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CHAPTER 2 FUZZY RELATION EQUATIONS ON CRISP SETS

In this chapter we discuss fuzzy relations and study two types of equations
relating to fuzzy relations. We discuss some standard methods to solve these

equations.

2.1 FUZZY RELATIONS

Definition 2.1.1 [K,]: A relation on crisp sets X, Xa, ..., Xn is a subset of the cartesian
product X;x Xz x ... x X,

It is denoted by R (Xj, X, ... , Xp) or R(X;|1=1,2, ..., n).

Definition 2.1.2 [F, K;]: Let X and Y be two crisp sets. A functionR: X xY — 1 is

called a fuzzy binary relation or fuzzy relation from X to Y.

We shall denote the fuzzy relation R from X to Y by R(X, Y).

Definition 2.1.3 [K;]: Let R(X, Y) be a fuzzy relation. The inverse of R, is a fuzzy

relation R™ (Y, X) defined by R (y, x) =R(x,y), Vy e Y,x € X.

A fuzzy relation on finite sets can be represented by a matrix.
Definition 2.1.4 [K;] :Let X = {x1, X2, ... , X} and Y = {y1, ¥2, ... , yn} be the crisp
sets and R(X, Y) be a fuzzy relation. Then the matrix M(R) = [R(X;, ¥j)] m « n is called

the matrix of R.
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Obviously M (R™) = (M(R))", where AT denotes the transpose of A.

2.2 COMPOSITIONS OF FUZZY RELATIONS

Definition 2.2.1 [K;]: Let P(X, Y) and Q(Y, Z) be two fuzzy relations. Then the

composition of P and Q is a fuzzy relation P o Q(X, Z), which is defined as follows:

PoQ(x,2)= Sup {min (P(xy), Ay, 2)|y € Y}V (x,2) € Xx Z.

When Y is finite set the supremum is replaced by maximum and the composition

is known as max-min composition.

This composition can be generalized by replacing min by any t-norm.
Definition 2.2.2 [K5]: Let T be a t-norm and P(X, Y) and Q(Y, Z) be two fuzzy
relations., Then the sup-T composition of P and Q is a fuzzy relation P or Q(X, Z),
which is defined as follows:

P or Q (x, 2) = sup{T(P(x, y), Ay, 2) |y € Y}, V (x,2) € X x Z,

Theorem 2.2.3 [K>]: Let P(X, Y), P (X, Y), Q(Y, Z), Q; (Y, Z) and R(Z, V) be fuzzy

relations, where j takes the values in the index set J. Then
) PTQTR =P7T QTR

@ PHUQ= u@tQ
J J

(i) PT(NQ) € N (P T Q)
J J

V) (UP) $Q = UPTQ)
J J
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(v) (fjpj)'(}Q c N P T Q
] J

(vi) (P § Q7 = Q" } P
(vilQic Q=P TQcP $Qand Qi TRc QT R.

Proof: (i) [(PTQ) TRl (x, v) = sup T(P T Q) (x, ), R(z, V)]
zeZ

i

sup {T( sup {T(P(x, y), Q(¥, 2))}, R(z, V))}
zeZ ye¥Y

= sup { T(T(P(x,y), Qy, 2)), R(z, v))}
veY,zeZ

= sup {T(P(x,y), sup { T(Q(y, 2), R(z v))})}
veY zeZ

= sup {T(P(xy) QTR) (v, V)}
veY

= PT@QTR(xV)
Thus, (P $Q) TR = PT(Q TR)

(@ PF( Q) x2)
J

= sup {T(P(xy), (v Q) 2)}
veyY j

= sup { T(P(x,y), sup Q; (¥, 2)}
veyY j

= sup sup {T(P(x,y), Q(y,2)}
yeyY ]

= sup sup {T(P(x,y), Qi(y, 2)}
j vyey

= sup(P TQ)(x72)
J

= U(P'(])'Q)) (X, Z)
J



Thus, P T(LQ) = U (P TQ)

J J

(i) PF (N Q) (x2)

i

IA

J

sup { T(P(x, y), (" Q) (v, 2))}
yey i

sup { T(P(x,y), inf Q;(y, 2))}
yeyY j

sup inf { T (P(x,y), Qi (¥, 2))}
yeyY j

inf sup { T(P(X,y), Q;(¥,2))}
j veY

inf (P § Q) (x2)
J

NPT QX
J

Thus,P (W Q) c n (P T Q)

