

Chapter-0

PRELIMINARIES AND NOTATIONS

(0.1) Definitions and Theorems:

* Periodic Function :- A function $f(x)$, which satisfies the relation $f(x+T)=f(x)$ for all x is said to be a periodic function.

The smallest positive number T, for which this relation holds, is called the period of $f(x)$.

* Dirichlet's Conditions :- A function $f(x)$ defined in the interval $C_{1} \leq x \leq C_{2}$ can be expressed as Fourier series if in the interval.
i) $\quad f(x)$ and its integrals are finite and single valued.
ii) $f(x)$ has finite number of discontinuities.
iii) $F(x)$ has finite number of maximum and minimum.

These conditions are known as Dirichlet's conditions.

* Fouriex Integral :- If $f(x)$ satisfies Dirichlet's conditions in each finite interval $-1 \leq x \leq 1$ and if $f(x)$ is integrable in $(-\infty, \infty)$ then Fourier integral theorem states that

$$
\begin{equation*}
f(x)=(1 / \pi) \int_{0}^{\infty} \int_{-\infty}^{\infty} f(s) \cos (w(s-x)) d w d s \tag{0.1.1}
\end{equation*}
$$

* Tourier Sine and Comine integrals :- The above integrals can be written as

$$
\begin{align*}
f(x)= & (1 / \pi) \int_{0}^{\infty} \int_{-\infty}^{\infty} f(s)[\operatorname{cosws} \operatorname{coswx}] d w d s \\
& +(1 / \pi) \int_{0}^{\infty} \int_{-\infty}^{\infty} f(s) \text { Sinws Sinwx dw ds } \tag{0.1.2}
\end{align*}
$$

$f(x)=(1 / \pi) \int_{0}^{\infty} \operatorname{coswx} \int_{-\infty}^{\infty} f(s) \operatorname{cosws} d w d s$

$$
+(1 / \pi) \int_{0}^{\infty} \operatorname{Sinwx} \int_{-\infty}^{\infty} f(s) \text { Sinws } d w d s
$$

* Fourier Cosine Integral :- When $f(x)$ is even function second integral in (0.1.3) will be Zero and we will get,

$$
\begin{equation*}
f(x)=(2 / \pi) \int_{0}^{\infty} \text { cosws } \int_{0}^{\infty} f(s) \text { cosws } d w d s \tag{0.1.4}
\end{equation*}
$$

Fouriar sine Integral :- When $f(x)$ is odd function the first integral will be zero and we get,

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \operatorname{sinwx} \int_{0}^{\infty} f(s) \sin w s d w d s
$$

* Complex form of Fourier Integral :-

$$
\begin{equation*}
f(x)=(1 / 2 \pi) \int_{-\infty}^{\infty} e^{i w x} d w \int_{-\infty}^{\infty} f(s) e^{-i w s} d s \tag{0.1.6}
\end{equation*}
$$

is called the complex form of the Fourier integral. Then the expression defined by

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-i w s} f(s) d s \text { or } \int_{-\infty}^{\infty} e^{-i w t} f(t) d t \tag{0.1.7}
\end{equation*}
$$

is called F.T. of $f(t)$ and denoted by $F(w)$. Typically $f(t)$ is termed as a function of the variable time and $F(w)$ is termed as a function of the variable frequency.

* Inverse Fourier Tranaform :- If $F(w)$ is the F.T. of $f(t)$ and if $F(t)$ satisfies Dirichlet's conditions in every finite interval (-1,1)
and if $\int_{-\infty}^{\infty}|f(t)| d t$ is convergent then at every point of
continuity

$$
\begin{equation*}
f(t)=(1 / 2 \pi) \int_{-\infty}^{\infty} F(W) e^{i v t} d w \tag{0.1.8}
\end{equation*}
$$

$f(t)$ is called the inverse $F . T$. of $F(w)$.

Thus inversion transformation (0.1.8) allows the determination of a function of time from its F.T.

* Some Important Propertien :-In dealing with F.T. there are

a few properties which are basic to a thorough understanding

1) Innearity :- If $F(w)$ and $G(w)$ be the $F . T$ of $f(t) \& g(t)$ resp., then.
$F[a f(t)+b g(t)]=a F(w)+b G(w)$,
Where a, b are constants.
Proof :- We have

$$
F(w)=\int_{-\infty}^{\infty} e^{-i w t} f(t) d t \& G(w)=\int_{-\infty}^{\infty} e^{-i w t} g(t) d t
$$

Therefore,

$$
\begin{aligned}
& E[a f(t)+b g(t)]=\int e^{-i v t}[a f(t)+b g(t)] d t \\
& -\infty \\
& \infty \quad \infty \\
& =a \int e^{-i w t} f(t) d t+b \int e^{-i w t} g(t) d t \\
& =a F(w)+b G(w)
\end{aligned}
$$

2) Change of Scale property (Time scaling):-

If $F(W)$ is the F.T. of $f(t)$ then $1 / a F(w / a)$ is the $F \cdot T$.
of $f(a t)$ where a is real constant greater than 0 .

