIONS

Throughout this section A, B and C denote fuzzy sets in the universal set X. 

Definition 3.2.1: Let P e F(A x B), Q e F(B x C) and R e F(A x C) be three fuzzy 

relations. Then the equation P o Q = R is called a fiizzy relation equation, where o 

denote composition of fiizzy relations.

If o = ot(o = so , o = °wt and o = °C0S respectively), then the fuzzy relation

equation P o Q = R is called sup-T ( inf-S, inf-wr and sup-0Qs respectively) fuzzy 

relation equation.

3.2(a) SUP-T FUZZY RELATION EQUATIONS

In this section we will discuss solution of a given sup-T fiizzy relation equation 

P or Q = R, when any two of the fuzzy relations are given. Followings are the cases:

I) Given P and Q, R can be obtained by using the definition of sup-T composition. In 

this case R is unique.
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II) If P and R are given, then the set S(P, R) ={Qg F(B x C) | P ot Q - R} is called 

the solution set of P Or Q = R for Q.

Theorem 3.2.2 [F]: If S(P, R) * <j), then the fuzzy relation P4 °wT R e F(B x C) is the

maximum solution of the fuzzy relation equation P Ot Q = R for Q.

Proof: Let Q e S(P, R). Then P oT Q = R.

Therefore, Q c P'1 °wt (P ot Q), By Theorem 3.1.13(i)

Hence, Q c P'1 °wj R 

Thus, Pot Q c Pot (P'1 °wt R)

Therefore, RcPot (P"1 °wt R)

But then RcPoj (P4 °wr R)cR 

Hence, P ot (P4 °wt R) = R

III) If Q and R are given, then the set S(Q, R) = {P e F(A x B) | P oj Q = R} is called 

the solution set of P ox Q = R for P. The solution of this type of equation can be 

obtained by using above type and by using inverse relation. For example we want to 

find a solution of P Ot Q = R for P. Consider the equation Q4 ot P"1 = R’\ the solution 

of this equation, P'1, can be obtained by using above type (II). The fuzzy relation 

P = (P4) 4 will be required solution of P Ot Q = R for P.
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Theorem 3.2.3 [F]: If S(Q, R) * <t>, then the fuzzy relation (Q °wT R"1)'1 e F(A x B)

is the maximum solution of the fuzzy relation equation P Ot Q = R for P.

Proof: Let P e F (A x B) such that P ox Q = R

Then by Theorem 3.1.13 (iii), Pc [Q wt (P ot Q) '] 1

Thus, Pc (Q^tR’1)’1

Therefore, PotQc (Q°wt R*1)"1 otQ

Thus, R = Pot Qc(Q °wt R"1)'1 Ot Q

Hence, Rc(Q °wT R'1)'1 ot Q c R, by Theorem 3.1.13(iv)

i. e. (Q °wT R'1)'1 oT Q = R

3.2(b) ESfS-S FUZZY RELATION EQUATIONS

In this section we will discuss the solutions of the inf-S fuzzy relation 

equations P so Q = R.

I) Given P and Q, R can be obtained by using the definition of inf-S composition. In 

this case R is unique.

II) If P and R are given, then the set S(P, R) ={Qe F(B x C) | P so Q = R} is called 

the solution set of P so Q = R for Q.

Theorem 3.2.4 [F]: Let PeF(AxB),Re F(A x C) such that

Sup A(z) < min (B (x), C(y)) for all x, y e X. 
z g X
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If S(P, R) * <j>, then the fuzzy relation P'1 °C0S R e F (B x C) is the minimum solution

of the fuzzy relation equation P so Q = R for Q.

Proof: Let Q e F (B x C) be such that P so Q - R.

Then by Theorem 3.1.16(i), Q 3 P 1 °(DS (P so Q)

Thus, QdP "lOC0s R

Therefore, P so Q 3 P so (PlO(0sR)

Thus, R = P soQ 3 Q so (Q1 °CQS R)

Therefore, RdQso (Q1 °0)s R) 3 R, by Theorem 3.1.16(iv)

Hence, P so (PlO(0s R) = R

III) If Q and R are given, then the set S(Q, R) = (P g F(A x B) | P so Q = R} is called 

the solution set of P so Q = R for P. The solution of this type of equation can be 

obtained by using above type and by using inverse relation. For example we want to 

find a solution of P so Q = R for P. Consider the equation Q'1 so P"1 = R'1, the solution 

of this equation, P'1, can be obtained by using above type (II). The fuzzy relation 

P - (P'1)-1 will be required solution of P so Q = R for P.

Theorem 3.2.5 [F]: Let Q e F (B x C) and R e F (A x C) be such that

sup C(z) < min (B(x), A(y)), for all x, y € X.
Z G X

If S (Q, R) * <[>, then the fuzzy relation (Q °C0S R’1)*1 g F (A x B) is the minimum 

solution of the fuzzy relation equation P so Q = R
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Proof: Let P e S (Q, R) be such that, P so Q = R.

