CHAPTER 5

CHAPTER 5 EQUATIONS OF FUZZY NUMBERS

In this chapter we study real and complex fuzzy numbers and discuss fuzzy equations of these numbers. Necessary and sufficient conditions for the existence of the solutions are given.

5.1 FUZZY NUMBERS

In this Section we define fuzzy numbers and discuss the existence of solutions of linear equations based on fuzzy numbers.

Definition 5.1.1 $\left[K_{1}, K_{2}\right]$: Let $A=\left[a_{1}, a_{2}\right]$ and $B=\left[b_{1}, b_{2}\right]$ be any two closed bounded intervals. Then

1) $A+B=\left[a_{1}+b_{1}, a_{2}+b_{2}\right]$
2) $\mathrm{A}-\mathrm{B}=\left[\mathrm{a}_{1}-\mathrm{b}_{2}, \mathrm{a}_{2}-\mathrm{b}_{1}\right]$
3) $\mathrm{AB}=[\mathrm{a}, \mathrm{b}]$, where $\mathrm{a}=\min \left\{\mathrm{a}_{1} \mathrm{~b}_{1}, \mathrm{a}_{1} \mathrm{~b}_{2}, \mathrm{a}_{2} \mathrm{~b}_{1}, \mathrm{a}_{2} \mathrm{~b}_{2}\right\}$ and $\mathrm{b}=\max \left\{\mathrm{a}_{1} \mathrm{~b}_{1}, \mathrm{a}_{1} \mathrm{~b}_{2}, \mathrm{a}_{2} \mathrm{~b}_{1}, \mathrm{a}_{2} \mathrm{~b}_{2}\right\}$
4) $\mathrm{A} / \mathrm{B}=[\mathrm{a}, \mathrm{b}]$, where $\mathrm{a}=\min \left\{\frac{a_{1}}{b_{2}}, \frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{1}}, \frac{a_{2}}{b_{2}}\right\}$ and $\mathrm{b}=\max \left\{\frac{a_{1}}{b_{2}}, \frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{1}}, \frac{a_{2}}{b_{2}}\right\}$,
if $0 \notin B$
5) $-\mathrm{A}=\left[-\mathrm{a}_{2},-\mathrm{a}_{1}\right]$
6) $1 / \mathrm{A}=\left[1 / \mathrm{a}_{2}, 1 / \mathrm{a}_{1}\right]$, if $0 \notin \mathrm{~A}$.

Definition 5.1.2 $\left[K_{2}\right]$: A fuzzy set A: $3 \rightarrow I$ is a fuzzy number, if

1) A is a normal fuzzy set
2) ${ }^{\alpha} \mathrm{A}$ is a closed interval, $\forall \alpha \in(0,1]$
3) Support of A is bounded set.

Remark 5.1.3: 1) It is obvious that fuzzy numbers may or may not have cortinuous membership functions.
2) Some authors $\left[\mathrm{K}_{1}, \mathrm{~K}_{2}\right]$ call fuzzy numbers with continuous membership functions as continuous fuzzy numbers.
3) Throughout this chapter we consider fuzzy numbers with continuous membership functions.

Theorem 5.1.4 $\left[\mathrm{K}_{2}\right]$: Let A, B be two fuzzy numbers and ${ }^{*} \in\{+,-, \cdot, /\}$. Define A* B: 3 $\rightarrow[0,1]$ as follows:
$A^{*} B(z)=\operatorname{Sup}_{z=x^{*} y}\{\min \{A(x), B(y)\}\}$, for all $z \in 3$
Then ${ }^{\alpha}\left(\mathrm{A}^{*} \mathrm{~B}\right)={ }^{\alpha} \mathrm{A}{ }^{* \alpha} \mathrm{~B}, \alpha \in \mathrm{I}$
Proof: Proof of this theorem can be found in $\left[\mathrm{K}_{2}\right]$.

Theorem 5.1.5 $\left[\mathrm{K}_{2}\right]$: Let A, B be two fuzzy numbers and ${ }^{*} \in\{+,-, \cdot, /\}$. Then $\mathrm{A}^{*} \mathrm{~B}$ is a fuzzy number.

Proof: Proof of this theorem can be found in $\left[\mathrm{K}_{2}\right]$.

Remark 5.1.6: Real numbers and real intervals are special cases of fuzzy numbers.

5.2 SOLVING A $+\mathbf{X}=\mathrm{B}$

Now we discuss solution of the equation $\mathrm{A}+\mathrm{X}=\mathrm{B}$, when fuzzy numbers A and B are known. Following example shows that $\mathrm{X}=\mathrm{B}-\mathrm{A}$ need not be a solution.

Example 5.2.1 $\left[K_{2}\right]$: Let $A=\left[a_{1}, a_{2}\right]$ and $B=\left[b_{1}, b_{2}\right]$ be two fuzzy numbers. Then $\mathrm{X}=\mathrm{B}-\mathrm{A}$ need not be a solution of $\mathrm{A}+\mathrm{X}=\mathrm{B}$.

Solution: Since, $A+(B-A)=\left[a_{1}+b_{1}-a_{2}, a_{2}+b_{2}-a_{1}\right] \neq B$.

Theorem 5.2.2 $\left[K_{2}\right]$: Let A and B be fuzzy numbers. Let α - cut of A be ${ }^{\alpha} \mathrm{A}=\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]$ and that of B be ${ }^{\alpha} \mathrm{B}=\left[\mathrm{b}_{1}{ }^{\alpha}, \mathrm{b}_{2}{ }^{\alpha}\right]$. Then $\mathrm{A}+\mathrm{X}=\mathrm{B}$ has a solution if and only if
i) $b_{1}{ }^{\alpha}-a_{1}{ }^{\alpha} \leq b_{2}{ }^{\alpha}-a_{2}{ }^{\alpha}$, for every $\alpha \in(0,1]$
ii) $\alpha \leq \beta \Rightarrow b_{1}{ }^{\alpha}-a_{1}{ }^{\alpha} \leq b_{1}{ }^{\beta}-a_{1}{ }^{\beta} \leq b_{2}{ }^{\beta}-a_{2}{ }^{\beta} \leq b_{2}{ }^{\alpha}-a_{2}{ }^{\alpha}$.

Proof: Suppose that $A+X=B$ has a solution X.
Let ${ }^{\alpha} \mathrm{X}=\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\mathrm{a}}\right]$ be α - cut of X .
Since, $\mathrm{A}+\mathrm{X}=\mathrm{B},{ }^{\alpha}(\mathrm{A}+\mathrm{X})={ }^{\alpha} \mathrm{B}$
Thus, ${ }^{\alpha} \mathrm{A}+{ }^{\alpha} \mathrm{X}={ }^{\alpha} \mathrm{B}$
Therefore, $\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]+\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{b}_{1}{ }^{\alpha}, \mathrm{b}_{2}{ }^{\alpha}\right]$
i. e. $\left[\mathrm{a}_{1}{ }^{\alpha}-\mathrm{x}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}+\mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{b}_{1}{ }^{\alpha}, \mathrm{b}_{2}{ }^{\alpha}\right]$

Therefore, $\mathrm{a}_{1}{ }^{\alpha}+\mathrm{x}_{1}{ }^{\alpha}=\mathrm{b}_{1}{ }^{\alpha}$ and $\mathrm{a}_{2}{ }^{\alpha}+\mathrm{x}_{2}{ }^{\alpha}=\mathrm{b}_{2}{ }^{\alpha}$
Thus, $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{b}_{1}{ }^{\alpha}-\mathrm{a}_{1}{ }^{\alpha}$ and $\mathrm{x}_{2}{ }^{\alpha}=\mathrm{b}_{2}{ }^{\alpha}-\mathrm{a}_{2}{ }^{\alpha}$
But $\mathrm{x}_{1}{ }^{\alpha} \leq \mathrm{x}_{2}{ }^{\alpha}$
Hence, $\mathrm{b}_{1}{ }^{\alpha}-\mathrm{a}_{1}{ }^{\alpha} \leq \mathrm{b}_{2}{ }^{\alpha}-\mathrm{a}_{2}{ }^{\alpha}$.
Let $\alpha, \beta \in[0,1]$ be such that $\alpha \leq \beta$.
Then ${ }^{\beta} \mathrm{X} \subseteq{ }^{\alpha} \mathrm{X}$,
Thus, $\left[\mathrm{x}_{1}{ }^{\beta}, \mathrm{x}_{2}{ }^{\beta}\right] \subseteq\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$
Therefore, $\mathrm{x}_{1}{ }^{\alpha} \leq \mathrm{x}_{1}{ }^{\beta} \leq \mathrm{x}_{2}{ }^{\beta} \leq \mathrm{x}_{2}{ }^{\alpha}$
Hence, $\mathrm{b}_{1}{ }^{\alpha}-\mathrm{a}_{1}{ }^{\alpha} \leq \mathrm{b}_{1}{ }^{\beta}-\mathrm{a}_{1}{ }^{\beta} \leq \mathrm{b}_{2}{ }^{\beta}-\mathrm{a}_{2}{ }^{\beta} \leq \mathrm{b}_{2}{ }^{\alpha}-\mathrm{a}_{2}{ }^{\alpha}$
Conversely, suppose that conditions hold.

