CHAPTER 1

WEAKLY PSEUDO-IDEALS IN NEAR-RINGS

CHAPTER 1

WEAKLY PSEUDO - IDEALS IN NEAR - RINGS.

§ 1.0 Introduction

Throughout this chapter N denotes a right near-ring. Pseudo – right ideal in a left near-ring is introduced by Gerald Berman and Robert J. Silver-man [2]. In the same way we have defined a pseudo-left ideal in a right near-ring N as, "A Pseudo-left ideal < I, +, .> is a normal subnear-ring of < N, +, .> such that n.i. $- n.0 \in I$, for each $i \in I$ and for each $n \in I$ "

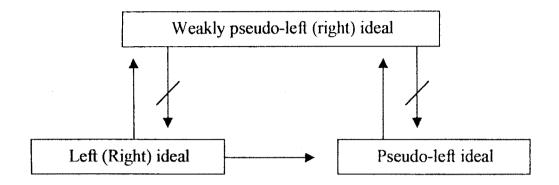
Generalization of the concept of pseudo-left ideal in a right nearring N is done in this chapter, we name it weakly pseudo-left ideal. For defining weakly pseudo-left (right) ideals in N, a help is taken of the paper, 'On pseudo ideals of semigroups', by M.K. Sen [4].

In this chapter we have studied some properties of weakly pseudoleft (right) ideals in near-rings. We have shown that every left (right) ideal in N is a weakly pseudo-left (right) ideal, but converse is not true. Also we have shown that in a Boolean near-ring, every weakly pseudoright ideal is a right ideal.

We have proved the following result,

- Result 1: N_o is a weakly pseudo-left ideal but not generally weakly pseudo-right ideal.
- Result 2: Intersection of subnear-ring S and weakly pseudo-ideal A of N is a weakly pseudo-ideal of S.

The relationship between ideal, pseudo-left ideal and weakly pseudo-ideals in N indicated in the following diagram.



§ Weakly pseudo-left ideal in a near-ring

§ 1.1 Definition and examples:

In this article we first define weakly pseudo left ideal in a near-ring N and give some examples of weakly pseudo-left ideals.

As a generalization of a pseudo-left ideal (Def .0.1.11) we define weakly pseudo-left ideal in a near-ring N as

Definition 1.1.1:

Let <N,+,.> be a near-ring. A non-empty subset I of N is called a weakly pseudo-left ideal in N if it satisfies the following conditions.

- (1) < I,+> is a normal subgroup af <N,+> and
- (2) n^2 .i- n^2 . $0 \in I$, $\forall i \in I$ and $\forall n \in N$.

Some examples of weakly pseudo-left ideals in near-ring are given below.

Example 1.1.2: (Clay)

Consider the near-ring $N = \{0,a,b,c\}$ with addition and multiplication as given by the following tables.

+	0	a	b	С	
0	0	a	b	С	
a	a	0	c	b	
ь	b	c	0	a	
c	С	b	a	0	

•	0	a	b	С
0	0	0	0	0
a	0	0	a	a
b	0	a	b	c
С	0	a	b	С

Let $I=\{0,b\}$, I is a weakly pseudo -left ideal in N.

Example 1.1.3: (Clay, 2.2,13)

Consider the near-ring $N = \{0,a,b,c\}$ with addition and multiplication defined by the following tables.

+	0	a	b	С	
0	0	a	_ b	c	
		0		b	
a b	a		C		
b	b	С	0	a	
С	С	b	a	0	

	0	a	b	С
0	0	0	0	0
a	0	a	b	С
b	0	0	0	0
С	0	a	b	С

The subsets $\{0,a\}$, $\{0,b\}$ and $\{0,c\}$ are weakly pseudoleft ideals in N.

Example 1.1.4: (Clay, 2.2,2)

Consider the near-ring $N=\{0,a,b,c\}$ under the addition and multiplication defined by the following tables.

