CHAPTER 2

GENERALISED WEAKLY PSEUDO-IDEALS IN NEAR-RINGS

CHAPTER 2

GENERALISED WEAKLY PSEUDO-IDEALS IN NEAR-RINGS

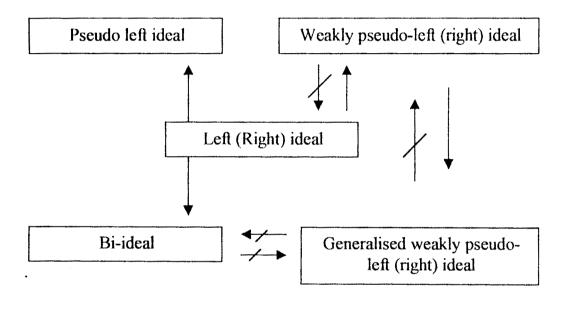
§ 2.0 Introduction:

Throughout this chapter N denotes a right near-ring. Generalization of the concept of weakly pseudo-left (right) ideal in N is done in this chapter, we name it generalised weakly pseudo-left (right) ideal in N, a help is taken of the paper 'On Generalised semi-ideals of rings' by T.K. Dutta [5].

In this chapter we have studied some interesting properties of generalised weakly pseudo-ideal in near-ring and near-fields. Efforts are also made to give necessary and sufficient conditions for a commutative near-ring without any divisors of zero to be a near-field.

It has been observed in near ring N, generalised weakly pseudoleft ideal, generalised weakly pseudo-right ideal and subnear-ring are independent concepts. But in a near-field with $N_c = \{0\}$ all these three concepts coincide.

The diagramatic representation of the relationship between ideals, pseudo-left ideals, weakly pseudo-ideals, bi-ideals and generalised weakly pseudo-ideals in N is as follows.



4

•

.

§ Generalised weakly pseudo-left Ideal in a near-ring

§ 2.1 Definition and examples :

In this section we define generalised weakly pseudo-left ideal and give some examples of generalised weakly pseudo-left ideals in a near-ring N

Definition 2.1.1 :

Let < N, +, .> be a near-ring. A non-empty subset A of N with zero is called a generalised weakly pseudo-left ideal of N if it satisfies the following conditions.

1) $a + b \in A$, $\forall a, b \in A$ and 2) $n^2 \cdot a \cdot n^2 \cdot 0 \in A$, $\forall a \in A$ and $\forall n \in N$

Some examples of generalised weakly pseudo-left ideals in near-rings are given below.

Example 2.1.2 : (Pilz , page - 408)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication as given by the following tables.

+	0	a	b	с
0	0	а	b	с
а	a	0	С	b
b	b	с	0	a
с	c	b	а	0

•	0	a	b	c	
0	0	0	0	0	
а	0	b	0	b	
b	0	0	0	0	
с	0	b	0	b	

The subsets $\{0,a\}$, $\{0,b\}$, $\{0,c\}$ are generalised weakly pseudo-left ideals in N.

The following example shows that not every subset I of a near-ring N containing zero is generalised weakly pseudo-left ideal of N.

Example 2.1.3: (Clay, 2.2, 2)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication as given by the following tables.

+	0	a	b	с		0	a	b	с	
0	0	a	b	с	0	0	0	0	0	
a	a	0	с	b	a	0	0	а	а	
b	b	с	0	a	b	0	а	b	b	
c	с	b	a	0	c	0	a	С	с	

Let $I = \{0, b\}$. For $b \in I$ and $c \in N$, $c^2 \cdot b - c^2 \cdot 0 = c \cdot b - 0 = c \notin I$. Hence I is not a generalised weakly pseudo-left ideal in N.

§ 2.2 Properties of generalised weakly pseudo-left ideals:

In this section we collect some properties of generalised weakly pseudo-left ideals of a near-ring N.

From the definitions of weakly pseudo-left ideal (by 1.1.1) and generalised weakly pseudo-left ideal, it is clear that every weakly pseudo-left ideal in a near-ring N is a generalised weakly pseudo -left

[]

ideal. But converse need not be true. This we establish by the following example.

Example 2.2.1 :-(Clay, 2.5, 29)

Consider the near-ring $N = \{0, a, b, c, x, y\}$ with addition and multiplication is given by the following tables.

+	0	a	b	с	x	у
0	0	a	b	с	x	У
a	a	0	У	x	С	b
b	b	х	0	У	а	с
c	с	у	х	0	b	а
x	x	b	с	а	У	0
у	у	с	a	b	0	x

•	0	a	b	с	x	у
0	0	0	0	0	0	0
a	0	а	a	a	0	0
b	0	a	а	a	0	0
с	0	а	a	а	0	0
x	0	0	0	0	0	0
у	0	0	0	0	0	0

Let $I=\{0, a\}$. Here I is a generalised weakly pseudo-left ideal in N. But as, $x + a - x = b + y = c \notin I$, for $a \in I$ and $x \in N$ we get $\langle I, + \rangle$ is not normal subgroup of $\langle N, + \rangle$ Therefore I is not a weakly pseudo-left ideal.

From the definition of left ideal of a near-ring (see 0.1.8), it is clear that every left ideal in a near-ring is a generalised weakly pseudoleft ideal. But converse need not be true. This is established by the following example.

Example 2.2.2 :

In example 2.2.1. consider $I = \{0, a\}$, I is a generalised weakly pseudo-left ideal in N. But as, $x + a - x = b + y = c \notin I$, for $a \in I$ and $x \in N$, we get < I, +> is not a normal subgroup of < N, +>. Therefore I is not a left ideal in N

Result 2.2.3: Intersection of any collection of generalised weakly pseudo-left ideals in a near-ring N is a generalised weakly pseudo - left ideal.