Take $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{b}_{1}{ }^{\alpha}-\mathrm{a}_{1}{ }^{\alpha}$ and $\mathrm{x}_{2}{ }^{\alpha}=\mathrm{b}_{2}{ }^{\alpha}-\mathrm{a}_{2}{ }^{\alpha}$
Then $\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$ is an interval
Choose ${ }^{\alpha} \mathrm{X}=\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$
Since ${ }^{\beta} \mathrm{X} \subseteq{ }^{\alpha} \mathrm{X}$, fcr all $\alpha \leq \beta,\left\{^{\alpha} \mathrm{X}\right\}$ is a nested sequence of intervals.
Now $a_{1}{ }^{\alpha}+x_{1}{ }^{\alpha}=b_{1}{ }^{\alpha}$ and $a_{2}{ }^{\alpha}+x_{2}{ }^{\alpha}=b_{2}{ }^{\alpha}$
Therefore, ${ }^{\alpha}(\mathrm{A}+\mathrm{X})={ }^{a} \mathrm{~B}$, for all $\alpha \in(0,1]$
Thus, $\mathrm{A}+\mathrm{X}=\mathrm{B}$
Hence, X is a solution of $\mathrm{A}+\mathrm{X}=\mathrm{B}$.

5.3 SOLVING A $\cdot \mathrm{X}=\mathrm{B}$

Now we discuss solution of the equation $\mathrm{A} \cdot \mathrm{X}=\mathrm{B}$, when fuzzy numbers A and B are known.

Theorem 5.3.1 $\left[\mathrm{K}_{2}\right]$: Let A and B be fuzzy numbers in 3^{+}and ${ }^{\alpha} \mathrm{A}=\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]$, ${ }^{\alpha} B=\left[b_{1}{ }^{\alpha}, b_{2}^{\alpha}\right]$ be α-cuts of A and B respectively. Then $A X=B$ has a solution if and only if
i) $\mathrm{b}_{1}{ }^{\alpha} / \mathrm{a}_{1}{ }^{\alpha} \leq \mathrm{b}_{2}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\mathrm{X}}, \forall \alpha \in(0,1]$
ii) $\alpha \leq \beta \Rightarrow b_{1}{ }^{\alpha} / a_{1}{ }^{\alpha} \leq b_{1}{ }^{\beta} / a_{1}{ }^{\beta} \leq b_{2}{ }^{\beta} / a_{2}{ }^{\beta} \leq b_{2}{ }^{\alpha} / a_{2}{ }^{\alpha}$

Proof: Suppose that X is a solution of $\mathrm{AX}=\mathrm{B}$
Let ${ }^{\alpha} \mathrm{X}=\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$ be α-cut of X .
Since $\mathrm{AX}=\mathrm{B},{ }^{\alpha}(\mathrm{AX})={ }^{\alpha} \mathrm{B}$
i. e. ${ }^{\alpha} A^{\alpha} X={ }^{\alpha} B$

Thus, $\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{b}_{1}{ }^{\alpha}, \mathrm{b}_{2}{ }^{\alpha}\right]$
Since $\mathrm{a}_{1}{ }^{\alpha}>0$ and $\mathrm{b}_{1}{ }^{\alpha}>0,\left[\mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha} \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{b}_{1}{ }^{\alpha}, \mathrm{b}_{2}{ }^{\alpha}\right]$

Thus, $a_{1}{ }^{\alpha} x_{1}{ }^{\alpha}=b_{1}{ }^{\text {a }}$ and $a_{2}{ }^{\alpha} x_{2}{ }^{\alpha}=b_{2}{ }^{\alpha}$
i. e. $x_{1}{ }^{\alpha}=b_{1}{ }^{\alpha} / a_{1}{ }^{\alpha}$ and $x_{2}{ }^{\alpha}=b_{2}{ }^{\alpha} / a_{2}{ }^{\alpha}$

But $\mathrm{x}_{1}{ }^{\alpha} \leq \mathrm{x}_{2}{ }^{\alpha}$
Hence, $\mathrm{b}_{1}{ }^{\alpha} / \mathrm{a}_{1}{ }^{\alpha} \leq \mathrm{b}_{2}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\alpha}$
Let $\alpha \leq \beta$. Then ${ }^{\beta} X \subseteq{ }^{\alpha} X$.
Therefore, $\left[x_{1}{ }^{\beta}, x_{2}{ }^{\beta}\right] \subseteq\left[x_{1}{ }^{\alpha}, x_{2}{ }^{\alpha}\right]$
i. e. $\mathrm{x}_{1}{ }^{\alpha} \leq \mathrm{x}_{1}{ }^{\beta} \leq \mathrm{x}_{2}{ }^{\beta} \leq \mathrm{x}_{2}{ }^{\alpha}$

Therefore, $b_{1}{ }^{\alpha} / a_{1}{ }^{\alpha} \leq b_{1}{ }^{\beta} / a_{1}{ }^{\beta} \leq b_{2}{ }^{\beta} / a_{2}{ }^{\beta} \leq b_{2}{ }^{\alpha} / a_{2}{ }^{\alpha}$
Conversely, suppose that the conditions hold
Take $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{b}_{1}{ }^{\alpha} / \mathrm{a}_{1}{ }^{\alpha}$ and $\mathrm{x}_{2}{ }^{\alpha}=\mathrm{b}_{2}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\alpha}$
Thus, ${ }^{\alpha} \mathrm{X}=\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$ is an interval
Since ${ }^{\beta} X \subseteq{ }^{\alpha} X$, for all $\alpha \leq \beta,\left\{{ }^{\alpha} X\right\}$ is a nested sequence of intervals
Now $\mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{1}{ }^{\alpha}=\mathrm{b}_{1}{ }^{\alpha}$ and $\mathrm{a}_{2}{ }^{\alpha} \mathrm{x}_{2}{ }^{\alpha}=\mathrm{b}_{2}{ }^{\alpha}$
Therefore, ${ }^{\alpha} \mathrm{A}^{\alpha} \mathrm{X}={ }^{\alpha} \mathrm{B}$
i. e. ${ }^{\alpha}(\mathrm{AX})={ }^{\alpha} \mathrm{B}$

Hence, $\mathrm{AX}=\mathrm{B}$.

5.4 TRIANGULAR FUZZY NUMBERS

Definition 5.4.1 $\left[B_{1}\right]$: A fuzzy number $\mathrm{N}: 3 \rightarrow \mathrm{l}$, is called triangular if, there exist real numbers $n_{1}<n_{2}<n_{3}$ such that

1) $N(x)=0$, if $x \notin\left(n_{1}, n_{3}\right)$
2) $N(x)=1$, if $x=n_{2}$
3) $N(x)$ is continuous and monotonically increasing from 0 to 1 on $\left[n_{1}, n_{2}\right]$
4) $N(x)$ is continuous and monotonically decreasing from 1 to 0 on $\left[n_{2}, n_{3}\right]$

This triangular fuzzy number is denoted as $N=\left(n_{1}\left|n_{2}\right| n_{3}\right)$.
Definition 5.4.2 $\left[B_{1}\right]$: Let $N=\left(n_{1}\left|n_{2}\right| n_{3}\right)$ be a triangular fuzzy number. Then

1) $\mathrm{N} \geq 0, \quad$ if $\quad n_{1} \geq 0$
2) $\mathrm{N}>0$, if $\mathrm{n}_{1}>0$
3) $\mathrm{N}<0$, if $\mathrm{n}_{3}<0$
4) $\mathrm{N} \leq 0$, if $\mathrm{n}_{3} \leq 0$

Proposition 5.4.3 $\left[B_{1}\right]$: Let $N=\left(n_{1}\left|n_{2}\right| n_{3}\right)$ be a triangular fuzzy number. Then for $\alpha \in \mathrm{I}$ an α-cut of N is given by ${ }^{\alpha} \mathrm{N}=\left[\mathrm{n}_{1}{ }^{\alpha}, \mathrm{n}_{2}{ }^{\alpha}\right]$ and $\dot{\mathrm{n}}_{1}{ }^{\alpha}=\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right), \dot{\mathrm{n}}_{2}{ }^{\alpha}=\left(\mathrm{n}_{2}-\mathrm{n}_{3}\right)$, where $\dot{n}_{1}{ }^{\alpha}=\frac{d}{d \alpha}\left(n_{i}^{\alpha}\right)$.

Proof: Consider the points A, B, C, D, E as $A \equiv\left(n_{1}, 0\right), B \equiv\left(n_{2}, 1\right), C \equiv\left(n_{3}, 0\right)$, $D \equiv\left(n_{1}{ }^{\alpha}, \alpha\right), E \equiv\left(n_{2}{ }^{\alpha}, \alpha\right)$

Equation of line $A B$ is: $x-\left(n_{2}-n_{1}\right) y-n_{1}=0$
Since $D\left(n_{1}{ }^{\alpha}, \alpha\right)$ lies on line $A B, n_{1}{ }^{\alpha}-\left(n_{2}-n_{1}\right) \alpha-n_{1}=0$
Therefore, $\mathrm{n}_{1}{ }^{\alpha}=\mathrm{n}_{1}+\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) \alpha$
Similarly $E\left(n_{2}{ }^{\alpha}, \alpha\right)$ lies on $B C$ gives, $n_{2}{ }^{\alpha}=n_{3}+\left(n_{2}-n_{3}\right) \alpha$
Thus, α - cut of N is $\left[n_{1}+\left(n_{2}-n_{1}\right) \alpha, n_{3}+\left(n_{2}-n_{3}\right) \alpha\right]$
Differentiating n_{1}^{α} and n_{2}^{α} with respect to α, we get $\dot{n}_{1}^{\alpha}=\left(n_{2}-n_{1}\right), \dot{n}_{2}^{\alpha}=\left(n_{2}-n_{3}\right)$.