+	0	a	b	С	
0	0	a	b	С	-
a	a	0	c	b	
ь	b	c	0	a	
c	c	b	a	0	

	0	a	b	С	
0	0	0	0	0	
a	0	0	a	a	
b	0	a	b	b	
С	0		С	c	

Let $I = \{0,c\}$. Here, $b^2 \cdot c - b^2 \cdot 0 = b \cdot c - 0 = b \notin I$, for $c \in I$ and $b \in N$. Therefore I is not a weakly pseudo-left ideal. From this example we say that every non-empty subset of a near-ring need not be a weakly pseudo-left ideal.

[..]

[..]

In any near-ring every pseudo-left ideal is a weakly pseudoleft ideal. It is proved in the following result.

Result 1.1.5: Every pseudo-left ideal in a near-ring is a weakly pseudo-left ideal.

Proof: Let < N, +, .> be a near-ring. Let I be a pseudo-left ideal in N. Therefore < I, +> is a normal subgroup of < N, +> and n.i-n.0 $\in I$, \forall i $\in I$ and \forall n \in N.(See Def. 0.1.11). If $n \in N$ then $n^2 \in N$.

Hence $n^2 \cdot i - n^2 \cdot 0 \in I$, $\forall i \in I$ and $\forall n \in N$.

Thus I is a weakly pseudo-left in N.

Converse of the result 1.1.5 need not be true. This we establish by the following example.

Example 1.1.6 :- (Clay)

Consider the near-ring $N=\{0,a,b,c\}$ with addition and multiplication as given by the following tables.

•						
	+	0	a	b	c	
	0	0	a	b	С	
	a	a	0	c	b	
	b	b	c	0	a	
	С	С	b	a	0	
-						

	0	a	b	С
0	0	0	0	0
a	0	0	a	a
b	0	a	b	c
С	0	a	b	c

Let $I = \{0,b\}$. Here I is weakly pseudo-left ideal of N. But as, a.b-a.0= $a - 0 = a \notin I$, for $b \in I$ and $a \in N$. Hence I is not a pseudo-left ideal.

Every left ideal in a near-ring is a weakly pseudo-left ideal in N. It is established in the following result.

Result 1.1.7: Every left ideal in a near-ring is a weakly pseudo-left ideal.

Proof: Let < N, +, .> be a near-ring. Let l be a left ideal in a near-ring N. Therefore < l, +> a normal subgroup of < N, +> and $n(n'+l) - n.n' \in l$ for all $n, n' \in N$ and for all $i \in l$.

If $n \in \mathbb{N}$ then $n^2 \in \mathbb{N}$.

Therefore $n^2 \cdot i - n^2 \cdot 0 = n^2(0+i) - n^2 \cdot 0 \in 1$. [Since I is a left ideal.]

Hence $n^2.i - n^2.0 \in I$, $\forall n \in N$ and $\forall i \in I$.

Therefore, I is a weakly pseudo-left ideal in N.

Converse of the result 1.1.7 need not be true. This we establish by the following example.

Example 1.1.8: (Clay)

Consider the near-ring $N = \{0,a,b,c\}$ under the addition and multiplication as given by the following tables.

+	0	a	b	С	
0	0	a	b	С	
a	a	0	c	b	
b	b	c	0	a	
c	С	b	a	0	

	0	a	b	С	
0	0	0	0	0	
a	0	0	a	a	
b	0	a	b	c	
С	0	a	b	c	

Let $I = \{0,b\}$. Here I is a weakly pseudo-left ideal in N. But as a(c+b)-a.c = a.a- $a = 0+a = a \notin I$, for $b \in I$ and $a,c \in N$. Hence I is not a left ideal in N.

§ 1.2 Properties of weakly pseudo-left ideals

In this article we study some properties of weakly pseudoleft ideals in near-rings.

Result 1.2.1: Intersection of any collection of weakly pseudo-left ideals in a near-ring N is a weakly pseudo-left ideal.