J J

(v) (v P)TQ(x 2)

i

sup {T((v P)(x,y),Q,2)}
yeY j

sup { T ( sup P;j(x,¥), Qy, 2)}
yeY j

sup sup { T(P;(x,y), Qly, 2))}
] yeY

sup (P T Q) (x,2)
j

VBT Q 2
J

Thus, U (P, TQ) = v (P TQ)

J J
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™ "P) T Q2

1]

sup {T ((" Py (x, y), Qy, 2))}
yeyY

= sup { T ( inf Pj (X, Y)’ Q(ya Z))}
yeyY j

< sup inf { T (P;(x,y), Qy, 2))}
yeY j

IA

inf sup { T(Pj (X, y): Q(ya Z))}
j yeY

= inf (P TQ (2
j

= AR TQ K2
J

Thus, (" P) TQ € n(P; TQ)
j j

V) P TQzx) = (PTQ (2

= sup { T(P(x,y), Q(y, 2))}
yey

= sup {T(P"(y,x),Qzy))
yeY

= sup {T(Q'(z7Y), Py, x)}
yeyY

= Q1PN (=x
Thus, P TQ)" = Q" TP
(vii) Let Q1 € Q2
Then Qi(y, 2) < Qafy, 2)
= TP y), U, 2) < TP Y), Qxy, 2)

= sup T(P(X,y), Qy, 2) < sup T(P(x,y), Quy, 2))
yeyY yeY

= PTQ(x2) < (PTQ)(x2)

16
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= PTQic PTQy

similary Qi TR c Q2T R

Definition 2.2.4 [K;]: Let T be a continuous t-norm and P(X, Y), Q(Y, Z) be fuzzy
relations. Then inf- wr composition of P and Q is a fuzzy relation P oy, Q(X, Z)
defined as follows:

(P oy, Q) (x,2) = inf {wr(P(x,y), Q. 2)| y € Y},V (x, D) e X x Z

Theorem 2.2.5 [K;]: Let P(X, Y), Q(Y, Z) and R(X, Z) be fuzzy relations. Then
following are equivalent.

) PTQCR

(i) Q<P ™oy R

(iii) P < (Q oy, R’

Proof (i) = (ii)

SincePTQ < R, (PTQ) (x,2) <R(x, 2)

Then, T[P(x, ¥), Q(y, 2)] <R(x, z)

Therefore, wr [P(X, y), R(x, z) = Q(y, z)

Thus, inf wr [P™(y, %), R(%, 2)] > Q(y, 2)
xeX

Hence, (P ows R) (v, 2) 2 Q(y, 2)

. -1
.e.QcP OWTR

(i) = (i)

-1
LetQcP "WTR‘

Then Q(y, z) < inf wr [P™(y, x), R(x, 2)]
xeX



Thus, Q(y, 2) < wr [P (%, ¥) R(x, 2)]
Therefore, T[P(x, ¥), Q(y, )] <R(x, 2)

Thus, sup T[P(x,y), Qv,2)] < R(x, 2)
yeyY

Hence, (P T Q) (x, ) <R(x, 2)
ie.PTQc R
() = (iid)

sup T[P(x,y), Qy, 2)] < R(x,2)
veY

Thus, T[P(x, y), Q(y, 2)] <R(x, 2)
i. e. T[Q(y, 2), P(x, y)] <R(x, 2)
Therefore, wi{Q(y, z), R(x, 2)] = P(x, y)

Hence, inf wrlQ(y, 2), R'(z, x)] 2 P(x, y)
zeZ

Thus, Q oy, R'(y, X) 2 P(x, y)

0. (Q owy RY! (x,y) 2P, y)
Hence, P € (Q oy, RY?

(i) = (i)

P(x,y) < (Q oy, R (x,9)
ie. P(xy) < (Q oy, R (1,%

Therefore, P(x,y) < inf wi(Q(y, 2), R (z x)]
zel

Thus, P(x,y) < wi(Q(y, 2), R™ (z, ¥)]
Therefore, T[Q(y, z), P(x,y)] <R7(z, x)

Hence, sup T[Q(y, 2), P(x,y)] <R (z,x)
yeY

18
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i.e. sup T[P(x,y), Q(y,2)] <R (x,2)
yeY

Thus, P 1Q (x,2) < R(x, 2)

Hence, PTQ c R.