<u>Proof</u>: - Take $I = \bigcap \{ I_i / I_i \}$, is generalised weakly pseudo-left ideal in N }. To prove that I is a generalised weakly pseudo-left ideal. since $0 \in I_i$, where I_i is generalised weakly pseudo -left ideal in N, Therefore $0 \in \bigcap_i l_i \Rightarrow \bigcap_i l_i \neq \emptyset$ (1)Let $a, b \in I = \bigcap_i I_i$ Therefore $a, b \in I_i$, $\forall I_i$ \Rightarrow a+b \in I_i, \forall generalised weakly pseudo left ideal I_i \Rightarrow a+b $\in \cap_i l_i = l$ ----- (2^h) Hence $a+b \in I$, $\forall a, b \in I$ Now let $a \in I$, $n \in N$ Therefore $a \in \bigcap_i I_i$, $n \in \mathbb{N}$ \Rightarrow a \in I_i , n \in N , \forall I_i \Rightarrow n^2 . $a - n^2$. $0 \in I_i$ $\forall I_i$ [Since I_i is a generalised weakly pseudo -left ideal in N] Therefore $n^2 a - n^2 0 \in \bigcap_i l_i = l$ Hence $n^2 a - n^2 0 \in I$, $\forall a \in I \text{ and } \forall n \in N$ ------(3)Therefore, from (1), (2) and (3). I is a generalised weakly pseudo-left ideal of N.

33

[

[]

As N itself is a generalised weakly pseudo-left ideal, by definition of a Moore family of subsets of a given set (see 0.1.15) and by the Result 2.2.3, we get the following corollary.

<u>Corollary 2.2.4</u>: Set of all generalised weakly pseudo-left ideals in a near-ring N forms a Moore family of subsets of N.

Union of any two generalised weakly pseudo-left ideals need not be a generalised weakly pseudo-left ideal. For this consider the following example.

Example 2.2.5 (Clay, 2.2, 13)

Consider the near-ring $N = \{0, a, b, c\}$ under the addition and multiplication defined by the following tables.

+	0	a	b	c
0	0	a	b	с
a	a	0	с	b
b	b	с	0	а
c	c	b	a	0

•	0	а	b	с
0	0	0	0	0
a	0	а	b	с
b	0	0	0	0
С	0	a	b	с

Here $A=\{0, a\}$ and $B=\{0, b\}$ are generalised weakly pseudo-left ideals in N. Hence $AUB = \{0, a, b\}$

As, $a + b = c \notin AUB$, for $a, b \in AUB$

Therefore AUB is not a generalised weakly pseudo-left ideal in N.

[]

[]]

§ Generalised weakly pseudo-right Ideal in a near-ring

§ 2.3 Definition and examples:

In this section we define generalised weakly pseudo-right ideal and give some examples of generalised weakly pseudo-right ideals in a near-ring N.

Definition 2.3.1 :

 $Let < N, +, . > be \ a \ near-ring \ . \ A \ non-empty \ subset \ A \ of \ N$ with 0 is called a generalised weakly pseudo-right ideal in N if it satisfies the following conditions .

(1)
$$\mathbf{a}+\mathbf{b} \in \mathbf{A}$$
, $\forall \mathbf{a}, \mathbf{b} \in \mathbf{A}$ and
(2) $\mathbf{a}.\mathbf{n}^2 \in \mathbf{A}, \forall \mathbf{a} \in \mathbf{A}$ and $\forall \mathbf{n} \in \mathbf{N}$.

Some examples of generalised weakly pseudo-right ideals in nearrings are given below.

Example 2.3.2 : (Pilz, page -408)

Consider the near-ring $N = \{ 0, a, b, c \}$ with addition and multiplication as given by the following tables.

+	0	а	b	с
0	0	a	b	с
a	a	0	с	b
b	b	с	0	a
С	С	b	a	0

-	0	a	b	c	
0	0	0	0	0	
a	0	b	0	b	
b	0	0	0	0	
с	0	b	0	b	

Let $I = \{0, a\}$. Here I is a generalised weakly pseudo-right ideals in N. Also $\{0, b\}$ and $\{0, c\}$ are generalised weakly pseudo-right ideals in N.

Every generalised weakly pseudo-left ideal in a near-ring N need not be a generalised weakly pseudo-right ideal. This we establish by the following example.

Example 2.3.3 (Clay, 2.2,13)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication defined by the following tables.

+	0	a	b	с
0	0	a	b	С
a	a	0	c	b
b	b	с	0	a
c	c	b	a	0

•	0	a	b	с	
0	0	0	0	0	
a	0	а	b	с	
b	0	0	0	0	
с	0	a	b	с	

Let $I = \{0, a\}$. Here I is generalised weakly pseudo-left ideal of N but not a generalised weakly pseudo-right ideal of N. Because $a.c^2 = a.c = c \notin I$, for $a \in I$ and $c \in N$.

Every generalised weakly pseudo-right ideal in a near-ring N need not be a generalised weakly pseudo-left ideal. This we establish by the following example.

Example 2.3.4 : (Clay, 2.2.2)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplicaton as given by the following tables.

+	0	a	b	с
0	0	a	b	С
a	a	0	с	b
b	b	С	0	a
c	С	b	а	0

Let I = { 0, b}. Here I is a generalised weakly pseudo-right ideal of N but not a generalised weakly pseudo-left ideal of N. Because $c^{2}.b - c^{2}.0 = c.b - 0 = c \notin I$, for $b \in I$ and $c \in N$.