Proof: Take $I = \bigcap \{ I_i / I_i \text{ is a weakly pseudo-left ideal in N} \}$. To prove that I is a weakly pseudo-left ideal in N.

Since $l_i \neq \emptyset$ $\forall i$ and $0 \in l_i$ $\forall i$ Hence $0 \in \cap_i l_i = I$.

Therefore $I \neq \emptyset$.

(1) Intersection of any collection of normal subgroups in N being normal (see Result 0.2.2)

we get < I, +> is a normal subgroup in < N, +>.

(2) Let $x \in I$ and let $n \in N$. Therefore $x \in I_i$ where I_i is a weakly pseudoleft ideal in N.

By definition of weakly pseudo-left ideal, $n^2.x$ - $n^2.0 \in I_i$, $\forall \ I_i$.

Hence $n^2 \cdot x - n^2 \cdot 0 \in \cap_i I_i$, $\forall x \in I_i$ and $\forall n \in \mathbb{N}$.

Therefore $n^2 \cdot x - n^2 \cdot 0 \in I$, $\forall x \in I$ and $\forall n \in N$.

This proves that I is a weakly pseudo-left ideal in N.

By the definition of a Moore family of subsets of a given set (see Def. 0.1.15) we get,

Corollary 1.2.2: Set of all weakly pseudo-left ideals in a near-ring N forms a Moore family of subsets of N.

Proof: (1) Every near-ring N is a weakly pseudo-left ideal (By Def. 1.1.1)

(2) Intersection of any collection of weakly pseudo-left ideals in a nearring N is a weakly pseudo-left ideal. (by Result 1.2.1)

Hence from (1) and (2) set of all weakly pseudo left ideals in N forms a Moore family of subsets of N.

Union of any two weakly pseudo-left ideals need not be a weakly pseudo-left ideal. For this consider the following example.

Example 1.2.3 (Clay 2.2, 13)

Consider the near-ring $N = \{0,a,b,c\}$ under the addition and multiplication defined by the following tables.

+	0	a	b	С	
0	0	a	b	С	
a	a	0	c	b	
a b	b	c	0	a	
С	С	b	a	0	

	0	a		С
0	0	0	0	0
a	0	a	b	c
b	0	0	0	0
С	0	a	b	С

Here $A=\{0,a\}$ and $B=\{0,b\}$ are weakly pseudo-left ideals in N.

Thus AUB = $\{0, a, b\}$.

As, $a+b=c \notin AUB$, for $a,b \in AUB$.

Therefore AUB is not a weakly pseudo-left ideal in N.

§ Weakly pseudo-right ideal in a near-ring

§ 1.3 Definition and examples:

In this article our aim is to define weakly pseudo-right ideal in a near-ring and to provide some examples of weakly pseudo-right ideal.

Definition 1.3.1:

Let $\langle N, + , . \rangle$ be a near-ring. A non-empty subset I of N is called weakly pseudo-right ideal in N if it satisfies the following conditions .

- (1) $\langle I, + \rangle$ is a normal subgroup of $\langle N, + \rangle$ and
- (2) $i.n^2 \in I, \forall i \in I \text{ and } \forall n \in N.$

Examples of weakly pseudo-right ideals in near-rings are given below.

Example 1.3.2: (Clay, 2.1, 10)

Consider the near-ring $N=\{0,a,b,c\}$ with addition and multiplication defined by the following tables.

+	0	a	b	С	
0	0	a	b	С	
a	a	b	c	0	
a b	b	c	0	a	
С	С	0	a	b	

	0	a	b	С
0	0	0	0	0
a	0	a	b	a
b	0	b	0	b
С	0	c	b	c

Let $I = \{0,b\}$. Here I is weakly pseudo-right ideal in N.

Example 1.3.3 (Clay, 2.2, 2)

Consider the near-ring $N=\{0,a,b,c\}$ under the addition and multiplication defined by the following tables.