Then (Q °(DS (P so Q)"1)"1 c P, by Theorem 3.1.16(ii)

Therefore, (Q °COs R-1)'1 c P 

But then (Q °C0S R'1)*1 so Q c P so Q 

Thus, (Q °C0S R-5)'1 so Q e P so Q = R 

But by Theorem 3.1.20, Rc(Q °C0S R'1)'1 so Q 

Hence, (Q °C0S R'1)'1 soQ = R

3.2(c) INF-Wt FUZZY RELATION EQUATIONS

In this section we will discuss solution of a given inf-wx fuzzy relation 

equation P °wx Q = R, when any two of the fuzzy relations are given. Followings are 

the cases:

I) Given P and Q, R can be obtained by using the definition of inf-wj composition. In 

this case R is unique.

II) If P and R are given, then the set S(P, R) = {Q e F(B x C) | P °wx Q = R) is 

called the solution set of P °wx Q = R for Q.

Following theorem gives the minimum element of S(P, R).
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Theorem 3. 2. 6 [F]: Let P e F (A x B), R e F (A x C) be two fuzzy relations. If S(P, 

R) * <(>, then the fuzzy relation P '’oT R e F (B x C) is the minimum solution of the

fuzzy relation equation P wt Q = R for Q.

Proof: Let Q e S (P, R) be a solution of P °wt Q = R.

Then by Theorem 3.1.16(iii), P'1 Ot (P wt Q) c Q 

Thus, P'xoTRcQ.

Therefore, P°wt (P’!OrR)cP wt Q

i. e. P°wT (P'VrR)cP°wT Q = R

But by Theorem 3.1.16(iv), RcP °wx (P'xox R)

Hence, P °wj (P'1Ot R) = R

III) If Q and R are given, then the set S(Q, R) ={Pe F(A x B) | P °wx Q = R} is

called the solution set of P °wT Q = R for P.

Following theorem gives the maximum element of S(Q, R).

Theorem 3.2.7 [F]: Let Q e F (B x C), R e F (A x C) be two fuzzy relations. If S(Q,

R) * <j>, then the fuzzy relation R °wx Q'1 e F (A x B) is the maximum solution of the 

fuzzy relation equation P °wx Q = R for P.

Proof: Let P € S (Q, R) be such that P °wx Q = R.

Then Pc(P °wT Q) °wr Q"1
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Thus, PcR°wt Q4

Therefore, P °wT Q 3 (R °wT Q4) °wT Q

i.e.Ro (R °wt Q4) °wt Q

But by Theorem 3.1.12(ii), ((R °wt Q4) °wt Q) □ R

Hence, (R °wt Q4) °wt Q = R.

3.2(d) SUP -C0S FUZZY RELATION EQUATIONS

In this section we will discuss solution of a given sup-COs fuzzy relation

equation P °0)s Q = R, when any two of the fuzzy relations are given. Followings are 

the cases:

I) Given P and Q, R can be obtained by using the definition of sup-COs composition. In 

this case R is unique.

II) If P and R are given, then the set S(P, R) = (Q e F(B x C) | P °C0S Q - R} is 

called the solution set of P °C0S Q = R for Q.

Following theorem gives the maximum element of S(P, R).

Theorem 3.2.8 [F]: Let P e F (A x B), R e F (A x C) be such that

Sup B(z) < min (A(x), C(y)), for all x, y e X 
zeX

If S(P, R) <(>, then the fuzzy relation P'1 so R e F (B x C) is the maximum solution of 

the fuzzy relation equation P °C0S Q = R for Q.



Proof - Let Q € F (B x C) such that P °C0S Q = R, Then Q c P'1 so (P °C0S Q) 

Thus, Q c P'1 so R

Therefore, P°C0S QcP°C0S (P'1 so R)
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i. e.RcP °C0S (P_1so R)

But by Theorem 3.1.16(iv), P °(0S (P"1 soR)cR 

Hence, P °C0S (P'! so R) = R

III) If Q and R are given, then the set S(Q, R) = {P e F(A x B) | P °C0S Q = R} is 

called the solution set of P (Ds Q = R for P.

Following theorem gives the minimum element of S(Q, R).

Theorem 3.2.9 [F]: Let Q € F (B x C), R € F (A x C) be such that the following 

conditions hold:

1) Sup B(z) < min (A(x), C(y))
Z G X

2) Sup C (z) < min(A(x), B(y)), for all x, y e X 
Z G X

If S(Q, R) ^ <j), then the fuzzy relation R °0)s Q‘* e F (A x B) is the minimum 

solution of the fuzzy relation equation P °C0S Q = R for P.

Proof: Let P e S (Q, R) be such that P °C0S R = R. Then Pd(P °0)s Q) °(0s Q'1. 

Thus, P 3 R °C0S Q

Therefore, P °0)s Qc(R °0)s Q'1) °Cl)s Q



Le.Rc (R°C0S Q4) °C0S Q

But by Theorem 3.2.22(ii), (R°COs Q4) °0)s QcR

Hence, (R °COs Q4) °C0S Q = R