§ 2.4 Properties of generalised weakly pseudo-right ideals :

In this section we collect some properties of generalised weakly pseudo-right ideals of a near-ring N.

From the definition of weakly pseudo-right ideal (by 1.3.1) it is clear that every weakly pseudo-right ideal in a near-ring is a generalised weakly pseudo-right ideal. But converse need not be true. This we establish in the following example.

Example 2.4.1 :(Clay, 2.5, 29)

Consider the near-ring $N = \{0,a,b,c,x,y\}$ with addition and multiplication as given by the following tables.

+	0	a	b	С	х	y
0	0	a	b	с	'X	у
a	a	0	У	x	с	b
b	b	х	0	У	a	c
с	с	У	х	0	b	a
x	x	b	С	a	У	0
у	у	с	a	b	0	x

	0	a	b	с	x	у
0	0	0	0	0	0	0
a	0	а	а	a	0	0
b	0	a	a	а	0	0
c	0	а	а	а	0	0
x	0	0	0	0	0	0
y	0	0	0	0	0	0

Let $I = \{0,a\}$. Here I is a generalised weakly pseudo-right ideal in N. But as, $x+a-x=b+y=c\notin I$, for $a\in I$. and $x\in N$. Hence I is not a weakly pseudo-right ideal of N.

[]

From the definition of generalised weakly pseudo-right ideal in a near-ring. It is clear that every right ideal in a near-ring is a generalised weakly pseudo-right ideal. But converse need not be true. This is established in the following example.

Example 2.4.2 : (Pilz, page - 408)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication as given by the following tables.

+	0	a	b	с
0	0	a	b	С
a	a	0	С	b
b	b	с	0	a
c	с	b	a	0

•	0	а	b	с	
0	0	0	0	0	
а	0	b	0	b	
b	0	0	0	0	
с	0	b	0	b	

Let $I = \{0,a\}$. I is a generalised weakly pseudo-right ideal of N. But as , a .a = $b \notin I$ for $a \in I$ and $a \in N$. Hence I is not a right ideal of N.

As usual we get,

Result 2.4.3: Intersection of any collection of generalised weakly pseudo-right ideals in a near-ring N is a generalised weakly pseudo-right ideal.

Proof: Take $I = \bigcap \{ l_i / l_i \text{ is generalised weakly pseudo-right ideal in N}. To prove that I is generalised weakly pseudo-right ideal in N. Since, <math>0 \in I_i$, Where I_i is a generalised weakly pseudo-right ideal.

Therefore, $0 \in \bigcap_i I_i = I$

Let $a, b \in \cap_i I_i$

Therefore, $a, b \in I_i$, $\forall I_i$ $\Rightarrow a + b \in I_i$, \forall Generalised weakly pseudo-right ideal I_i .

Hence, $a + b \in \bigcap_i I_i = I$

Therefore, $a + b \in I$, $\forall a, b \in I$ ----- (2) Let $a \in I$, $n \in N$

Therefore, $a \in \bigcap_i I_i$, $n \in N$

 $\Rightarrow a \in I_i$, $n \in N$, $\forall I_i$

 \Rightarrow a.n² \in I_i, \forall I_i (Since, I_i is generalised weakly pseudo-right ideal).

$$\Rightarrow a.n^2 \in \cap_i I_i = I$$

Hence $a.n^2 \in I$, $\forall a \in I \text{ and } \forall n \in N$ ----- (3)

Therefore from (1), (2) and (3) we get I is a generalised weakly pseudo-right ideal of N.

As N itself is a generalised weakly pseudo-right ideal of N, by definition of a Moore family of subsets of a given set (See 0.1.15) and by the Result 2.4.3. we get the following corollary.

Corollary 2.4.4: Set of all generalised weakly pseudo-right ideals in a near-ring N forms a Moore family of subsets of N.

[]

Union of any two generalised weakly pseudo -right ideals need not be a generalised weakly pseudo - right ideal. For this consider the following example.

Example 2.4.5 : (Pilz, page-408)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication is defined by the following tables.

+	0	a	b	С
0	0	a	b	С
а	a	0	с	b
b	b	с	0	a
c	с	b	a	0

•	0	a	b	с	
0	0	0	0	0	
а	0	b	0	b	
b	0	0	0	Ð	
с	0	b	0	b	
		· um			

Let $A = \{0, a\}$ and $B = \{0, b\}$ be two generalised weakly pseudo-right ideals of N.

Therefore, $AUB = \{0, a, b\}$

As, a+b=c ∉ AUB

Hence AUB is not a generalised weakly pseudo - right ideal of N.

For any two non-empty subsets A and B of N we define, $A+B= \{x+y \mid x \in A, y \in B\}$. When A and B are generalised weakly pseudo-right ideals we get,

Result 2.4.6: Let < N, +, .> be an abelian near-ring. Let A and B be two generalised weakly pseudo-right ideals of N. Then A+B is the smallest generalised weakly pseudo-right ideal of N containing both A and B.

Proof: Here A+B = {a+b/ a \in A, b \in B}. Since, $0 \in A, 0 \in B$. Therefore 0=0+0 \in A+B Hence A+B $\neq \emptyset$ -----(1)

Let $x, y \in A+B$

Therefore, $x = a_1+b_1$ and $y = a_2+b_2$, for some $a_1, a_2 \in A$ and $b_1, b_2 \in B$.