+	0	a	b	С	
0	0	a	b	С	
a	a	0	c	b	
b	b	c	0	a	
c	С	b	a	0	

	0	a	b	С
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
С	0	a	c	С

Let $I = \{0,c\}$. Here I is a weakly pseudo-right ideal in N.

But $b^2 \cdot c - b^2 \cdot 0 = b \cdot c - 0 = b \notin I$, for $b \in N$ and $c \in I$.

Therefore I is not a weakly pseudo-left ideal in N.

Example 1.3.4: (Clay, 2.2, 13)

Consider the near-ring N={0,a,b,c} with addition and multiplication defined by the following tables.

+	0	a	b	С
0	0	a	b	С
a	a	0	c	b
b	b	c	0	a
С	¢	b	a	0

	0	a	b	С
0	0	0	0	0
a	0	a	b	С
b	0	0	0	0
С	0	a	b	С

Let $I = \{0,c\}$. Here I is weakly pseudo-left ideal in N but not a weakly pseudo-right ideal. Because $c.a^2 = c.a = a \notin I$, for $c \in I$ and for $a \in N$.

From the above two examples we say that weakly pseudoleft ideal and weakly pseudo-right ideal in a near-ring are independent concepts.

A relation between right ideal and weakly pseudo-right ideal is established in the following result.

Result 1.3.5: Every right ideal in a near-ring is a weakly pseudo-right ideal.

Proof: Let < N, +, . > be a near-ring. Let I be a right -ideal in N. Therefore < I,+> is a normal subgroup of < N,+> and $i.n \in I$, $\forall i \in I$ and $\forall n \in N$. If $n \in N$ then $n^2 \in N$.

Therefore $i.n^2 \in I$, $\forall i \in I$ and $\forall n \in N$.

Hence I is a weakly pseudo-right ideal in N.

But every weakly pseudo-right ideal in a near-ring need not be a right ideal. This is established in the following example.

Example 1.3.6: (Clay, 2.2, 2)

Consider the near-ring N {0,a,b,c} with addition and multiplication is defined by the following tables.

-1-	0	a	b	c	
0	0	a	b	С	
a	a	0	c	b	
b	b	C	0	a	
c	С	b	a	0	

	0	a	b	С
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
С	0	a	c	c

Consider $I = \{0,c\}$. I is weakly pseudo-right ideal in N. But as $c.a=a \notin I$, for $c \in I$ and $a \in N$. Therefore I is not a right ideal.

§1.4 Properties of weakly pseudo-right ideals:

In this article we study some properties of weakly pseudoright ideals in near-rings.

When a near-ring N is a Boolean near-ring (see Def .0.1.12) the converse of the result 1.3.5 holds. This is established in the following result.

Result 1.4.1: Every weakly pseudo-right ideal in a Boolean nearring is a right ideal.

Proof: Let $\langle N, +, . \rangle$ be a Boolean near-ring. Therefore $n^2 = n$, $\forall n \in N$ (see Def.0.1.12). Let I be a weakly pseudo-right ideal in N. Then $\langle 1, + \rangle$ is a normal subgroup of $\langle N, + \rangle$ and i.n² \in I, \forall i \in I and \forall n \in N.

Thus $i.n = i.n^2 \in I$, $\forall i \in I$ [Since $n^2 = n$, $\forall n \in N$].

i.e. i.n \in I, \forall i \in I and \forall n \in N.

Therefore I is a right ideal in N.

-

Result 1.4.2: Intersection of any collection of weakly pseudo-right ideals in a near-ring N is a weakly pseudo-right ideal.

Proof: Take $I = \bigcap \{I_i/I_i \text{ is a weakly pseudo-right ideal in N} \}$. To prove that I is a weakly pseudo-right ideal in N.

- (1) As intersection of any collection of a normal subgroups in N is a normal subgroup in N (see Result 0.2.2) We get < 1,+> is a normal subgroup < N,+>.
- (2) Let $x \in I$ and let $n \in N$. Therefore $x \in I_i$ where I_i is a weakly pseudo-right ideal in N. By definition of weakly pseudo-right ideal in N, $x.n^2 \in I_i$, $\forall I_i$, Therefore $x.n^2 \in \cap_i I_i$

Hence $x.n^2 \in I$, $\forall x \in I$ and $\forall n \in N$.