Theorem 5.4.4 $\left[\mathrm{K}_{1}\right]$: If M and N are triangular fuzzy numbers, then so is $\mathrm{M}+\mathrm{N}$.
Proof: Let $M=\left(m_{1}\left|m_{2}\right| m_{3}\right)$ and $N=\left(n_{1}\left|n_{2}\right| n_{3}\right)$.
Let ${ }^{\alpha} \mathrm{M}=\left[\mathrm{m}_{1}{ }^{\alpha}, \mathrm{m}_{2}^{\alpha}\right]$ and ${ }^{\alpha} \mathrm{N}=\left[\mathrm{n}_{1}{ }^{\alpha}, \mathrm{n}_{2}{ }^{\alpha}\right]$ be α-cuts of M and N respectively.
Since, ${ }^{\alpha}(M+N)={ }^{\alpha} M+{ }^{\alpha} N$,
${ }^{\alpha}(M+N)=\left[m_{1}+\alpha\left(m_{2}-m_{1}\right), m_{3}+\alpha\left(m_{2}-m_{3}\right)\right]+\left[n_{1}+\alpha\left(n_{2}-n_{1}\right), n_{3}+\alpha\left(n_{2}-n_{3}\right)\right]$
$=\left[\left(m_{1}+n_{1}\right)+\alpha\left(m_{2}+n_{2}-m_{1}-n_{1}\right),\left(m_{3}+m_{3}\right)+\alpha\left(m_{2}+n_{2}-m_{3}-n_{3}\right)\right]$
For $\alpha=0,{ }^{0}(M+N)=\left[m_{1}+n_{1}, m_{3}+n_{3}\right]$.
Let $x \in{ }^{\alpha}(M+N)$. Then $\left(m_{1}+n_{1}\right)+\alpha\left(m_{2}+n_{2}-m_{1}-n_{1}\right) \leq x$ and
$\mathrm{x} \leq\left(\mathrm{m}_{3}+\mathrm{n}_{3}\right)+\alpha\left(\mathrm{m}_{2}+\mathrm{n}_{2}-\mathrm{m}_{3}-\mathrm{n}_{3}\right)$
$\alpha \leq\left[x-\left(m_{1}+n_{1}\right)\right] /\left[m_{2}+n_{2}-m_{1}-n_{1}\right]$ and $\left.\alpha \leq\left(m_{3}+n_{3}\right)-x\right] /\left[m_{3}+n_{3}-m_{2}-n_{2}\right]$
But $0 \leq \alpha \leq 1$
Therefore, $0 \leq\left[\mathrm{x}-\left(\mathrm{m}_{1}+\mathrm{n}_{1}\right)\right] /\left[\mathrm{m}_{2}+\mathrm{n}_{2}-\mathrm{m}_{1}-\mathrm{n}_{1}\right] \leq 1$ and $0 \leq\left[\left(\mathrm{m}_{3}+\mathrm{n}_{3}\right)-\mathrm{x}\right] /\left[\mathrm{m}_{3}+\mathrm{n}_{3}-\mathrm{m}_{2}-\mathrm{n}_{2}\right] \leq 1$

Therefore, $\mathrm{m}_{1}+\mathrm{n}_{1} \leq \mathrm{x} \leq \mathrm{m}_{2}+\mathrm{n}_{2}$ and $\mathrm{m}_{2}+\mathrm{n}_{2} \leq \mathrm{x} \leq \mathrm{m}_{3}+\mathrm{n}_{3}$
Thus, $\alpha \leq\left[x-\left(m_{1}+n_{1}\right)\right] /\left[m_{2}+n_{2}-m_{1}-n_{1}\right]$, for $m_{1}+n_{1} \leq x \leq m_{2}+n_{2}$ and $\alpha \leq\left[\left(m_{3}+n_{3}\right)-x\right] /\left[m_{3}+n_{3}-m_{2}-n_{2}\right]$, for $m_{2}+n_{2} \leq x \leq m_{3}+n_{3}$.

Also $M+N(x)=0$, for all $x \notin\left(m_{1}+n_{1}, m_{3}+n_{3}\right)$
Hence, $M+N$ is

$$
\begin{aligned}
(M+N)(x) & =0, & & \text { if } x \notin\left(m_{1}+n_{1}, m_{3}+n_{3}\right) \\
& =\left[x-\left(m_{1}+n_{1}\right)\right] /\left[\left(m_{2}+n_{2}\right)-\left(m_{1}+n_{1}\right)\right], & & \text { if } m_{1}+n_{1} \leq x \leq m_{2}+n_{2} \\
& =1, & & \text { if } x=m_{2}+n_{2} \\
& =\left[m_{3}+n_{3}-x\right] /\left[\left(m_{3}+n_{3}\right)-\left(m_{2}+n_{2}\right)\right], & & \text { if } m_{2}+n_{2} \leq x \leq m_{3}+n_{3} .
\end{aligned}
$$

Now we discuss the solution of linear and quadratic fuzzy equations based on triangular fuzzy numbers.

Theorem 5.4.5 $\left[B_{1}\right]$: Let $A=\left(a_{1}\left|a_{2}\right| a_{3}\right)$ and $B=\left(b_{1}\left|b_{2}\right| b_{3}\right)$ be triangular fuzzy numbers. If $\mathrm{A}+\mathrm{X}=\mathrm{C}$, then X is triangular fuzzy number.

Proof: Let ${ }^{\alpha} \mathrm{A}=\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right],{ }^{\alpha} \mathrm{C}=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$ and ${ }^{\alpha} \mathrm{X}=\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$ be α-cuts of A, C and X respectively.

Now ${ }^{\alpha}(\mathrm{A}+\mathrm{X})={ }^{a} \mathrm{C}$
i. e. ${ }^{\alpha} \mathrm{A}+{ }^{\alpha} \mathrm{X}={ }^{\alpha} \mathrm{C}$

Therefore, $\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]+\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
i. e. $\left[\mathrm{a}_{1}{ }^{\alpha}+\mathrm{x}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}+\mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$

Thus, $\mathrm{a}_{1}{ }^{\alpha}+\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha}$ and $\mathrm{a}_{2}{ }^{\alpha}+\mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha}$.
Hence, $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha}-\mathrm{a}_{1}{ }^{\alpha}$ and $\mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha}-\mathrm{a}_{2}{ }^{\alpha}$.
Therefore, $\mathrm{x}_{1}{ }^{\alpha}=\left[\mathrm{c}_{1}+\alpha\left(\mathrm{c}_{2}-\mathrm{c}_{1}\right)\right]-\left[\mathrm{a}_{1}+\alpha\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right)\right]$
and $x_{2}{ }^{\alpha}=\left[c_{3}+\alpha\left(c_{2}-c_{3}\right)\right]-\left[a_{3}+\alpha\left(a_{2}-a_{3}\right)\right]$
i. e. $x_{1}{ }^{\alpha}=\left(c_{1}-a_{1}\right)+\alpha\left[\left(c_{2}-a_{2}\right)-\left(c_{1}-a_{1}\right)\right]$ and $x_{2}{ }^{\alpha}=\left(c_{3}-a_{3}\right)+\alpha\left[\left(c_{2}-a_{2}\right)-\left(c_{3}-a_{3}\right)\right]$

But ${ }^{\alpha} \mathrm{X}=\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$
For $\alpha=0,{ }^{0} \mathrm{X}=\left[\mathrm{c}_{1}-\mathrm{a}_{1}, \mathrm{c}_{3}-\mathrm{a}_{3}\right]$
Therefore, $X(x)=0$, for all $x \notin\left(c_{1}-a_{1}, c_{3}-a_{3}\right)$
Let $\mathrm{x} \in{ }^{\alpha} \mathrm{X}$. Then $\mathrm{x} \in\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$
Therefore, $\left(c_{1}-a_{1}\right)+\alpha\left[\left(c_{2}-a_{2}\right)-\left(c_{1}-a_{1}\right)\right] \leq x$
and $\mathrm{x} \leq\left(\mathrm{c}_{3}-\mathrm{a}_{3}\right)+\alpha\left[\left(\mathrm{c}_{2}-\mathrm{a}_{2}\right)-\left(\mathrm{c}_{3}-\mathrm{a}_{3}\right)\right]$
$\alpha \leq\left[x-\left(c_{1}-a_{1}\right) /\left[\left(c_{2}-a_{2}\right)-\left(c_{1}-a_{1}\right)\right]\right.$
$\alpha \leq\left[\left(c_{3}-a_{3}\right)-x\right] /\left[\left(c_{3}-a_{3}\right)-\left(c_{2}-a_{2}\right)\right]$
But $0 \leq \alpha \leq 1$. Therefore
$0 \leq\left[x-\left(c_{1}-a_{1}\right)\right],\left[\left(c_{2}-a_{2}\right)-\left(c_{1}-a_{1}\right)\right] \leq 1$ and
$0 \leq\left[\left(c_{3}-a_{3}\right)-x\right] /\left[\left(c_{3}-a_{3}\right)-\left(c_{2}-a_{2}\right)\right] \leq 1$
Therefore, $c_{1}-a_{1} \leq x \leq c_{2}-a_{2}$ and $c_{2}-a_{2} \leq x \leq c_{3}-a_{3}$