Therefore, $x+y = (a_1+b_1) + (a_2+b_2)$

 $= a_1 + (b_1 + a_2) + b_2$ = $a_1 + (a_2 + b_1) + b_2$ (N being abelian) = $(a_1 + a_2) + (b_1 + b_2)$

Hence $x+y \in A+B$. [Since, $a_1+a_2 \in A$ and $b_1 + b_2 \in B$] Therefore, $x+y \in A+B$, $\forall x, y \in A+B$ ------ (2) Let $n \in N$ and $x \in A+B$.

Therefore $x = a_1 + b_1$ for some $a_1 \in A$ and $b_1 \in B$

As, A and B are generalised weakly pseudo-right ideals of N.we get, x. $n^2 = (a_1 + b_1).n^2 = a_1.n^2 + b_1.n^2 \in A + B.$

1

13751

Therefore, $\mathbf{x} \cdot \mathbf{n}^2 \in A+B$, $\forall \mathbf{x} \in A+B$ and $\forall \mathbf{n} \in \mathbb{N}$ -----(3)

Hence from (1), (2) and (3). A+B is a generalised weakly pseudo-right ideal of N. Since, $0 \in B$ for any $a \in A$, $a = a+0 \in A+B$. Therefore $A \subseteq A+B$. Similarly $B \subseteq A+B$. Let C be any generalised weakly pseudo-right ideal of N such that $A \subseteq C$ and $B \subseteq C$.

To prove that $A+B \subseteq C$.

Let $x \in A+B$.

Therefore $\mathbf{x} = \mathbf{a} + \mathbf{b}$ for some $\mathbf{a} \in \mathbf{A}$ and $\mathbf{b} \in \mathbf{B}$.

Since $A \subseteq C$, therefore $a \in C$ and $B \subseteq C$ therefore $b \in C$.

Hence, $x = a + b \in C$. [Since C is generalised weakly pseudo-right ideal of N]

Therefore $A+B \subseteq C$. Hence A+B is the smallest generalised weakly pseudo-right ideal containing both A and B.

For any two generalised weakly pseudo-right ideals A and B we define

 $AoB = \{ \sum_{i=1}^{n} a_i b_i / a_i \in A, b_i \in B, n \text{ is finite } \}$

An interesting property of AoB is stated in the following result.

<u>Result 2.4.7</u>: Let < N, +, . > be a near-ring. Let A and B be two generalised weakly pseudo-right ideals of N. Then A₀B is a generalised weakly pseudo-right ideal of N.

Proof: Here n $AoB = \{ \Sigma \mid a_i \mid b_i / a_i \in A, b_i \in B, n \text{ is finite } \}$ i=1 Since, $0 \in A$ and $0 \in B$. Therefore $0 \in A_0B$. Hence $AoB \neq \emptyset$ (1)Let $x, y \in A_0B$ m r Therefore $\mathbf{x} = \Sigma \quad \mathbf{a}_i \mathbf{b}_i$ and $\mathbf{y} = \Sigma \quad \mathbf{a}_i \mathbf{b}_i$, i=r+1 i=1where $a_i \in A$ and $b_i \in B$, r and m are finite. r m Therefore $x+y = \Sigma a_i b_i + \Sigma a_i b_i$, i=1 i=r+1 m $= \sum_{i=1}^{\infty} a_i b_i \in A_0B$ Thus, $x+y \in A_0B$, $\forall x, y \in A_0B$ (2) Let $x \in A \circ B$ and $n \in N$. r Therefore $\mathbf{x} = \Sigma$ $a_i b_i$ and $n \in N$, where $a_i \in A$ and $b_i \in B$ i=1 Hence $\mathbf{x}.\mathbf{n}^2 = (\Sigma \mathbf{a}_i \mathbf{b}_i) \mathbf{n}^2$ i=1 $= \sum_{i=1}^{r} a_i (b_i . n^2) \in A_0B$ [Since $b_i \in B$, $n \in N \implies b_i n^2 \in B$

Therefore $x \cdot n^2 \in A_0B$, $\forall x \in A_0B$ and $\forall n \in N$. Thus, from (1), (2) and (3) we get A_0B is a generalised weakly pseudo-right ideal.

A sufficient condition for a subnear-ring A of a near-ring N to be a generalised weakly pseudo-right ideal is given in the following result.

Result 2.4.8: Let A and B be two subnear-ring of a near-ring N such that $A^2 = A$ and let A be a right ideal of B.Let B be a generalised weakly-right ideal of N. Then A is a generalised weakly pseudo-right ideal of N.

Proof: Obivously $a + b \in A$ whenever $a, b \in A$. Now let $a \in A$. Then $a = a_1$, a_2 where $a_1, a_2 \in A$. Now for any $x \in N$, $a \cdot x^2 = (a_1 \cdot a_2) x^2 = a_1 (a_2 \cdot x^2) \in a_1 \cdot B \subseteq A$ [Since $a_2 \in A \subset B$ and B is generalised weakly pseudo-right ideal of N and A is a right ideal of B]. Hence A is generalised weakly pseudo-right ideal of N.

One more sufficient condition for a subnear-ring I of N to be a generalised weakly pseudo-right ideal is furnished in the following result.

Result 2.4.9: Let $N \neq \{0\}$ be a zero-symmetric regular near-ring with identity. Let J be a generalised weakly pseudo-right ideal and also a subnear-ring of N without nilpotent elements and let I be a right ideal of J, then I is a generalised weakly pseudo-right ideal of N.