This proves that I is a weakly pseudo-right ideal in N.

As N itself is a weakly pseudo-right ideal, by definition of Moore family of subsets of a given set (see Def 0.1.15) and by result 1.4.2 we get the following corollary.

Corollary 1.4.3: Set of all weakly pseudo-right ideals in a near-ring N forms a Moore family of subsets of N.

Union of any two weakly pseudo-right ideals need not be a weakly pseudo-right ideal. For this consider the following example

Example 1.4.4: (Clay, 2.2,2)

Consider the near-ring $N=\{0,a,b,c\}$ under the addition and multiplication defined by the following tables.

+	0	a	b	С	
0	0	a	b	С	
a	a	0	c	b	
b	b	c	0	a	
c	С	b	a	0	

	0	a	b	С	
0	0	0	0	0	
a	0	0	a	a	
b	0	a	b	b	
С	0	a	c	c	

Let $A = \{0,a\}$ and $B=\{0,c\}$ be any two weakly pseudo-right ideals in N. $AUB = \{0,a,c\}$ as, $a+c=b \notin AUB$ for $a,c\in AUB$

Therefore AUB is not a weakly pseudo-right ideal in N.

In a commutative near-ring the two concepts of weakly pseudo-left ideal and of weakly pseudo-right ideal coincide. This we prove in the following result.

Result1.4.5: In a commutative near-ring N, a non-empty subset A is weakly pseudo-left ideal in N iff A is weakly pseudo-right ideal in N.

Proof: Let < N,+, .> be a commutative near-ring. First suppose A is weakly pseudo-left ideal in N. Therefore $< \Lambda,+>$ is a normal subgroup of < N,+> and $n^2.a - n^2.0 \in A$, $\forall a \in A$ and $\forall n \in N$. Since N is commutative, therefore $n^2.a - n^2.0 = a.n^2 - 0.n^2 = a.n^2 - 0 = a.n^2$ [see Def. 0.1.3 and Result 0.2.1] Hence $.a.n^2 = n^2.a - n^2.0 \in A$, $\forall a \in A$ and $\forall n \in N$. Thus A is weakly pseudo-right ideal.

Conversely suppose A is weakly pseudo-right ideal in N. Therefore < A,+> is a normal subgroup of < N,+> and $a.n^2 \in A$, $\forall a \in A$ and $\forall n \in N$. Therefore $n^2.a - n^2.0 = a.n^2 - 0 \cdot n^2 = a.n^2 - 0 = a.n^2 \in A$ [Since N is commutative, see Def. 0.1.3 and result 0.2.1] Hence $n^2.a - n^2.0 \in A$ $\forall a \in A$ and $\forall n \in N$. Thus A is weakly pseudo-left ideal in N.

If A and B are two non-empty subsets of a near-ring N, then we define $A+B=\{a+b \mid a\in A \text{ and } b\in B\}$. When A and B are weakly pseudo-right ideals we get,

Result 1.4.6: Let < N,+, . > be a near-ring. Let A and B two weakly pseudo-right ideals in N. Then A+B is the smallest weakly pseudo-right ideal containing both A and B.

Proof: Here $A+B = \{ a+b / a \in A \text{ and } b \in B \}$. Since A and B are weakly pseudo-right ideals in N.

Therefore < A, +> and < B, +> are normal subgroups of < N, +> and $a.n^2 \in A$ and $b.n^2 \in B$, $\forall a \in A$, $\forall b \in B$ and $\forall n \in N$. As A and B are normal subgroups of < N, +>, therefore < A + B, +> is a normal subgroup of < N, +> [See result 0.2.3]

Let $x \in A+B$ and let $n \in N$.

Therefore x = a+b, for some $a \in A$ and $b \in B$.