Thus, $\alpha \leq\left[x-\left(c_{1}-a_{1}\right)\right] /\left[\left(c_{2}-a_{2}\right)-\left(c_{1}-a_{1}\right)\right]$, for $c_{1}-a_{1} \leq x \leq c_{2}-a_{2}$ and $\alpha \leq\left[\left(c_{3}-a_{3}\right)-x\right] /\left[\left(c_{3}-a_{3}\right)-\left(c_{2}-a_{2}\right)\right]$, for $c_{2}-a_{2} \leq x \leq c_{3}-a_{3}$

Hence, by Theorem 1.1.16,

$$
\begin{array}{rlrl}
X(x) & =0 ; \text { if } x \notin\left(c_{1}-a_{1}, c_{3}-a_{3}\right) & & \\
& =\sup \left\{\alpha \mid \alpha \leq\left[x-\left(c_{1}-a_{1}\right)\right] /\left[\left(c_{2}-a_{2}\right)-\left(c_{1}-a_{1}\right)\right], c_{1}-a_{1} \leq x \leq c_{2}-a_{2} .\right. \\
& =\sup \{\alpha / \alpha \leq 1\}, x=c_{2}-a_{2} & & \\
& =\sup \left\{\alpha \mid \alpha \leq\left[\left(c_{3}-a_{3}\right)-x\right] /\left[\left(c_{3}-a_{3}\right)-\left(c_{2}-a_{2}\right)\right], \text { for } c_{2}-a_{2} \leq x \leq c_{3}-a_{3}\right. \\
X(x) & =0, & & \text { if } x \notin\left(c_{1}-a_{1}, c_{3}-a_{3}\right) \\
& =\left[x-\left(c_{1}-a_{1}\right)\right] /\left[\left(c_{2}-a_{2}\right)-\left(c_{1}-a_{1}\right)\right], & & \text { if } c_{1}-a_{1} \leq x \leq c_{2}-a_{2} \\
& =1, & & \text { if } x=c_{2}-a_{2} \\
& =\left[\left(c_{3}-a_{3}\right)-x\right] /\left[\left(c_{3}-a_{3}\right)-\left(c_{2}-a_{2}\right)\right], & & \text { if } c_{2}-a_{2} \leq x \leq c_{3}-a_{3}
\end{array}
$$

Hence, X is a triangular fuzzy number.

Theorem 5.4.6 $\left[B_{1}\right]$: Let $A=\left(a_{1}\left|a_{2}\right| a_{3}\right)$ and $B=\left(b_{1}\left|b_{2}\right| b_{3}\right)$ be triangular fuzzy numbers. An equation $A+X=C$ has a solution X if and only if $c_{1}-a_{1}<c_{2}-a_{2}<c_{3}-$ a_{3}.

Proof: Since $\mathrm{A}+\mathrm{X}=\mathrm{C},{ }^{\alpha}(\mathrm{A}+\mathrm{X})={ }^{a} \mathrm{C}$
i.e. ${ }^{\alpha} \mathrm{A}+{ }^{\alpha} \mathrm{X}={ }^{\alpha} \mathrm{C}$, by Theorem 5.1.4

Thus, $\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]+\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Hence, $\left[\mathrm{a}_{1}{ }^{\alpha}+\mathrm{x}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}+\mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Thus, $\mathrm{a}_{1}{ }^{\alpha}+\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha}$ and $\mathrm{a}_{2}{ }^{\alpha}+\mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha}$
Hence, $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha}-\mathrm{a}_{1}{ }^{\alpha}$ and $\mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha}-\mathrm{a}_{2}{ }^{\alpha}$.
Since X is a triangular fuzzy number, $\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3}$ and $\dot{\mathrm{x}}_{1}^{\alpha}>0, \dot{\mathrm{x}}_{2}^{\alpha}<0$
iff $\frac{d}{d \alpha}\left(\mathrm{c}_{1}{ }^{\alpha}-\mathrm{a}_{1}^{\alpha}\right)>0$ and $\frac{d}{d \alpha}\left(\mathrm{c}_{2}^{\alpha}-\mathrm{a}_{2}{ }^{\alpha}\right)<0$
iff $\dot{\mathrm{c}}_{1}{ }^{\alpha}-\dot{a}_{1}^{\alpha}>0 \quad$ and $\quad \dot{\mathrm{c}}_{2}^{\alpha}-{\dot{\dot{a}_{2}}}^{\alpha}<0$
iff $c_{2}-c_{1}>a_{2}-a_{1}$, and $c_{2}-c_{3}<a_{2}-a_{3}$
iff $c_{1}-a_{1}<c_{2}-a_{2}$, and $c_{2}-a_{2}<c_{3}-a_{3}$
iff $c_{1}-a_{1}<c_{2}-a_{2}<c_{3}-a_{3}$

Hence, the equation $A+X=C$ has a solution iff $c_{1}-a_{1}<c_{2}-a_{2}<c_{3}-a_{3}$.

We now discuss solution of the fuzzy equation $A X=C$, when A, C are triangular fuzzy numbers and $0 \notin \operatorname{supp}(A)$. i. e. either $A>0$ or $A<0$.

Theorem 5.4.7 [$\left.B_{1}\right]$: (a) Suppose zero does not belong to the support of C. Then there exists a solution X to the equation $\mathrm{AX}=\mathrm{C}$ if and only if
i) $\mathrm{a}_{1} \mathrm{c}_{2}>\mathrm{c}_{1} \mathrm{a}_{2}$ and $\mathrm{a}_{3} \mathrm{c}_{2}>\mathrm{c}_{3} \mathrm{a}_{2}$, when $\mathrm{A}>0, \mathrm{C} \geq 0$.
ii) $\mathrm{a}_{1} \mathrm{c}_{2}<\mathrm{c}_{1} \mathrm{a}_{2}$ and $\mathrm{a}_{3} \mathrm{c}_{2}>\mathrm{c}_{3} \mathrm{a}_{2}$, when $\mathrm{A}<0, \mathrm{C} \leq 0$.
iii) $\mathrm{a}_{3} \mathrm{c}_{2}>\mathrm{c}_{1} \mathrm{a}_{2}$ and $\mathrm{a}_{1} \mathrm{c}_{2}<\mathrm{c}_{3} \mathrm{a}_{2}$, when $\mathrm{A}>0, \mathrm{C} \leq 0$.
iv) $a_{3} c_{2}<c_{1} a_{2}$ and $a_{1} c_{2}>c_{3} a_{2}$, when $A<0, C \geq 0$.
(b) Suppose zero belongs to the support of $C\left(c_{2}=0\right)$. Then there is a solution X if and only if zero belongs to the support of $X\left(x_{2}=0\right)$.

Proof: (a) Since $A X=C,{ }^{\alpha}(A X)={ }^{\alpha} C$.
i. e. ${ }^{\alpha} A^{\alpha} X={ }^{\alpha} C$

Thus, $\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$, where ${ }^{\alpha} \mathrm{A}=\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right],{ }^{\alpha} \mathrm{X}=\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]$, ${ }^{\alpha} \mathrm{C}=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$ are α-cuts of A, X and C respectively.
i. e. $[\min S, \max S]=\left[c_{1}{ }^{\alpha}, c_{2}{ }^{\alpha}\right]$, where $S=\left\{a_{1}{ }^{\alpha} x_{1}{ }^{\alpha}, a_{1}{ }^{\alpha} x_{2}{ }^{\alpha}, a_{2}{ }^{\alpha} x_{1}{ }^{\alpha}, a_{2}{ }^{\alpha} x_{2}{ }^{\alpha}\right\}$
(i) If $\mathrm{A}>0, \mathrm{C} \geq 0$, then $\mathrm{X} \geq 0$
$\operatorname{Now}\left[\mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha} \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Therefore, $\mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{1}^{\alpha}=\mathrm{c}_{1}{ }^{\alpha}, \mathrm{a}_{2}^{\alpha} \mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{2}^{\alpha}$
Hence, $x_{1}^{\alpha}=c_{1}^{\alpha} / a_{1}{ }^{\alpha}, \quad x_{2}{ }^{\alpha}=c_{2}^{\alpha} / a_{2}{ }^{\alpha}$.
Then $\dot{x}_{1}^{\alpha}>0$ iff $a_{1}^{\alpha}{ }_{c_{1}}^{\alpha}>c_{1}^{\alpha} \dot{a}_{1}^{\alpha}$
iff $a_{1}{ }^{\alpha}\left(c_{2}-c_{1}\right)>c_{1}{ }^{\alpha}\left(a_{2}-a_{1}\right)$
iff $\left[a_{1}+\alpha\left(a_{2}-a_{1}\right)\right]\left(c_{2}-c_{1}\right)>\left[c_{1}+\alpha\left(c_{2}-c_{1}\right)\right]\left(a_{2}-a_{1}\right)$
iff $a_{1}\left(c_{2}-c_{1}\right)>c_{1}\left(a_{2}-a_{1}\right)$
iff $a_{1} c_{2}>c_{1} a_{2}$
Similarly $\dot{\mathrm{x}}_{2}^{a}<0$ iff $\mathrm{a}_{3} \mathrm{c}_{2}>\mathrm{c}_{3} \mathrm{a}_{2}$.
(ii) Suppose $\mathrm{A}<0, \mathrm{C} \leq 0(\mathrm{X} \geq 0)$