Theorem 2.2.6 [K,]: Let P(X, Y), Pi(X,Y ), Q(Y, Z) and Qj(Y, Z) be fuzzy relations
where j takes values in an index set J. Then

@ (}J P;) %\;9 =0 ®; 3VTQ)
(ii) (? 1)) %VTQ =Y (Pjv;T Q
(iii) P o T(f} Q)= a (P Vc;,TQj)

(iv) P o T(UJ Q)2 Y (P ngQi)
Proof: (i) [(WP)o Q](x, 2)
J wr

i

inf W'I'[(U Pj) (X, Y)s Q(Ys Z)]
yey J

= inf WT[SUP Pj (Xs Y)’ Q(ya Z)]
yeY J

= y iEan i?fWT[Pj (X, Y)s Q(Y9 Z)]

= lj'lf inf wilP; (x,y), Qy, z)]
yeY

= ljnf (Pj oy, Q)] (x,2)
= [? (P ¢, Q)] (x,2)
Therefore, (kjl P) oW(T) = n (P v?zTQ)
(i) [(fJ?\ P)e Ql(x 2)
T

= i WT[(Q PJ) (X, Y)’ Q(Ya Z)]
yeY J

= inf wilinfP; (x,y), Q. 2)]
Y ]

ye

> inf Sl}p WT[PJ (Xa Yy )9 Q(Y:v Z)]
yeY |}

>

sup inf WT[Pj (%, ¥)s Q(Y= z)]
j yeY

= s3up (P »"vTQ)(x’ z)
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= | 31 (P; wr Q] (x,2)
Therefore, (k}} Py % TQ] = kJJ (P S TQ)

(i) [P o (N QI z)
T

inf Wt { P(X, Y)7 (.f\ Qj) (Y9 Z)]
yeyY J

= inf wr[P(x,y), inf Q; (y, 2)]
yeY J

= inf lnf WT[P(Xs y)aQ}(ya Z)]
yeyY j

= ﬂ:lf inf WT[P(Xa y)a QJ (ya Z)]
j yeY

= 1l’jf (P, &,]Qj) (X, Z)

Il

[? (ij‘} Q)] (%, 2)
Therefore, [P o gf} Q)] = Jﬁ (P“t;T Q)
(iv) [P &T( b}’ M (x, 2)
= inf wr[P(x,y), sup Q;(y, 2)]
veyY J

inf sup wi[P(x,y), Q; (v, 2)]
yeY j

ij (P; &TQ) (x,2)

v

Therefore, P o T( Y 0])] ! \JJ(BV; Q)

Theorem 2.2.7 [K2]: Let P(X, Y), Qi(Y, Z), QAY, Z) and R(Z, V) be fuzzy relations.

IfQ; c Qy then P owr QicPh owr Q2 and Q wr RoQ: °wr R

Proof: Since Q1 € Q2, Q1" Q2=Q; and Q; U Q; = Q,

Therefore, (P owr Q)N (P owr Q) =P owr Qi Q=P owr O



Hence, P oy, Q1 < P oy, Q2
Next (Q1 oy R) M (Qz 04y R) = (Q1 U Q2) oy R = Q2 oy P

Hence, Q2 wr Rc owy R.

Theorem 2.2.8 [K;]: Let P(X,Y), Q(Y, Z) and R(X, Z) be fuzzy relations. Then
)P or (Poy, Q) ¢ Q

)R P oy, (P orR)

i) PC (P oy, Q) oy, Q*

V)R € (R oy Q1) oy, Q

Proof: ) P oy, Q © PhH? owr Q
SetP oy, Q =Q, pl=p,Q=R,
Then Q' = (P cwy R’

Therefore, P’ T Q' < R’

ie. P T(P oy Q < Q

i) P'TR =PTTR

SetP'=P R=Q,P'TR =R
Then P’ T Q' =R

Therefore, Q' < (P')* owy R’

e R c (P oy (P'TR)

Thus, R € Poy. (P'TR)

iii) Since P* T (P oy, Q) € Q, [P 1(P o, QI < Q*

Therefore, (P oy, Q)" TP c Q'



Set (P oy, Q)" =P, P=Q,Q" =R
ThenP' 7 Q' < R’

Therefore, Q' < (P’)'1 oWy R’

e P [(P oy, Q'Y oWy Q!
Thus, P (P oy, Q) oy, Q"

{iv) Replacing P by R and Q by Q™' in (iif), we get

R € Roy, Q™Y owr Q

2.3 FUZZY RELATION EQUATIONS

The concept of fuzzy relation equation is related with the concept of
composition of fuzzy relations. Composition of two fuzzy relations is a fuzzy relation.
If any two components in each of these equations are known and one is unknown then
these equations are known as fuzzy relation equations and fuzzy relations which

satisfy the equation are called solutions of that equation.