Therefore $x.n^2 = (a+b) \cdot n^2 = a.n^2 + b.n^2 \in A+B$ [See Def. 0.1.1. and $a.n^2 \in A$, $\forall a \in A$ and $\forall n \in N$, $b.n^2 \in B$, $\forall b \in B$ and $\forall n \in N$]

Hence $x.n^2 \in A+B$, $\forall x \in A+B$ and $\forall n \in \mathbb{N}$ -----(2)

Therefore from (1) and (2), A+B is a weakly pseudo-right ideal in N.

Since $0 \in B$. For any $a \in A$, $a = a+0 \in A+B$

Therefore $A \subseteq A+B$. Similary $B \subseteq A+B$. Let C be any weakly pseudoright ideal in N such that $A \subseteq C$ and $B \subseteq C$.

To prove that $A-B \subseteq C$.

Let $x \in A+B$.

Therefore x = a+b for some $a \in A$ and $b \in B$.

Since $A \subseteq C$, therefore $a \in C$ and $B \subseteq C$, therefore $b \in C$. Hence $x = a+b \in C$ [Since C is weakly pseudo-right ideal of N]. Therefore $A+B \subseteq C$. Hence A+B is the smallest weakly pseudo-right ideal containing both A and B.

Result 1.4.7: Let < N, +, > be a near-ring. Zero-symmetric subnear-ring N_o is a weakly pseudo-left ideal of N but not generally weakly pseudo-right ideal.

Proof: Let < N, +, .> be a near-ring . let N_o be a zero-symmetric subnear-ring of N . $N_o = \{ n \in N \mid n.0 = 0 \}$.

To prove that No is weakly pseudo-left ideal of N.

(1) To prove that $< N_{o} + >$ is normal subgroup of $< N_{o} + >$.

Let a,b∈N₀

Therefore a.0 = 0 and b.0 = 0

Therefore (a-b).0 = a.0 - b.0 = 0-0 = 0

Therefore (a-b) $\in N_0 \ \forall \ a,b \in N_0$

Let $n \in \mathbb{N}$, $a \in \mathbb{N}_0$

Therefore (n+a-n).0 = n.0 + a.0 - n.0 = n.0 + 0 - n.0 = n.0 - n.0 = 0.

Therefore $(n+a-n) \in N_0$, $\forall n \in N$ and $\forall a \in N_0$.

Hence $< N_{op} + >$ is a normal subgroup of $< N_{op} + >$

(2) Let $n \in \mathbb{N}$ and $a \in \mathbb{N}_0$

Therefore
$$(n^2.a - n^2.0).0 = (n^2.a).0 - (n^2.0).0$$

= $n^2.(a.0) - n^2.(0.0) = n^2.0 - n^2.0 = 0$

Hence $(n^2.a - n^2.0) \in N_o \ \forall \ n \in N \text{ and } \forall a \in N_o$

Therefore No is weakly pseudo-left ideal of N.

But N_o is not a weakly pseudo-right ideal of N. This we prove in the following example.

Let R be a ring. Let $N = \{ f/f : R \rightarrow R \text{ be a function } \}$

Define '+' and 'o' on N as follows,

$$(f+g)(x)=f(x)+g(x)$$

$$(fog)(x) = f[g(x)] \quad \forall x \in R \text{ and } \forall f, g \in N$$

Therefore, < N, +, o > is a near-ring.

Let
$$N_0 = \{ f \in N / f_0 0 = 0 \}$$

Where $0: R \rightarrow R$ is a zero function.

Therefore 0(x) = 0, $\forall x \in \mathbb{R}$.

Here N_o is a weakly pseudo - left ideal of N.

Identity map i:R \rightarrow R [defined by i(x) = x , \forall x \in R] is an element in N_o

Consider $g: R \to R$ defined by $g(x) = 1 \quad \forall x \in R$.