Then $\left[\mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{2}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha} \mathrm{x}_{1}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Thus, $x_{1}{ }^{\alpha}=c_{2}^{\alpha} / a_{2}{ }^{\alpha}, x_{2}{ }^{\alpha}=c_{1}{ }^{\alpha} / a_{1}{ }^{\alpha}$
But $\dot{\mathrm{x}}_{1}^{\alpha}>0$ iff $\mathrm{a}_{2}{ }^{\alpha}{\dot{\dot{c}_{2}}}^{\alpha}>\mathrm{c}_{2}{ }^{\alpha} \dot{\mathrm{a}}_{2}{ }^{\alpha}$.
iff $a_{2}{ }^{\alpha}\left(c_{2}-c_{3}\right)>c_{2}{ }^{\alpha}\left(a_{2}-a_{3}\right)$
iff $\left[a_{3}+\alpha\left(a_{2}-a_{3}\right)\right]\left(c_{2}-c_{3}\right)>\left[c_{3}+\alpha\left(c_{2}-c_{3}\right)\right]\left(a_{2}-a_{3}\right)$
iff $a_{3}\left(c_{2}-c_{3}\right)>c_{3}\left(a_{2}-a_{3}\right)$
iff $a_{3} c_{2}>c_{3} a_{2}$.
Similarly $\dot{\mathrm{x}}_{2}^{\alpha}<0$ iff $a_{1} c_{2}<c_{1} a_{2}$.
(iii) Suppose $\mathrm{A}>0, \mathrm{C} \leq 0(\mathrm{X} \leq 0)$

Then $\left[\mathrm{a}_{2}{ }^{\alpha} \mathrm{x}_{1}{ }^{\alpha}, \mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Thus, $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha} / \mathrm{a}_{1}{ }^{\alpha}$
$\dot{\mathrm{x}}_{1}^{\alpha}>0$ iff $\mathrm{a}_{2}{ }^{\alpha}{\dot{c_{1}}}^{\alpha}>\mathrm{c}_{1}{ }^{\alpha} \dot{\mathrm{a}}_{2}{ }^{\alpha}$.
iff $a_{2}{ }^{\alpha}\left(c_{2}-c_{1}\right)>c_{1}{ }^{\alpha}\left(a_{2}-a_{3}\right)$
iff $\left[a_{3}+\alpha\left(a_{2}-a_{3}\right)\right]\left(c_{2}-c_{1}\right)>\left[c_{1}+\alpha\left(c_{2}-c_{1}\right)\right]\left(a_{2}-a_{3}\right)$
iff $a_{3}\left(c_{2}-c_{1}\right)>c_{1}\left(a_{2}-a_{3}\right)$
iff $a_{3} c_{2}>c_{1} a_{2}$.
Similarly $\dot{\mathrm{x}}_{2}^{\alpha}<0$ iff $\mathrm{a}_{1} \mathrm{c}_{2}<\mathrm{c}_{3} \mathrm{a}_{2}$.
(iv) Let $\mathrm{A}<0, \mathrm{C} \geq 0(\mathrm{X} \leq 0)$

Then $\left[a_{2}{ }^{\alpha} x_{2}{ }^{\alpha}, a_{1}{ }^{\alpha} x_{1}{ }^{\alpha}\right]=\left[c_{1}{ }^{\alpha}, c_{2}{ }^{\alpha}\right]$
Thus, $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha} / \mathrm{a}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\alpha}$
$\dot{x}_{1}^{\alpha}>0$ iff $a_{1}{ }^{\alpha} \dot{c}_{2}{ }^{\alpha}>c_{2}{ }^{\alpha} \dot{a}_{1}{ }^{\alpha}$.
iff $a_{1}{ }^{\alpha}\left(c_{2}-c_{3}\right)>c_{2}{ }^{\alpha}\left(a_{2}-a_{1}\right)$
iff $\left[a_{1}+\alpha\left(a_{2}-a_{1}\right)\right]\left(c_{2}-c_{3}\right)>\left[c_{3}+\alpha\left(c_{2}-c_{3}\right)\right]\left(a_{2}-a_{1}\right)$
iff $a_{1}\left(c_{2}-c_{3}\right)>c_{3}\left(a_{2}-a_{1}\right)$
iff $a_{1} c_{2}>c_{3} a_{2}$.
Similarly $\dot{\mathrm{x}}_{2}^{\alpha}<0$ iff $\mathrm{a}_{3} \mathrm{c}_{2}<\mathrm{c}_{1} \mathrm{a}_{2}$.
(b) Let $0 \in \operatorname{supp}(C)$. Then $C(0)>0$.

So take $c_{2}=0$
Since for $\mathrm{X} \leq 0$ or $\mathrm{X} \geq 0$ and $\mathrm{A}>0$ or $\mathrm{A}<0, \mathrm{AX} \geq 0$ or $\mathrm{AX} \leq 0$.
But $\mathrm{c}_{2}=0$
Therefore let us assume that $\mathrm{x}_{2}=0$
Now ${ }^{\alpha} A^{\alpha} \mathrm{X}={ }^{\alpha} \mathrm{C}$
i. e. $\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]\left[\mathrm{x}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$

As $c_{2}=0$, we have only two cases given below:
i) Suppose A>0
$\left[\mathrm{a}_{2}{ }^{\alpha} \mathrm{x}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha} \mathrm{x}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Therefore, $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\alpha}$
Then $\dot{\mathrm{X}}_{1}^{\alpha}=\frac{1}{\left(a_{2}^{\alpha}\right)^{2}} \quad\left[\mathrm{a}_{2}{ }^{\alpha} \dot{\mathrm{c}}_{1}{ }^{\alpha}-\mathrm{c}_{1}{ }^{\alpha} \dot{\mathbf{a}}_{2}{ }^{\alpha}\right]$
Now $\mathrm{a}_{2}{ }^{\alpha} \dot{\mathrm{c}}_{1}{ }^{\alpha}-\mathrm{c}_{1}{ }^{\alpha} \dot{\mathrm{a}}_{2}{ }^{\alpha}=\mathrm{a}_{2}{ }^{\alpha}\left(\mathrm{c}_{2}-\mathrm{c}_{1}\right)-\mathrm{c}_{1}{ }^{\alpha}\left(\mathrm{a}_{2}-\mathrm{a}_{3}\right)$
$=\left[a_{3}+\alpha\left(a_{2}-a_{3}\right)\right]\left(c_{2}-c_{1}\right)-\left[c_{1}+\alpha\left(c_{2}-c_{1}\right)\right]\left(a_{2}-a_{3}\right)$
$=a_{3}\left(c_{2}-c_{1}\right)-c_{1}\left(a_{2}-a_{3}\right)$
$=a_{3} c_{2}-c_{1} a_{2}$
$=a_{3}(0)-c_{1}\left(a_{2}\right)$
$=-c_{1} a_{2}>0$ as $c_{1}<0$
Therefore, $\dot{x}_{1}^{\alpha}>0$
Now $\dot{x}_{2}^{\alpha}=\left(1 / a_{2}\right)^{2}\left(a_{2}^{\alpha} \dot{c}_{2}^{\alpha}-c_{1}^{\alpha} \dot{a}_{2}^{\alpha}\right)$

But $\mathrm{a}_{2}{ }^{\alpha} \dot{c}_{1}{ }^{\alpha}-\dot{c}_{1}{ }^{\alpha} \mathrm{a}_{2}{ }^{\alpha}=\mathrm{a}_{2} \alpha\left(\mathrm{c}_{2}-\mathrm{c}_{3}\right)-\mathrm{c}_{2}{ }^{\alpha}\left(\mathrm{a}_{2}-\mathrm{a}_{3}\right)$
$=\left[a_{3}+\alpha\left(a_{2}-a_{3} 门\right]\left(c_{2}-c_{3}\right)-\left[c_{3}+\alpha\left(c_{2}-c_{3}\right)\right]\left(a_{2}-a_{3}\right)\right.$
$=a_{3}\left(c_{2}-c_{3}\right)-c_{3}-\left(a_{2}-a_{3}\right)$
$=a_{3} c_{2}-c_{3} a_{2}$
$=a_{3}(0)-c_{3} a_{2}$
$=-c_{3} a_{2}<0$.
Therefore ${ }^{\mathrm{x}_{2}}{ }^{\alpha}<0$.
ii) Suppose $A<0$
$\left[\mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{2}{ }^{\alpha}, \mathrm{a}_{1}{ }^{\alpha} \mathrm{x}_{1}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Then $\mathrm{x}_{1}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha} / \mathrm{a}_{1}{ }^{\alpha}, \mathrm{x}_{2}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha} / \mathrm{a}_{1}{ }^{\alpha}$
Thus, $\dot{x}_{1}{ }^{\alpha}=\left(1 / a_{1}{ }^{\alpha}\right)^{2}\left[a_{1}{ }^{\alpha} \dot{c}_{2}^{\alpha}-c_{2}^{\alpha} \dot{a}_{1}^{\alpha}\right]$
But $a_{1}{ }^{\alpha} \dot{c}_{2}^{\alpha}-c_{2}{ }^{\alpha} \dot{a}_{1}^{\alpha}=a_{1}^{\alpha}\left(c_{2}-c_{3}\right)-c_{2}^{\alpha}\left(a_{2}-a_{1}\right)$
$=\left[a_{1}+\alpha\left(a_{2}-a_{1}\right)\right]\left(c_{2}-c_{3}\right)-\left[c_{3}+\alpha\left(c_{2}-c_{3}\right)\right]\left(a_{2}-a_{1}\right)$
$=a_{1}\left(c_{2}-c_{3}\right)-c_{3}\left(a_{2}-a_{1}\right)$
$=a_{1} c_{2}-c_{3} a_{2}$
$=a_{1}(0)-c_{3} a_{2}$
$=-\mathrm{c}_{3} \mathrm{a}_{2}>0$
Therefore, $\mathrm{x}_{1}{ }^{\alpha}>0$
Similarly $\mathrm{X}_{2}{ }^{\alpha}<0$.