Let us consider the fuzzy binary relations P(X, Y), Q(Y,Z ) and R(X,Z) which are
defined on finte sets X = {x;, |]iel}, Y= {y}l jeJ},andZ={zlke K}, IfLJ,
K are sets of indices, then P = [p;], Q = [gqu] and R = [ri] be the membership
matrices of P, Q and R respectively, where p; = P(x;, ¥j), qx = Q(y;, z) and

rik = R(Xi, zx).



2.3.1 Fuzzy relation equations of the type P° Q =R

The fuzzy relation equation P ° Q = R is equivalent to the nk simultaneous
equations max min (pj, gjk) = 'k
j
[) If P and Q are given, then R can be determined by performing max-min

composition. Obviously R is unique.
1) Suppose Q and R are given and P is to be determine.

The set of all fuzzy relations P satisfying the equation P © Q = R is denoted by
S(Q, R).
Definition 2.3.1.1 [K;]: An element P* € S(Q, R) is called a maximal solution of the

equation P ° Q=R for P,ifP € S(Q,R)and P >P" = P =P".

Definition 2.3.1.2 [K;]: An element P* € S(Q, R) is called the maximum solution of

the equation P ° Q =R for P, ifP e S(Q, R) implies P <P".

Definition 2.3.1.3 [K;]: An element Pe S(Q, R) is called a minimal solution of the

equationP°Q=RforP,ifPeS(Q,R)andPsf’:bP=Ig.

Definition 2.3.1.4 [K;]: An element Pe S(Q, R) is called the minimum solution of the

equation P ° Q=R for P, if P € S(Q, R) implies P > P.
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The problem P ° Q = R can be divided into set of simpler problems by the matrix

equation p; °Q = r;, for all i.

Theorem 2.3.1.5]K;] If max gy < max ry, for some k € K, then S(Q, R) = ¢.
i i

Proof: Let max qjx < max ry, for some keK.
J 1

Then max gjo < max rixp, for some k = k.
j i

Therefore, there exists i,€ I such that

Tioki = max min (py, Qjk)

J
< max Gjko
J
< Tiako

Which is a contradiction.

Therefore S(Q,R) = ¢.

The following Theorem is given by Klir and Yuan in [K;]

Theorem 2.3.1.6]K; ] :If S(Q, r) # ¢ then there is a unique maximum solution

P =(p1, P2 --- > Pm), Where p;” = min o(q, 1) and
k

I, if ifq;k > I

O'(ija rk) =
1, otherwise.

Method for obtaining the minimal solution of p ° Q =r, for p [K:]
Step 1: Determine the sets
J{P)={j e J | min (B, qg) =nu}, for all k € k.

Construct their cartesion product
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P =% k.

keK

Denote the elements of J(P) by
B={BxlkeKj}
Step 2: Foreach e J@) and each je J determine the set
KB, j)={k e K|Bc=j}
Step 3: For each B € J(p), generate the m-tuple by taking g(B) = {gj(B) | je J}, where

maxry, ifK(B,j) =6
gB)= ) kek®.)

0, Otherwise

Step 4: From all the m-tuples g(B) generated in step 3, select only the minimal ones by
~
pairwise comparison. The resulting set of m-tuples is the set S(Q, r) of all minimal

solutions of p°Q =r.

III) If P and R are given, then the set S(P, R) = {Q | P o Q = R} is called the solution
set of P o Q =R for Q. The solution of this type of equation can be obtained by using
above type and by using inverse relation. For example we want to find a solution of P
o Q =R for Q. Consider the equation Q" 0 P" = R™, the solution of this equation, Q”',
can be obtained by using above type (II). The fuzzy relation Q = (Q) ™' will be

required solution of P 0 Q =R for Q.



2.3.2 Fuzzy relation equations of the type P °y Q=R

In this section T denotes a continuous t-norm.
I) If P and Q are given, than R can be obtained by using the Definitior 2.2.2.
Obviously R is unique.
IT) Suppose Q and R are given and P is to be determine
From the equation P °+ Q =R, we write

mj;le(pwq,k)ﬂik

Let S(Q,R) = {P|P °rQ = R}.

Theorem 2.3.2.1 [Ky]: If S(Q, R) # ¢, then P" = (Q oy, R™)" is the maximum

solution of P °1 Q =R, for P.

Proof: Let P; € S(Q, R)

ThenP; °r Q=R.