Proof: Since, the zero-symmetric regular near-ring N does not contains nilpotent elements, therefore all the idempotents of N are central. [See Result 0.2.4.] First we shall show that J is regular. Let $a \in J \subset N$. Then there exists an element $x \in N$ such that a = a.x.a [Since N is regular (see Def. 0.1.16)] Let b = x.a.x. Therefore b = x.a.x.=x.(a.x) = (a.x).x = a(x.x) $= a.x^2 \in J.$ [Since a.x being an idempotent element of N is a central idempotent, therefore x.(a.x) = (a.x).x (See Result 0.2.4 and Def. 0.1.20)] Hence a.b.a=a.(x.a.x).a = (a.x.a).(x.a)=a.(x.a)=a.x.a=a.

i.e. If $a \in J$ then there exists $b = x.a.x \in J$ such that a.b.a=a. Therefore J is regular. Now we shall show that $l^2 = l$.

Let $a \in I \subseteq J$. Since J is regular, there exists an element $b \in J$ such that $a = a.b.a = (a.b).a \in I^2$ [I is a right ideal of J, therefore $a.b \in I$ for $a \in I$ and $b \in J$]

Thus $I \subseteq l^2$ ----- (1)

Obviously $I^2 \subseteq I$ ----- (2)

Hence from (1) and (2) $I^2 = I$

Thus from Result 2.4.8. I is generalised weakly pseudo-right ideal of N.

In a commutative near-ring (see definition 0.1.3) the two concepts of generalised weakly pseudo-right ideal and of generalised weakly pseudo-left ideal coinside. This we prove in the following result.

Result 2.4.10: In a commutative near-ring N,a non-empty subset A of N is generalised weakly pseudo-left ideal iff A is generalised weakly pseudo-right ideal.

Proof: Let < N, +, .> be a commutative near-ring. Let A be a generalised weakly pseudo-left ideal of N. To prove that A is generalised weakly pseudo-right ideal of N. Obviously $a+b \in A$, $\forall a, b \in A$. Let $x \in N$ and $a \in A$, therefore $a.x^2 = x^2.a = x^2.a - 0 = x^2.a - 0.x^2 = x^2.a - x^2.0 \in A$ [Since, N is commutative and A is generalised weakly pseudo-left ideal and $0.n = 0 \forall n \in N$. (See Result 0.2.1)] Hence A is generalised weakly pseudo-right ideal.

14

Conversely, let A be a generalised weakly pseudo-right ideal. To prove that A is generalised weakly pseudo-left ideal. Obviously $a+b \in A$, $\forall a,b \in A$.let $x \in N$, $a \in A$, therefore $x^2 \cdot a - x^2 \cdot 0 = a \cdot x^2 - 0 \cdot x^2$ $= a \cdot x^2 \cdot 0 = a \cdot x^2 \in A$ [Since N is commutative, A is generalised weakly pseudo-right ideal and 0.n = 0, $\forall n \in N$ (See Result 0.2.1)] Hence A is generalised weakly pseudo-left ideal of N.

ţ

§ Generalised weakly pseudo-ideal in a near-ring

§ 2.5 Definition and examples :

In this section we define generalised weakly pseudo-ideal in a near-ring N and give some examples of a generalised weakly pseudoideal in a near-ring. We know every generalised weakly pseudo-right ideal in a near-ring need not be a genralised weakly pseudo-left ideal and every generalised weakly pseudo-left ideal in a near-ring need not be a generalised weakly pseudo-right ideal (see Example 2.3.4 and Example 2.3.3). This motivates us to define.

Definition 2.5.1 :

Let < N, +, .> be a near- ring. A non-empty subset A of N with zero is called a generalised weakly pseudo-ideal if it satisfies the following conditions.

(1) a + b ∈ A , ∀ a , b ∈ A.
(2) n². a - n².0 ∈ A , ∀ a ∈ A and ∀ n ∈ N.
(3) a.n² ∈ A , ∀ a ∈ A and ∀ n ∈ N.

Some examples of generalised weakly pseudo-ideals in near-ring are given below.

 \square

Example 2.5.2 : (Pilz , page - 408)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication defined by the following tables,

+	0 a b c	. O a b c
0	0 a b c	0 0 0 0 0
a	a 0 c b	a 0 b 0 b
b	b c O a	b 0 0 0 0
с	c b a O	c 0 b 0 b

Let $I = \{0, a\}$. Here I is generalised weakly pseudo-left ideal as well as generalised weakly pseudo-right ideal in N. Hence I is generalised weakly pseudo-ideal in N.

[]

Example 2.5.3 : (Clay, 2.2, 2)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication defined by the following tables.

+	0	a	b	с
0	0	a	b	С
a	a	0	С	b
b	b	с	0	a
C	С	b	а	0

•	0	а	b	С
0	0		0	0
а	0	0	а	a
b	0	a	b	b
c	0	а	с	с

Let $I = \{0, a\}$. Here I is generalised weakly pseudo-left ideal as well as generalised weakly pseudo- right ideal in N. Hence I is generalised weakly pseudo-ideal in N.

From the definition of generalised weakly pseudo-ideal of a near-ring, it is clear that every weakly pseudo-ideal in a near-ring is a generalised weakly pseudo-ideal. But converse need not be true. This is established by the following example.

Example 2.5.4 : (Clay, 2.5, 29)

Consider the near-ring $N = \{0, a, b, c, x, y\}$ with addition and multiplication are defined as.