Now we will discuss fuzzy quadratic equations. Here onwards we assume that $0 \notin$ support of A. i. e. either $A>0$ or $A<0$.

Theorem 5.4.8 $\left[B_{1}\right]$: Fuzzy numbers $X_{1} \geq 0$ and $X_{2}=-X_{1}$ are solutions of $A X^{2}=C$ if and only if
i) $\mathrm{a}_{1} \mathrm{c}_{2}>\mathrm{c}_{1} \mathrm{a}_{2}$ and $\mathrm{a}_{3} \mathrm{c}_{2}<\mathrm{c}_{3} \mathrm{a}_{2}$, when $\mathrm{A}>0, \mathrm{C} \geq 0$
ii) $a_{1} c_{2}<c_{1} a_{2}$ and $a_{3} c_{2}>c_{3} a_{2}$, when $A<0, C \leq 0$.

Proof: Set $U=X^{2}$. Then $U \geq 0$ and $A U=C$.
Let $X_{1}=\sqrt{ } U>0$ and $X_{2}=-\sqrt{ } U<0$
Now ${ }^{\alpha}(\mathrm{AU})={ }^{\alpha} \mathrm{C}$
i. e. ${ }^{\alpha} A^{\alpha} U={ }^{\alpha} C$
$\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right]\left[\mathrm{u}_{1}{ }^{\alpha}, \mathrm{u}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$, where ${ }^{\alpha} \mathrm{A}=\left[\mathrm{a}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha}\right],{ }^{\alpha} \mathrm{U}=\left[\mathrm{u}_{1}{ }^{\alpha}, \mathrm{u}_{2}{ }^{\alpha}\right],{ }^{\alpha} \mathrm{C}=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
are $\alpha-$ cuts of A, U and C respectively.
i) Suppose A>0

Now $\left[\mathrm{a}_{1}{ }^{\alpha} \mathrm{u}_{1}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha} \mathrm{u}_{2}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Thus, $\mathrm{u}_{1}{ }^{\alpha}=\mathrm{c}_{1}{ }^{\alpha} / \mathrm{a}^{\alpha}{ }^{\alpha}, \mathrm{u}_{2}{ }^{\alpha}=\mathrm{c}_{2}{ }^{\alpha} / \mathrm{a}_{2}{ }^{\alpha}$
Then there exist solutions iff $\dot{u}_{1}^{\alpha}>0$ and $\dot{u}_{2}{ }^{\alpha}<0$
iff $\mathrm{a}_{1}{ }^{\alpha} \dot{c}_{1}^{\alpha}>\mathrm{c}_{1}{ }^{\alpha} \dot{a}_{1}{ }^{\alpha}$ and $\mathrm{a}_{2}{ }^{\alpha}{ }^{\alpha} \dot{c}_{2}{ }^{\alpha}<\mathrm{c}_{2}{ }^{\alpha} \stackrel{\rightharpoonup}{\mathrm{a}}_{2}^{\alpha}$
iff $a_{1}{ }^{\alpha}\left(c_{2}-c_{1}\right)>c_{1}{ }^{\alpha}\left(a_{2}-a_{1}\right)$ and $a_{2}{ }^{\alpha}\left(c_{2}-c_{3}\right)<c_{2}{ }^{\alpha}\left(a_{2}-a_{3}\right)$
iff $\left[a_{1}+\alpha\left(a_{2}-a_{1}\right)\right]\left(c_{2}-c_{1}\right)>\left[c_{1}+\alpha\left(c_{2}-c_{1}\right)\right]\left(a_{2}-a_{1}\right)$ and
$\left[\mathrm{a}_{3}-\alpha\left(\mathrm{a}_{2}-\mathrm{a}_{3}\right)\right]\left(\mathrm{c}_{2}-\mathrm{c}_{3}\right)<\left[\mathrm{c}_{3}+\alpha\left(\mathrm{c}_{2}-\mathrm{c}_{3}\right)\right]\left(\mathrm{a}_{2}-\mathrm{a}_{3}\right)$
iff $a_{1} c_{2}>c_{1} a_{2}$ and $a_{3} c_{2}<c_{3} a_{2}$. and $a_{3}\left(c_{2}-c_{3}\right)<c_{3}\left(a_{2}-a_{3}\right)$
iff $a_{1} c_{2}>c_{1} a_{2}$ and $a_{3} c_{2}<c_{3} a_{2}$
ii) Suppose A $<0, C \leq 0$
$\operatorname{Now}\left[\mathrm{a}_{1}{ }^{\alpha} \mathrm{u}_{2}{ }^{\alpha}, \mathrm{a}_{2}{ }^{\alpha} \mathrm{u}_{1}{ }^{\alpha}\right]=\left[\mathrm{c}_{1}{ }^{\alpha}, \mathrm{c}_{2}{ }^{\alpha}\right]$
Then $u_{1}{ }^{\alpha}=c_{2}{ }^{\alpha} / a_{2}{ }^{\alpha}, u_{2}{ }^{\alpha}=c_{1}{ }^{\alpha} / a_{1}{ }^{\alpha}$
Therefore, there exists a solution iff $\dot{u}_{1}{ }^{\alpha}>0$ and $\dot{u}_{2}^{\alpha}<0$.
iff $\mathrm{a}_{2}{ }^{\alpha}{ }_{2}{ }^{\alpha}>\mathrm{c}_{2}{ }^{\alpha} \dot{\mathrm{a}}_{2}{ }^{\alpha}$ and $\mathrm{a}_{1}{ }^{\alpha}{ }^{\boldsymbol{\alpha}}{ }^{\alpha}{ }^{\alpha}<\mathrm{c}_{1}{ }^{\alpha} \dot{a}_{1}{ }^{\alpha}$
iff $a_{2}{ }^{\alpha}\left(c_{2}-c_{3}\right)>c_{2}{ }^{\alpha}\left(a_{2}-a_{3}\right)$ and $a_{1}{ }^{\alpha}\left(c_{2}-c_{1}\right)<c_{1}{ }^{\alpha}\left(a_{2}-a_{1}\right)$
iff $\left[a_{3}+\alpha\left(a_{2}-a_{3}\right)\right]\left(c_{2}-c_{3}\right)>\left[c_{3}+\alpha\left(c_{2}-c_{3}\right)\right]\left(a_{2}-a_{3}\right)$ and
$\left[a_{1}+\alpha\left(a_{2}-a_{1}\right)\right]\left(c_{2}-c_{1}\right)<\left[c_{1}+\alpha\left(c_{2}-c_{1}\right)\right]\left(a_{2}-a_{1}\right)$
iff $a_{3}\left(c_{2}-c_{3}\right)>c_{3}\left(a_{2}-a_{3}\right)$ and $a_{1}\left(c_{2}-c_{1}\right)<c_{1}\left(a_{2}-a_{1}\right)$
iff $a_{3} c_{2}>c_{3} a_{2}$ and $a_{1} c_{2}<c_{1} a_{2}$

5.5 EQUATIONS OF FUZZY COMPLEX NUMBERS

Throughout this section \forall stands for a set complex numbers.

Definition 5.5.1 $\left[B_{1}, B_{2}, B_{3}, B_{4}\right]$: A fuzzy set $X: \forall \rightarrow I$ is called a complex fuzzy number, if
i) X is continuous
ii) ${ }^{\alpha} \mathrm{X}=\{\mathrm{z} \in \forall \mid \mathrm{X}(\mathrm{z})>\alpha\}$, for $0 \leq \alpha<1$ is open, bounded, connected and simply connected, for all $0 \leq \alpha<1$
iii) ${ }^{1} \mathrm{X}=\{\mathrm{z} \in \forall \mid \mathrm{X}(\mathrm{z})=1\}$ is non-empty, compact, arc wise connected and simply connected

Definition 5.5.2 $\left[B_{1}, B_{2}\right]$: Let X_{1} and X_{2} be real fuzzy numbers. Define a fuzzy set $X: \forall \rightarrow I$ by $X(z)=\min \left\{X_{1}(x), X_{2}(y)\right\}$, where $z=x+i y$. Then X is a complex fuzzy number which we shall denote as $\mathrm{X}=\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}$ and call it a rectangular complex fuzzy number.