Therefore, Py  (Q ®wr R")'1 =P

Let G=(Q°wrR)" 1 Q

ThenG =P °rQand G =Q* °;1 (Q °,rRY) R’
Thus, G R

AlsoG=P °tQoP°r Q=R

Hence, P" °t Q=R

i.e. P" e S(Q,R).
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Theorem 2.3.2.2 [K,]: Let Py, P> € S(Q, R), Then
DYPycPcP,=>Pe S(Q,R)

ii) P, U P; € S(Q, R).

Proof: Let Py, P, € S (Q, R). Then P, 7 Q=Rand P, T Q=R.
DLetPicPcP,ThenR=P,7 QcPT QcP, T Q=R

Therefore, P T Q=R

Hence, P € S(Q, R).

i) (P; w Py) T Q=(P, T Q)u(PziDF Q)

=RuR=R

Hence, (P w Py) T Q=R

Therefore, P; U P2 € S(Q, R).

III) If P and R are given, then the set S(P, R) = {Q | P J(T)' Q =R} is called the solution

set of P T Q =R for Q. The solution of this type of equation can be obtained by using

above type and by using inverse relation. For example we want to find a solution of

P 5" Q =R for Q. Consider the equation Q! ;' P =R, the solution of this equation,

Q', can be obtained by using above type (II). The fuzzy relation Q = (Q™) ™ will be

required solution of P ;’ Q=RforQ.



2.3.3 Fuzzy relation equations of the type P °wr Q=R

In this section T denotes a continuous t-norm.
I) If P and Q are given R can be obtained by using Definition of inf - wy. Obviously R

is unique.

1) If Q and R are given, then P is to determine

Let S(Q,R) = { P| P°wr Q=R}.

Theorem 2.3.3.1 [K;]: If S(Q, R) # ¢, then ;’ = R°wr Q™ is the maximum solution

of fuzzy the relation equation P *wy Q =R.
Proof: LetP € S(Q, R). Then P *wr Q=R

Therefore, R *wrt Q’1 = (P °wr Q) °wr Q'1 oP

By Theorem 2.2.8 (iv), R< (R °wr QY °owrQc ?’ °wr Q=R

Hence, (R °wr Q'l) wrQ=R.

III) If P and R are given, then Q is to determine

Let S(P,R)={ Q| P°wr Q=R}.

Theorem 2.3.3.2 [K;]: If S(P, R) # ¢, then é= p! 20" R is the minimum solution of
fuzzy relation equation P *wr Q =R.

Proof: Let Q € S(P, R). ThenP °wr Q=R

NowP!' TR=P'T (P°wrQ)c Q



Since, R = P°wr (P 7 R), R P°wr(P' T R)cP°wr Q=R
Therefore, P °wy (P T R) = R

Hence, P! T R € S(P,R)

Theorem 2.3.3.3 [K;]: For the fuzzy relation equation P °wr Q = R, the following
hold.

(1) If Py, P, € S(Q, R), then Py U P; € S(Q, R)

(it) If Py, P, € S(Q,R) and P; ¢ P ¢ P3, then P € S(Q, R)
(iiiy If Qi Q2 € S(P, R), then Q1 » Q2 € S(P,R)

(iv) IfQy, Q2e S(P,R)and Q; c Q< Qa then Q € S(P,R)
Proof: (i) Let Py, P, € S(Q, R)

Then Py °wr Q=R and P; °wr Q=R

Now (P; U Py) *wr Q= (P °wr Q) n (P2 °wr Q)

= RnR=R

Therefore, (P; U P2) *wr Q=R

Hence, P; U P; € S(Q, R).

(i) LetP,P, € S(Q,R)and P, cPcPs.

ThenP; °wr Q=R and P, °wrQ = R .
NowR=P;°wrQ2oP°wr Q2 P;°wr Q=R

Hence, P °wr Q =R

Therefore, P € S(Q, R)

(iii) Let Q1, Q2 = S(P, R)

Then P ‘wrQ; =Rand P°wrQ; =R

Now P °wr (Q1 nQ2) =(P°wr Qp) n (P °wr Q)



= RNR=R

Hence, P °wr (Q1 m Q2) =R

Therefore, Q1 N Q, € S(P,R)

(iv) Let Q1, Q2 € S(P,R)and Q1 € Q< Q2

ThenP"wTQl =RandP°wTQ2 =R

NowR =P, °wr Q; 2P wt QP> °wr Qs =R
Therefore, P °wr Q =R

Hence, Q € S(P, R).
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