Proof : $F(w)=\int_{-\infty}^{\infty} e^{-i w t} f(t) d t$
$\because \int_{-\infty}^{\infty} e^{-i w t} f(a t) d t=\int_{-\infty}^{\infty} e^{-i w(y / a)} f(y) d y / a$ (putting $a t=y$)

$$
=1 / a \int_{-\infty}^{\infty} e^{-i(w / a) y} f(y) d y
$$

this means that as the time scale expands, the frequency scale not only contracts but the amplitude increases vertically to keep the area constant
3) Shifting property :- (Time Shifting)

If $F(W)$ is the F.T.of $f(t)$ then $e^{-i m m} F(w)$ is the Fourier transform of $f(t-a)$.

Proof :

$$
\begin{aligned}
& F[f(t-a)] \quad= \int_{-\infty}^{\infty} e^{-i w t} f(t-a) d t \\
& \text { Putting } t-a=x \\
& F[f(t-a)]= \int_{-\infty}^{\infty} e^{-i w(a+x)} f(x) d x \\
&= e^{-i a w} \int_{-\infty}^{\infty} e^{-i w x} f(x) d x \\
&= e^{-i a w} F(w)
\end{aligned}
$$

Time shifting results in a change in the phase angle θ. It does not alter the magnitude of the F.T.
4) Symatry :- If $F(w)$ is the F.T. of $f(t)$ then F.T.of $F(t)$
is $f(-w)$.
Proof : The inverse F.T. is defined as

$$
\because f(t)=\int_{-\infty}^{\infty} F(w) e^{i w t} d w
$$

$$
\because f(-t) \quad=\int_{-\infty}^{\infty} F(w) e^{-i w t} d w
$$

How, interchanging the parameters $f \& w$

$$
f(-w)=\int_{-\infty}^{\infty} F(t) e^{-i v t} d t=F[F(t)]
$$

4) Change of Scale Property (frequency Scaling) :- If the inverse $F . T$. of $F(w)$ is $f(t)$, the inverse $F . T$. of $F(a w)$, a is real constant is given by $1 / a \mathrm{f}(\mathrm{t} / \mathrm{a})$

Proof :- The inverse F.T. is defined as

$$
f(t)=\int_{-\infty}^{\infty} F(w) e^{+1 w t} d w
$$

$$
\text { Now, } \left.\int_{-\infty}^{\infty} F(a w) e^{i w t} d w=\int_{-\infty}^{\infty} F\left(w^{\prime}\right) e^{i\left(w^{\prime} / a\right) t} 1 / a d w \text { (putting } a w=w^{\prime}\right)
$$

$-\infty$

$$
\begin{aligned}
& =1 / a \int F\left(w^{\prime}\right) e^{i w^{\prime}(t / a)} d w^{\prime} \\
& =1 / a f(t / a)
\end{aligned}
$$

This means that as the frequency scale expands, the amplitude of the time function increases.
6) Shifting property :- (Frequency shifting) :If $F(w)$ is shifted by a constant w_{0} its inverse transform is multiplied by $e^{i w o t}$

Proof :- The inverse F.T. is defined as

$$
f(t)=\int_{-\infty}^{\infty} e^{i w t} F(w) d w
$$

$$
\therefore \int_{-\infty}^{\infty} e^{i w t} F\left(w-w_{0}\right) d w=\int_{-\infty}^{\infty} e^{i(x+w)^{\prime} t} F(x) d x
$$

$$
=e^{i w o t} \quad \int_{-\infty}^{\infty} e^{i x t} F(x) d x
$$

$$
=e^{1 w o t} f(t)
$$

- Even Function:-If $f(t)$ is even function i.e. $f(t)=f(-t)$ then the F.T. of $f(t)$ is an even function and is real. We have

$$
\begin{aligned}
& F(w)=\int_{-\infty}^{\infty} f(t) e^{-i w t} d t \\
& =\int_{-\infty}^{\infty} f(t) \operatorname{Coswt} d t-i \int_{-\infty}^{\infty} f(t) \operatorname{Sinwt} d t \\
& =\int_{-\infty}^{\infty} f(t) \operatorname{Coswt} d t=\operatorname{Re}(w)
\end{aligned}
$$

The imaginary term is zero since the integrand is an odd function.