If A and B are crisp sets, then $A+i B=\{x+i y \mid x \in A, y \in B\}$.

Theorem 5.5.3 $\left[B_{1}, B_{2}\right]$: If X and Y are rectangular complex fuzzy numbers, then
i) ${ }^{\alpha} \mathrm{X}={ }^{\alpha} \mathrm{X}_{1}+\mathrm{i}^{\alpha} \mathrm{X}_{2}$
ii) $X+Y=\left(X_{1}+Y_{1}\right)+i\left(X_{2}+Y_{2}\right)$
iii) ${ }^{\alpha}(X+Y)=\left({ }^{\alpha} X_{1}+{ }^{\alpha} Y_{1}\right)+i\left({ }^{\alpha} X_{2}+{ }^{\alpha} Y_{2}\right)$

Proof: Let $\mathrm{X}=\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}$ and $\mathrm{Y}=\mathrm{Y}_{1}+\mathrm{i} \mathrm{Y}_{2}$ be rectangular complex fuzzy number. Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}, \mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{i} \mathrm{y}_{1}$ and $\mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{i} \mathrm{y}_{2}$ be complex numbers.
i) $z \in{ }^{\alpha} X \Leftrightarrow X(z)>\alpha$
$\Leftrightarrow \min \left\{\mathrm{X}_{1}(\mathrm{x}), \mathrm{X}_{2}(\mathrm{y})\right\}>\alpha$
$\Leftrightarrow \mathrm{X}_{1}(\mathrm{x})>\alpha$ and $\left.\mathrm{X}_{2}(\mathrm{y})\right\}>\alpha$
$\Leftrightarrow x \in{ }^{\alpha} X_{1}$ and $y \in{ }^{\alpha} X_{2}$
$\Leftrightarrow \mathrm{z}=\mathrm{x}+\mathrm{iy}=^{\alpha} \mathrm{X}_{1}+\mathrm{i}^{\alpha}\left(\mathrm{X}_{2}\right)$
Hence, ${ }^{\alpha} X={ }^{c} X_{1}+i^{\alpha}\left(X_{2}\right)$
ii) $\mathrm{X}+\mathrm{Y}(\mathrm{z})=\sup \quad\left\{\min \left\{\mathrm{X}\left(\mathrm{z}_{1}\right), \mathrm{Y}\left(\mathrm{z}_{2}\right)\right\}\right\}$ $z=z_{1}+z_{2}$
$=\sup \left\{\min \left\{\min \left\{\mathrm{X}_{1}\left(\mathrm{x}_{1}\right), \mathrm{X}_{2}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mathrm{Y}_{1}\left(\mathrm{x}_{2}\right), \mathrm{Y}_{2}\left(\mathrm{y}_{2}\right)\right\}\right\}\right.$ $z=z_{1}+z_{2}$
$=\min \left\{\sup \left\{\min \left\{\mathrm{X}_{1}\left(\mathrm{x}_{1}\right), \mathrm{X}_{2}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mathrm{Y}_{1}\left(\mathrm{x}_{2}\right), \mathrm{Y}_{2}\left(\mathrm{y}_{2}\right)\right\}\right\}\right.$ $z=z_{1}+z_{2}$
$=\min \left\{\sup \left\{\min \left\{\mathrm{X}_{1}\left(\mathrm{x}_{1}\right), \mathrm{Y}_{1}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mathrm{X}_{2}\left(\mathrm{y}_{1}\right), \mathrm{Y}_{2}\left(\mathrm{y}_{2}\right)\right\}\right\}\right.$ $z=z_{1}+z_{2}$
$=\min \left\{\sup _{x=\mathrm{x}_{1}+\mathrm{x}_{2}}\left\{\min \left\{\mathrm{X}_{1}\left(\mathrm{x}_{1}\right), \mathrm{Y}_{1}\left(\mathrm{x}_{2}\right)\right\}\right\}, \quad \sup _{\mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}}\left\{\min \left\{\mathrm{X}_{2}\left(\mathrm{y}_{1}\right), \mathrm{Y}_{2}\left(\mathrm{y}_{2}\right)\right\}\right\}\right\}$
$=\min \left\{\mathrm{X}_{1}+\mathrm{Y}_{1}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right), \mathrm{X}_{2}+\mathrm{Y}_{2}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)\right\}$
$=\min \left\{X_{1}+Y_{1}(x), X_{2}+Y_{2}(y)\right\}$
$=\left(\mathrm{X}_{1}+\mathrm{Y}_{1}\right)+\mathrm{i}\left(\mathrm{X}_{2}+\mathrm{Y}_{2}\right)(\mathrm{z})$
iii) $z \in{ }^{\alpha}(X+Y) \Leftrightarrow X+Y(z)>\alpha$
$\Leftrightarrow \min \left\{X_{1}+Y_{1}(x), X_{2}+Y_{2}(y)\right\}>\alpha$
$\Leftrightarrow X_{1}+Y_{1}(x)>\alpha$ and $X_{2}+Y_{2}(y)>\alpha$
$\Leftrightarrow x \in{ }^{\alpha}\left(X_{1}+Y_{1}\right)$ and $y \in{ }^{\alpha}\left(X_{2}+Y_{2}\right)$
$\Leftrightarrow x \in\left({ }^{\alpha} X_{1}+{ }^{\alpha} Y_{1}\right)$ and $y \in\left({ }^{\alpha} X_{2}+{ }^{\alpha} Y_{2}\right)$
$\Leftrightarrow \mathrm{z}=\mathrm{x}+\mathrm{iy} \in\left({ }^{\alpha} \mathrm{X}_{1}+{ }^{\alpha} \mathrm{Y}_{1}\right)+\mathrm{i}\left({ }^{\alpha} \mathrm{X}_{2}+{ }^{\alpha} \mathrm{Y}_{2}\right)$

Definition 5.5.4 $\left[\mathrm{B}_{1}\right]$: Let R and θ be real fuzzy numbers. Then a fuzzy set $\mathrm{X}: \forall \rightarrow \mathrm{I}$ defined by $X\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\min \{\mathrm{R}(\mathrm{r}), \theta(\theta)\}$ is a complex fuzzy number. We shall denote $X=X=R e^{i f}$ and call it a polar complex fuzzy number.

Theorem 5.5.5 $\left[B_{1}\right]$: If X and Y are polar complex fuzzy numbers. Then
i) ${ }^{\alpha} X={ }^{\alpha} R_{x} e^{i(\beta x)}$
ii) $X Y=\left(R_{x} R_{y}\right) e^{i(\theta x+\theta y)}$
iii) ${ }^{a}(X Y)=\left({ }^{\alpha} R_{x}{ }^{\alpha} R_{y}\right) e^{\left.i i^{\alpha} \theta x+{ }^{\alpha} \theta y\right)}$

Proof: Let $X=R_{x} e^{i \theta x}, Y=R_{y} e^{i \theta y}, z=r e^{i \theta}, z_{1}=r_{1} e^{i \theta 1}$ and $z_{2}=r_{2} e^{i \theta 2}$.
i) $z \in{ }^{\alpha} X \Leftrightarrow X(z)>\alpha$
$\Leftrightarrow \min \left\{\mathrm{R}_{\mathrm{x}}(\mathrm{r}), \theta_{\mathrm{x}}(\theta)\right\}>\alpha$
$\Leftrightarrow \mathrm{R}_{\mathrm{x}}(\mathrm{r})>\alpha$ and $\theta_{\mathrm{x}}(\theta)>\alpha$
$\Leftrightarrow \mathrm{r} \in{ }^{\alpha} \mathrm{R}_{\mathrm{x}}$ and $\theta \in{ }^{\alpha} \theta_{\mathrm{x}}$
$\Leftrightarrow z=r e^{i \theta} \in{ }^{\alpha} R_{x} e^{i\left(\sigma_{\theta x}\right)}$
ii) $\mathrm{XY}(\mathrm{z})=\sup _{\mathrm{z}=\mathrm{z}_{1} \mathrm{z}_{2}}\left\{\min \left\{\mathrm{X}\left(\mathrm{z}_{1}\right), \mathrm{Y}\left(\mathrm{z}_{2}\right)\right\}\right\}$
$=\sup _{\mathrm{z}=\mathrm{z}_{1} \mathrm{Z}_{2}}\left\{\min \left\{\min \left\{\mathrm{R}_{\mathrm{x}}\left(\mathrm{r}_{1}\right), \theta_{\mathrm{x}}\left(\theta_{1}\right)\right\},\left\{\min \left\{\mathrm{R}_{\mathrm{y}}\left(\mathrm{r}_{2}\right), \theta_{\mathrm{y}}\left(\theta_{2}\right)\right\}\right\}\right.\right.$

```
\(=\min \left\{\sup _{\mathrm{z}=\mathrm{z}_{1} \mathrm{z}_{2}}\left\{\min \left\{\mathrm{R}_{x}\left(\mathrm{r}_{1}\right), \theta_{x}\left(\theta_{1}\right)\right\}, \min \left\{\mathrm{R}_{\mathrm{y}}\left(\mathrm{r}_{2}\right), \theta_{y}\left(\theta_{2}\right)\right\}\right\}\right\}\)
\(=\min \left\{\sup \quad\left\{\min \left\{\mathrm{R}_{\mathrm{x}}\left(\mathrm{r}_{1}\right), \mathrm{R}_{\mathrm{y}}\left(\mathrm{r}_{2}\right)\right\}, \quad \sup \quad\left\{\min \left\{\theta_{\mathrm{x}}\left(\theta_{1}\right), \theta_{\mathrm{y}}\left(\theta_{2}\right)\right\}\right\}\right\}\right.\)
        \(\mathbf{r}=\mathrm{r}_{1} \mathrm{r}_{2} \quad \theta=\theta_{1}+\theta_{2}\)
\(=\min \left\{\mathrm{R}_{\mathrm{x}} \mathrm{R}_{y}\left(\mathrm{r}_{1} \mathrm{r}_{2}\right), \theta_{x}+\theta_{y}(\theta)\right\}\)
\(=\left(R_{x} R_{y}\right) e^{i(\theta x+\theta y)}\left(r e^{i \theta}\right)\)
    iii) \(\mathrm{z} \in{ }^{\alpha}(\mathrm{XY}) \Leftrightarrow \in \mathrm{XY}(\mathrm{z})>\alpha\)
    \(\Leftrightarrow\left(R_{x} R_{y}\right) e^{i(\theta x+\theta y)}>\alpha\)
    \(\Leftrightarrow \min \left\{R_{x} R_{y}(r), \theta_{x}+\theta_{y}(\theta)\right\}>\alpha\)
    \(\Leftrightarrow \mathrm{R}_{\mathrm{x}} \mathrm{R}_{\mathrm{y}}(\mathrm{r})>\alpha\) and \(\theta_{\mathrm{x}}+\theta_{\mathrm{y}}(\theta)>\alpha\)
    \(\Leftrightarrow r \in{ }^{\alpha}\left(R_{x} R_{y}\right)\) and \(\theta \in{ }^{\alpha}\left(\theta_{x}+\theta_{y}\right)\)
```