							_				
+	0	a	b	c	x	у			0	a	b
0	0	a	b	С	x	у		0	0	0	0
a	a	0	У	x	с	b		a	0	а	а
b	b	x	0	У	a	c		b	0	а	a
c	c	У	х	0	b	a		c	0	a	a
x	x	b	c	a	У	0		x	0	0	0
y y	y y	c	a	b	0	x		У	0	0	0

Let I = { 0, a}. Here I is a generalised weakly pseudo-ideal in N. But as, $x + a - x = b + y = c \notin I$, for $a \in I$ and $x \in N$ Hence < I, +> is not a normal subgroup of < N + >. Therefore I is not a weakly pseudo-ideal.

С

0

а

a

a

0

0

х

0

0

0

0

0

0

y

0

0

0

0

0

0

From the definition of generalised weakly pseudo-ideal of a near-ring, it is clear that every ideal of a near-ring is a generalised weakly

pseudo-ideal. But converse need not be true. This we establish by the following example.

Example 2.5.5 :

In Example 2.5.4 Consider $I = \{0, a\}$. < I, + > is not a normal subgroup of < N, + >. Hence I is not an ideal of N. But I is a generalised weakly pseudo- ideal of N.

§ 2.6 Properties of generalised weakly pseudo-ideals:

In this section we collect some properties of generalised weakly pseudo-ideals of a near-ring N.

From Result 2.2.3 and Result 2.4.3 we get the following result.

<u>Result 2.6.1</u> : Intersection of any collection of generalised weakly pseudo-ideals of N is a generalised weakly pseudo-ideal of N.

 $\begin{bmatrix} 1 \end{bmatrix}$

From Result 2.6.1 and from definition of Moore family (see Def.0.1.15) we get,

Result 2.6.2: Set of all generalised weakly pseudo ideals in a near-ring N forms a Moore family of subsets of N.

Union of any two generalised weakly-pseudo-ideals of N need not be a generalised weakly pseudo-ideal .This we establish in the following example.

Example 2.6.3 : (Pilz, page - 408)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication defined by the following tables.

+	0	а	b	с	-	0	a	b	С
0	0	а	b	с	0	0	0	0	0
a	а	0	с	b	а	0	b	0	b
b	b	с	0	а	b	0	0	0	0
С	С	b	a	0	С	0	b	0	b

Let A= { 0, a } , B = { 0, b } be two generalised weakly pseudo-ideals of N.

 $AUB = \{ 0, a, b \}$

For $a, b \in AUB$, $a + b = c \notin AUB$.

Therefore AUB is not a generalised weakly pseudo-ideal of N.

Now we establish the fact that the three concepts (1) generalised weakly pseudo-left ideal of N (2) generalised weakly pseudo-right ideal of N and (3) subnear-ring of N are completely independent in a near-ring N.

- (1) Generalised weakly pseudo-left ideal in a near-ring N need not be generalised weakly pseudo-right ideal in N (From 2.3.3)
- (2) Generalised weakly pseudo-right ideal in a near-ring N need not be generalised weakly pseudo-left ideal in N (From 2.3.4)

(3) Every generalised weakly pseudo-ideal in a near-ring N need not be a subnear-ring of N. This we establish in the following example.

Example 2.6.4 : (Pilz, page - 408)

Consider the near-ring $N = \{0, a, b, c\}$ with addition and multiplication defined by the following tables.

+	0	a	b	с	•	0	a	b	с
0	0	a	b	С	0	0	0	0	0
a	a	0	с	b	a	0	b	0	b
b	b	С	0	a	b	0	0	0	0
С	с	b	a	0	с	0	b	0	b

Let $A = \{0, a\}$. Here A is a generalised weakly pseudo-ideal of N. But as, $a.a = b \notin A$, for $a \in A$. Hence A is not a subnear-ring of N.

(4) Every subnear-ring of N need not be a generalised weakly pseudo-ideal of N. This we establish by the following example.

Example 2.6.5 : (Clay, 2.2, 2)

Consider the near-ring $N = \{0, a, b, c\}$ addition and multiplication defined by the following tables.

+	0	a	b	с	•	0	a	b	
0	0	a	b	с	0	0	0	0	
a	a	0	с	b	a	0	0	a	i
b	b	с	0	a	b	0	a	b	1
c	с	b	a	0	c	0	a	с	(

Let I = { 0, b }.Here I is a subnear-ring of N. But as , $c^2.b-c^2.0 = c.b - 0 = c \notin I$. Hence I is not a generalised weakly pseudo- ideal of N

But these concepts coincide when N is a near-field with $N_c = \{0\}$. This we prove in the following result.

Result 2.6.6 : Let S be a subnear-ring of a near-field N for which $N_c = \{0\}$. Then the following are equivalent.

(a) S is a generalised weakly pseudo-left ideal.

(b) S is a generalised weakly pseudo-right ideal.

(c) S is a generalised weakly pseudo-ideal.

(d) S is a subnear-field and generalised weakly pseudo-left ideal.

Proof :

 $(a) \Rightarrow (b)$

Let S be a generalised weakly pseudo-left ideal of N and a $\in S$ (a $\neq 0$). Since N is a near-field for which $N_c = \{0\}$ we get n.0 = 0 $\forall n \in N$ (See Result 0.2.5). Therefore, $a^{-1} = a^{-1} - 0 = (a^{-1})^2 \cdot a - (a^{-1})^2 \cdot 0$. Hence $a^{-1} \in S$ as S is a generalised weakly pseudo-left ideal.

As $a \in S$ and $a^{-1} \in S$ we get $a \cdot a^{-1} \in S$ i.e. $1 \in S$. Now for any $x \in N$, $x^2 = x^2 \cdot 0 = x^2 \cdot 1 - x^2 \cdot 0$ S being generalised weakly pseudoleft ideal. $x^2 \in S$. Thus $a \in S$ and $x^2 \in S$ imply $a \cdot x^2 \in S$. Consequently S is also a generalised weakly pseudo-right ideal.