Similarly, if $F(w)$ is a real and even frequency function the inversion formula

$$
\begin{aligned}
& f(t)=\int_{-\infty}^{\infty} F(w) e^{i w t} d w \text { becomes } \\
& f(t)=\int_{-\infty}^{\infty} F(w) \text { Coswt dw+i } \int_{-\infty}^{\infty} F(w) \text { Sinwt dw }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} E(w) \text { Coswt } d w \\
& =\quad \operatorname{Re}(t)
\end{aligned}
$$

- Odd Fanction:-If $f(t)$ is odd function that is $f(-t)=-f(t)$ then E.T. of $f(t)$ is an odd imaginary function. We have

$$
\begin{aligned}
& F(w)=\int_{-\infty}^{\infty} e^{-i w t} f(t) \\
& =\int_{-\infty}^{\infty} f(t) \text { Coswt } d t-i \int_{-\infty}^{\infty} f(t) \text { Sinwt dt } \\
& =-i \int_{-\infty}^{\infty} f(t) \text { Sinwt } d t \\
& =i I_{0}^{\infty}(w)
\end{aligned}
$$

real integral is Zero since the integral is odd function.
Similiarly, if $F(w)$ is a imaginary and odd function the inversion formula

$$
\begin{aligned}
f(t) & =\int_{-\infty}^{\infty} F(w) e^{i v t} d w \text { becomes } \\
f(t) & =\int_{-\infty}^{\infty} F(w) \text { Coswt dw+i} \int_{-\infty}^{\infty} F(w) \text { Sinwt dw } \\
& =i \int_{-\infty}^{\infty} F(w) \text { Sinwt } d w \\
& =f_{0}(t)
\end{aligned}
$$

An arbitrary function can always be decomposed or separated into the sum of an even and odd function.

$$
\begin{aligned}
f(t) & =\frac{f(t)}{2}+\frac{f(t)}{2} \\
& =\left[\frac{f(t)}{2}+\frac{f(-t)}{2}\right]+\left[\frac{f(t)}{2}-\frac{f(-t)}{2}\right] \\
& =f_{e}(t)+f_{0}(t)
\end{aligned}
$$

Such a type of decomposition is important to increase the speed of computation of the discrete fourier transform

* Impulse function :-

Consider the function $F(t)$ defined by

$$
\left.\begin{array}{rl}
F(t) & 0, \quad t<a \\
& =1 / \epsilon, a \leq t \leq a+\epsilon \\
& =0, \quad t>a+\epsilon
\end{array}\right\}
$$

The function is represented by the adjoining figure integrating $F(t)$, we get,

$$
\int_{-\infty}^{\infty} F(t) d t=\int_{a}^{a+\epsilon} 1 / \epsilon d t=1 \text { for all } \in \int_{1 / \in}^{a}
$$

As $\in \rightarrow O$, the function $F(t)$ tends to infinity at a and is Zero every where else. But the integral of $F(t)$ is unity. Hence, the limiting form of $F(t)$ (as $\epsilon \rightarrow 0$) is known as unit impulse function and is denoted by $\boldsymbol{\delta}(\mathrm{t}-\mathrm{a})$.

$$
\therefore \delta(t-a)=\lim _{\epsilon \rightarrow 0} F(t)
$$

When $a=0$, the unit function at $t=0$ is
$\therefore \delta(t)=\lim _{\epsilon \rightarrow 0} F(t)$
Also it is defined as
$\delta(t-a)=0, t \neq$ to and
∞
$\int_{-\infty} \delta(t-t o) d t=1$, (0.1.10)

That is, we define the δ-function as having undefined magnitude at the time of occurrence and zero else where with the additional property that area under the function is unity.

- Properties of impulee function:-

For any arbitrary function $\Phi(t)$ the impulse function satisfies

$$
\begin{equation*}
\int_{-\infty} \delta(t) \Phi(t) d t=\Phi(0), \tag{0.1.11}
\end{equation*}
$$

it gives some useful properties :
(i) Shifting property :-

The function $\delta(t-t o)$ is defined by
∞
$\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) \Phi(t) d t=\Phi\left(t_{0}\right)$, otherwise
(0.1.12)
that is, the function $\Phi(t)$ is shifted if the value of t_{0} varies continuously. This is the most important property of the δ-function.
(ii) Scaling property :- The distribution $\delta(a t)$ is defined by
$\int_{-\infty}^{\infty} \delta(a t) \Phi(t) d t=\frac{1}{|a|} \int_{-\infty}^{\infty} \delta(t) \Phi(t / a) d t$
from the equality, we mean that

$$
\begin{equation*}
\delta(a t)=(1 /|a|) \delta(t) \tag{0.1.14}
\end{equation*}
$$

Multiplication of δ-function with an ordinary function

The product of a δ-function by an ordinary function $f(t)$ is defined by

$$
\begin{equation*}
\left.\int_{-\infty}^{\infty}[\delta(t) f(t)] \Phi(t) d t=\int_{-\infty}^{\infty} \delta(t) E(t) \Phi(t)\right] d t \tag{0.1.15}
\end{equation*}
$$

(iv) Convolution property :-

The convolution of two impulse functions is given by
$\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} \delta_{1}(y) \delta_{2}(t-y) d y\right] \Phi(t) d t=\int_{-\infty}^{\infty} \delta_{1}(y)\left[\int_{-\infty}^{\infty}(t-y) \Phi(t) d t\right] d y$

Hence

$$
\delta_{1}\left(t-t_{1}\right) * \delta_{2}\left(t-t_{2}\right)=\delta\left[t-\left(t_{1}+t_{2}\right)\right]
$$