Therefore $g \in N$

Now consider (iog²)

Therefore
$$(iog^2)(x) = i[g^2(x)] = i[gog(x)]$$

= $(iog)[g(x)]$
= $iog(1)$
= $i[g(1)]$
= $i(1)=1$

Hence $(iog^2)(x) = 1$, $\forall x \in R$

Therefore $(iog^2)(0) = 1$

Hence $(iog^2) \notin N_0$ for $i \in N_0$ and $g \in N$.

Thus No is not a weakly pseudo-right ideal.

§ Weakly Pseudo-ideal in a near-ring

§ 1.5 Definition and examples:

In this section we define weakly pseudo-ideal in a near-ring N and give some examples of a weakly pseudo-ideal in a near-ring.

We know every weakly pseudo-left ideal in a near-ring need not be a weakly pseudo-right ideal and every weakly pseudo-right ideal in a near-ring need not be a weakly pseudo-left ideal (see Example 1.3.4 and Example 1.3.3). This motivates us to define

Definition 1.5.1:

Let < N, +, .> be a near-ring . A non-empty subset I of N is called a weakly pseudo-ideal in N if it satisfies the following conditions

- (1) < I,+> is a normal subgroup of < N,+>.
- (2) $n^2 \cdot i n^2 \cdot 0 \in I$, $\forall i \in I$ and $\forall n \in N$.
- (3) $i.n^2 \in I$, $\forall i \in I$ and $\forall n \in N$.

Some examples of weakly pseudo-ideals in near-rings are given below.

Example 1.5.2: (Clay, 2.1, 10)

Consider the near-ring $N = \{0, a, b,c\}$ with addition and multiplication as given by the following tables

+	0	a	b	С	
0	0	a	b	С	
a	a	b	c	b	
a b	b	c	0	a	
С	c	0	a	b	

	0	a	b	С
0	0	0	0	0
a	0	a	b	a
a b	0	b	0	b
c	0	c	b	c

Let $I = \{0,b\}$. I is both weakly pseudo-left ideal as well as weakly pseudo-right ideal in N. Thus I is weakly pseudo-ideal in N.

Example 1.5.3: (Clay, 2.2,13)

 $N = \{ 0, a, b, c \}$ is a near-ring under the addition and multiplication defined by the following tables.

+	0	a	b	С	
0	0	a	b	C	
a	a	0	С	b	
b	b	c	0	a	
С	c	b	a	0	

•	0	a	b	С
0	0	0	0	0
a	0	a	b	С
b	0	0	0	0
С	0	a	b	С

The subsets $\{0,a\}$, $\{0,b\}$ and $\{0,c\}$ are weakly pseudoleft ideals of N, whereas $\{0,b\}$ is its only weakly pseudo-ideal.

§ 1.6 Properties of weakly pseudo-ideals

Using the result 1.1.7 and result 1.3.5 we get the following result.

Result 1.6.1: Every ideal in a near-ring N is a weakly pseudo-ideal in N.

1 1

Converse of the result 1.6.1 need not be true. This is established in the following example

Example 1.6.2: (Pilz, page 408)

Consider the near-ring $N=\{0, a, b, c\}$ with addition and multiplication as g iven by the following tables.

+	0	a	b	С	
0	0	a	b	С	
a	a	0	c	b	
b	b	c	0	a	
C	С	b	a	0	

•	0	a	b	С	
0	0	0	0	0	
a	0	b	0	b	
b	0	0	0	0	
С	0	b	0	b	

Let $I = \{0,a\}$. I is weakly pseudo-left ideal as well as weakly pseudo-right ideal in N. Therefore I is weakly pseudo-ideal in N.But as $a.a = b \notin I$ for $a \in I$ and $a \in N$. Hence I is not a right ideal of N. Therefore I is not an ideal.

Union of any two weakly pseudo-ideal in a near-ring N need not be a weakly pseudo-ideal. This is established in the following example.

Example 1.6.3: (Pilz, page 408)

Consider the near-ring N={ 0, a, b, c} with addition and multiplication as given by the following tables.