 $(b) \Rightarrow (c)$

Let S be a generalised weakly pseudo-right ideal of N. We show that S is a generalised weakly pseudo-left ideal. Let $0 \neq a \in S$. Then $a^{-1}=1.a^{-1}=(a, a^{-1}).a^{-1}=a.(a^{-1}.a^{-1})=a.(a^{-1})^2 \in S$. S being generalisd weakly pseudo-right ideal. Thus $a \in S$ and $a^{-1} \in S$ will imply $a.a^{-1} \in S$. i.e. $1 \in S$. Now for any $x \in N$, $x^2=1$. $x^2 \in S$. S being generalised weakly pseudo-right ideal. Since S is a subnear-ring. Therefore $x^2.a-x^2.0 \in S$. Hence S is generalised weakly pseudo-left ideal. Therefore S is generalised weakly pseudo-ideal.

 $(c) \Rightarrow (d)$

Let S be a generalised weakly pseudo-ideal. Let $a(\neq 0) \in S$ Now $a^{-1} = 1.a^{-1} = (a. a^{-1}).a^{-1} = a(a^{-1}.a^{-1}) = a.(a^{-1})^2$. S being generalised weakly pseudo-right ideal. we get $a^{-1} \in S$. Thus $a \in S$ and $a^{-1} \in S$ will imply $1 = a.a^{-1} \in S$. Therefore S is a subnear-field of N and S is generalised weakly pseudo-left ideal.

 $(d) \Rightarrow (a)$ is obviously true.

Thus (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a) and hence all the statements are equivalent.

[]

A necessary and sufficient condition for a subnear-ring of a near-field N with $N_c = \{0\}$ to be a generalised weakly pseudo-ideal is in the following result.

Result 2.6.7 : In a near-field N for which $N_c = \{0\}$, a subnear-ring S will be a generalised weakly pseudo-ideal iff $rSr \subseteq S$ and $rSr^{-1} \subseteq S$ for every $r(\neq 0) \in N$.

Proof: Let a subnear-ring S of a near-field N be a generalised weakly pseudo ideal, then from the Result 2.6.6. it follows that S is a subnearfield. Let $0 \neq a \in S$ then r.a.r = (r.a.r).1 = (r.a.r) (a.a⁻¹) = (r.a).(r.a).a⁻¹ = (r.a)².a⁻¹. 0 = (r.a)². a⁻¹ - (r.a)².0 [0=(r.a)².0 since N is a near-field for which N_c ={0} therefore n.0 = 0, \forall n \in N. (See Result 0.2.5)]. Thus r.a.r \in S, \forall 0 \neq a \in S and if a = 0 \in S, then r.a.r = 0 \in S.

Thus, r.a. $r \in S$, $\forall a \in S$.

Hence $rSr \subseteq S$, $\forall 0 \# r \in N$.

Also
$$r.a.r^{-1} = (r.a).1.r^{-1} = (r.a).(r.r^{-1})(r^{-1})=(r.a.r).(r^{-1})^2 \in S$$

[Since $r.a.r \in S$ and S is generalised weakly pseudo-right ideal].

Thus $r.a.r^{-1} \in S \quad \forall a \in S.$ Therefore $rSr^{-1} \subset S$, $\forall r(\neq 0) \in N.$

Conversly let S be a subnear-ring of N such that rSr \subseteq S and rSr⁻¹ \subseteq S for every r ($\neq 0$) \in N. Let a \in S and let r \in N. If r = 0 then r².a - r².0 = 0 \in S. If r \neq 0 then r² .a - r².0 = r².a - 0 = r².a = r(r.a.).1= r.(r.a).(r.r⁻¹) = r(r.a.r) .r⁻¹ \in rSr⁻¹ \subseteq S [Since r².0=0(see Result 0.2.5)] Therefore r².a - r².0 \in S , \forall r \in N and \forall a \in S Hence S is a generalised weakly pseudo-left ideal of N.

Therefore from Result 2.6.6. S is a generalised weakly pseudo-ideal.

In a commutative near-ring with identity element we have,

Result 2.6.8: Let J be a generalised weakly pseudo-ideal and also a subnear-ring of a commutative near-ring N with identity element then an ideal I of J is a generalised weakly pseudo-ideal of N.

Proof: First we shall show that J is regular. Let $a \in J \subseteq N$ there exists $x \in N$ such that a = a.x.a [since N is regular]. Let b = x.a.x. Thus $b = x.a.x = (x.a).x = (a.x).x = a.x^2 \in J$. Now, a.b.a = a.(x.a.x).a =(a.x.a).(x.a.) = a.x.a=a. Thus given $a \in J$ there exists b = x.a.x in J such that a.b.a = a. This shows that J is regular.

Let $a \in I \subseteq J$. Since J is regular, there exists an element $b \in J$ such that a = a.b.a, $a = a.b.a = (a.b).a \in I^2$ [Since I is an ideal of J therefore $a b \in I \forall a \in I \text{ and } \forall b \in J$]

Therefore $l \subset l^2$

obviously $I^2 \subset I$

Hence $l^2 = I$

From result 2.4.8. It follows that I is a generalised weakly pseudo-right ideal of N. Therefore I is a generalised weakly pseudo-right ideal of N [Result 2.4.10].

Hence I is generalised weakly pseudo-ideal of N.