A fuzzy complex number X is neither rectangular complex fuzzy number nor polar complex fuzzy number, if the equation contains both multiplication and addition.

If the equation contains only additions and/or subtractions and all parameters are rectangular complex fuzzy numbers, then X is also a rectangular complex fuzzy number.

If the equation only multiplication and all the parameters are polar complex fuzzy numbers, then X is also a complex fuzzy numbers.

Theorem 5.5.6 $\left[\mathrm{B}_{1}\right]$: If $\mathrm{A}+\mathrm{X}=\mathrm{C}$ is fuzzy equation where A, C are rectangular complex fuzzy numbers and X is a complex fuzzy numbers, then $A_{i}+X_{i}=C_{i}, i=1,2$.

Proof: Let $\mathrm{A}=\mathrm{A}_{1}+\mathrm{iA}_{2}, \mathrm{C}=\mathrm{C}_{1}+\mathrm{iC}_{2}$ and $\mathrm{X}=\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}$.

Then $\mathrm{A}+\mathrm{X}=\mathrm{C}$ gives $\left(\mathrm{A}_{1}+\mathrm{iA}_{2}\right)+\left(\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}\right)=\mathrm{C}_{1}+\mathrm{iC}_{2}$

Therefore, $\left(\mathrm{A}_{1}+\mathrm{X}_{1}\right)+\mathrm{i}\left(\mathrm{A}_{2}+\mathrm{X}_{2}\right)=\mathrm{C}_{1}+\mathrm{iC}_{2}$

Thus, $A_{1}+X_{1}=C_{1}$ and $A_{2}+X_{2}=C_{2}$

Theorem 5.5.7 $\left[\mathrm{B}_{1}\right]$: Let A and C be rectangular complex fuzzy numbers. Then the equation $\mathrm{A}+\mathrm{X}=\mathrm{C}$ has a solution X , a rectangular complex fuzzy numbers iff the equation $A_{i}+X_{i}=C_{i}$ have solution $X_{i}, i=1,2$.

Proof: Let $\mathrm{A}=\mathrm{A}_{1}+\mathrm{iA}_{2}, \mathrm{C}=\mathrm{C}_{1}+\mathrm{iC}_{2}$ and $\mathrm{X}=\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}$.

Suppose $\mathrm{A}+\mathrm{X}=\mathrm{C}$ has a solution X , which is a rectangular complex fuzzy number.

Since $\mathrm{A}+\mathrm{X}=\mathrm{C} .\left(\mathrm{A}_{1}+\mathrm{iA}_{2}\right)+\left(\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}\right)=\mathrm{C}_{1}+\mathrm{iC}_{2}$

Therefore, $\left(\mathrm{A}_{1}+\mathrm{X}_{1}\right)+\mathrm{i}\left(\mathrm{A}_{2}+\mathrm{X}_{2}\right)=\mathrm{C}_{1}+\mathrm{iC}_{2}$

Thus, $\mathrm{A}_{1}+\mathrm{X}_{1}=\mathrm{C}_{1}$ and $\mathrm{A}_{2}+\mathrm{X}_{2}=\mathrm{C}_{2}$

Conversely suppose $X i$ is a solution of $A_{i}+X_{i}=C_{i}, i=1,2$

Therefore, $\mathrm{A}_{1}+\mathrm{X}_{1}=\mathrm{C}_{1}$ and $\mathrm{A}_{2}+\mathrm{X}_{2}=\mathrm{C}_{2}$

Thus $\mathrm{A}+\mathrm{X}=\left(\mathrm{A}_{1}+\mathrm{iA}_{2}\right)+\left(\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}\right)=\left(\mathrm{A}_{1}+\mathrm{X}_{1}\right)+\mathrm{i}\left(\mathrm{A}_{2}+\mathrm{X}_{2}\right)=\mathrm{C}_{1}+\mathrm{iC}_{2}=\mathrm{C}$

Hence, X is solution of $A+X=C$.

Theorem 5.5.8 $\left[\mathrm{B}_{1}\right]$: If $\mathrm{AX}=\mathrm{C}$ is a fuzzy equation, where A and C are polar complex fuzzy numbers and X is a complex fuzzy number, then $R_{a} R_{x}=R_{c}$ and $\theta_{a}+\theta_{x}=\theta_{c}$.

Proof: Let $A=R_{a} e^{i \theta a}, C=R_{c} e^{i \theta c}$ and $X=R_{x} e^{i \theta x}$.

Then $A X=C$ gives $R_{a} e^{i \theta a} R_{x} e^{i \theta x}=R_{c} e^{i \theta c}$

Therefore, $R_{a} R_{x} e^{i(\theta a+\theta x)}=R_{c} e^{i \theta c}$

Hence, $\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{x}}=\mathrm{R}_{\mathrm{c}}$ and $\theta_{\mathrm{a}}+\theta_{\mathrm{x}}=\theta_{\mathrm{c}}$.

Theorem 5.5.9 $\left[\mathrm{B}_{1}\right]$: The equation $\mathrm{AX}=\mathrm{C}$ has a solution X , a polar complex fuzzy number if and only if
i) $\quad R_{a} R_{x}=R_{c}$ has a solution for R_{x}
ii) $\quad \theta_{\mathrm{a}}+\theta_{\mathrm{x}}=\theta_{\mathrm{c}}$ has a solution for θ_{x}.

Proof: Let $A=R_{a} e^{i \theta a}, C=R_{c} e^{i \theta c}$ and $X=R_{x} e^{i \theta x}$.

Suppose the equation $\mathrm{AX}=\mathrm{C}$ has a solution X , a polar complex fuzzy number.

Taking α-cuts of both sides ${ }^{\alpha}(\mathrm{AX})={ }^{\alpha} \mathrm{C}$
i. e. ${ }^{\alpha} \mathrm{A}^{\alpha} \mathrm{X}={ }^{\alpha} \mathrm{C}$

Thus ${ }^{\alpha}\left(R_{a} e^{i \theta a}\right){ }^{\alpha}\left(R_{x} e^{i \theta x}\right)={ }^{\alpha}\left(R_{c} e^{i \theta c}\right)$
Therefore, ${ }^{\alpha}\left(R_{a} R_{x}\right) e^{i^{\alpha}(\theta a+\theta x)}={ }^{\alpha} R_{c} e^{i^{\alpha} \theta_{c}}$

Thus, ${ }^{\alpha}\left(R_{a} R_{x}\right)={ }^{\alpha} R_{c}$ and ${ }^{\alpha}\left(\theta_{a}+\theta_{x}\right)={ }^{\alpha}\left(\theta_{c}\right)$

Hence, $\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{x}}=\mathrm{R}_{\mathrm{c}}$ and $\theta_{\mathrm{a}}+\theta_{\mathrm{x}}=\theta_{\mathrm{c}}$.

Conversely $\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{x}}=\mathrm{R}_{\mathrm{c}}$ and $\theta_{\mathrm{a}}+\theta_{\mathrm{x}}=\theta_{\mathrm{c}}$.

Then $A X=R_{a} e^{i \theta a} R_{x} e^{i \theta x}=R_{a} R_{x} e^{i(() a+0 x)}=R_{c} e^{i \theta c}=C$

Hence X is solution of $\mathrm{AX}=\mathrm{C}$.