+	0	a	b	С	
0	0	a	b	С	_
a	a	0	c	b	
b	b	c	0	a	
С	С	b	a	0	

·	0	a	b	С	
0	0	0	0	0	
a	0	b	0	b	
b	0	0	0	0	
С	0	b	0	b	

Let $A = \{0,a\}$ and $B = \{0,b\}$ be two weakly pseudo-ideals in N AUB = $\{0,a,b\}$. But as, $a+b=c \notin AUB$, for $a,b \in AUB$. Therefore AUB is not a weakly pseudo-ideal in N.

Intersection of weakly pseudo-ideal Λ and a subnear-ring S of N is weakly pseudo- ideal of S. This we prove in the following result.

Result 1.6.4: If A is a weakly pseudo-ideal of a near-ring N and S is a subnear-ring of N then $A \cap S$ is a weakly pseudo-ideal of S.

Proof: Let $\le N$, +, $\cdot >$ be a near-ring. Let A be a weakly pseudo-ideal of N. Let S be a subnear-ring of N.

To prove that $< A \cap S$, + > is a normal subgroup of < N, + >.

Let $x \in A \cap S$, $n \in S \subseteq N$

Therefore $x \in A$ and $x \in S$, $n \in S$

Therefore $n+x-n \in A$ and $n+x-n \in S$ [Since A, + > A is normal subgroup of A, + > A and $A \in S, + > A$ is a subgroup of $A \in S, + > A$]

Hence $n+x-n \in A \cap S$, $\forall x \in A \cap S$ and $\forall n \in S$.

Therefore $< A \cap S$, + > is normal subgroup of < N, + >. ---- (1)

Now to prove that $n^2.x - n^2.0 \in A \cap S$, $\forall x \in A \cap S$ and $\forall n \in S$

Let $x \in A \cap S$ and let $n \in S \subseteq N$.

Therefore $x \in A$ and $x \in S$, $n \in S$.

Therefore $n^2.x - n^2.0 \in A$ and $n^2.x - n^2.0 \in S$. [Since A is weakly pseudo-ideal in N and S is a subnear-ring of N].

Therefore $n^2 \cdot x - n^2 \cdot 0 \in A \cap S$, $\forall x \in A \cap S$ and $\forall n \in \mathbb{N}$ ----(2)

To prove that $x.n^2 \in A \cap S$, $\forall x \in A \cap S$ and $\forall n \in S$.

Let $x \in A \cap S$ and let $n \in S \subseteq N$.

Therefore $x \in A$ and $x \in S$, $n \in S$

Therefore $x.n^2 \in A$ and $x.n^2 \in S$. [Since A is weakly pseudo-ideal in N and S is a subnear-ring of N.]

Therefore $x.n^2 \in A \cap S$, $\forall x \in A \cap S$ and $\forall n \in S$ (3)

Hence from (1), (2) and (3), $A \cap S$ is a weakly pseudo-ideal in S.

For any non-empty subset A of N, we define

 $xAy = \{x.a.y / a \in A\}$ where $x,y \in N$.

Result 1.6.5: If A is a weakly pseudo-ideal of commutative near-ring N then $xAx \subseteq A$, $\forall x \in N$.

Proof : Let $\langle N,+,.\rangle$ be a commutative near-ring. Let A be a weakly pseudo-ideal of N. Therefore $\langle A,+\rangle$ is a normal subgroup of $\langle N,+\rangle$ and $x^2.a - x^2.0 \in A$, $\forall a \in A$ and $\forall x \in N$ and $a.x^2 \in A$, $\forall a \in A$ and $\forall x \in N$. Since N is commutative near-ring (see Def 0.1.3) Therefore $x.a.x = (x.a).x = (a.x).x = a.(x.x) = a.x^2$. Therefore $x.a.x = a.x^2 \in A$, $\forall a \in A$ and $\forall x \in N$. Therefore $x.Ax \subseteq A$, $\forall x \in N$.