For any subset T of N we define $\overline{T} = \{ t^2 / t \in T \}$.In connection with this we have.

<u>Result 2.6.9</u>: If a commutative near-ring N is regular then $A \cap B = A \circ \overline{B}$, where A is generalised weakly pseudo-ideal and B is a bi-ideal of N.

Proof: Let N be a commutative regular near-ring. We know

A o $\overline{B} = \{\sum_{i=1}^{n} a_i b_i^2 / a_i \in A, b_i \in B , n \text{ is finite}\}\$ Since A is generalised weakly pseudo ideal. $a_i b_i^2 \in A, \forall i \text{ So Ao } \overline{B} \subseteq A$. Again since each $ai.bi^2 = (a_i.b_i).b_i = (b_i.a_i).b_i$ [by commutativity of N]. Therefore $a_i b_i^2 \in BNB$, $\forall i$ [Since $bi.ai. b_i \in BNB$, $\forall i$]. Now $a_i.b_i^2 = b_i.a_i.b_i$ $= (b_i.a_i).(0+b_i)$ [See Result 0.2.1] $= (b_i a_i).(0+b_i) - 0.b_i.a_i$ [Since $0.n=0 \forall n \in N$]

 $= (b_{i.}a_{i}).(0+b_{i}) - 0.b_{i.}a_{i}$ [Since $0.n=0 \forall n \in N$] = $(b_{i.}a_{i}).(0+b_{i}) - b_{i.}a_{i.}.0$ [by commutativity of N] = $b_{i.}a_{i.}.(0+b_{i}) - b_{i.}a_{i}.0 \in (BN) * B$ [See definition 0.1.13]

Therefore $a_i b_i^2 \in BNB \cap (BN) * B \subseteq B$ [See definition 0.1.13]

Hence
$$\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{b}_{i}^{2} \in \mathbf{B}$$

Therefore Ao $\overline{B} \subseteq B$

Therefore Ao $\overline{B} \subseteq A \cap B$ ------ (1)

On the other hand , let $a \in A \cap B \subseteq N$

Since N is a regular near-ring.

Thus for $a \in N$ there exists an element $x \in N$ such that $a=a.x.a = a.(x.a)^4$

[Since x.a is an idempotent see Result 0.2.7]

$$= a(x.a.x.a)^{2}$$

$$= a(a.x.x.a)^{2}$$
[By commutativity of N]

$$= a(a.x^{2}.a)^{2} \in A \circ \overline{B}$$
[Since $a \in B$, $x^{2} \in N \Rightarrow a.x^{2}a \in BNB$ and $a.x^{2} \in BN$, $a.x^{2}a = a.x^{2}(0+a) = a.x^{2}(0+a) - 0 = a.x^{2}(0+a) - 0.(a.x^{2}) = a.x^{2}(0+a) - (a.x^{2}).0 \in BN * B.$
Therefore $a.x^{2}.a \in BNB \cap (BN)^{*} B \subseteq B$. See Def. 0.1.13]
Therefore $A \cap B \subseteq A \circ \overline{B}$
From (1) and (2) we get $A \cap B = A \circ \overline{B}$.

Every bi-ideal in a near-ring N need not be a generalised weakly pseudo-ideal. This we establish in the following example.

Example 2.6.10 : (Clay , 2.2 13)

Consider the near-ring $N = \{0,a,b,c\}$ with addition and multiplication defined by the following tables.

+	0	a	b	с]		0	а	b	с
0	0	а	b	С		0	0	0	0	0
a	а	0	с	b		a	0	а	b	c
b	b	С	0	а		b	0	0	0	0
С	С	b	a	0		С	0	a	b	с

Let I ={0,a} Here I is a bi-ideal of N. But I is not a generalised weakly pseudo-ideal of N. Because , for $a \in I$ and $c \in N$, $a.c^2 = a.c = c$. Therefore $a.c^2 \notin I$.

ī

Every generalised weakly pseudo-ideal in a near-ring need not be a bi-ideal. This is a proved in the following example

Example 2.6.11 : Let < N, +, . > be the near-ring of all integers. Let A $= \{a \mid a \ge 0, a \text{ is an integer}\}$. Here A is a generalised weakly pseudoideal of N. But additive inverse of any element in A does not exists in A. Hence < A, +> is not a subgroup of < N, +>. Therefore A is not a bi-ideal of N.

Result 2.6.12 : A Commutative near-ring N without any divisor of zero and $N_d \neq \{0\}$ will be a near-field iff for any generalised weakly pseudo ideal A, $a \in N \setminus A$ (the complement of A in N) and $x(\neq 0) \in N$ implies $x^2a \in N \setminus A$

Proof: First suppose commutative near-ring N without any divisor of zero will be a near-field. For any $a \in N\setminus A$ and $x(\neq 0) \in N$ $x^2.a \in A$ implies $a=1.a=(x^{-1}.x).a = (x^{-1}.x)^2.a=(x^{-1})^2.x^2.a = x^2.a.$ $(x^{-1})^2 \in A$ (Since A is generalised weakly pseudo- ideal of N) Which is contradiction .Therefore $x^2.a \notin A$ Hence $x^2.a \in N\setminus A$

Conversely, let the given condition hold in N. Let $a(\neq 0) \in N$. We shall show Na=N.

If possible let $Na \neq N$ and $b \in N \setminus Na$. Then $a^2b \in N \setminus Na$ but $a^2 \cdot b = b \cdot a^2 = (ba) \cdot a \in Na$.

This is contradiction so Na=N. Hence N is a near-field (From Result 0.2.8)