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INTRODUCTION

The theory of rheology comprises the study of flow and
deformation of matter. According to Fredrickson (1964) the development

has led to a division of rheological research on three levels

a) Physico~Chemical Research
b) Engineering Research
c) Mathematical Research

In rheology matter is treated as continuum (structurless substance)
and 1its molecular structure is ignored so that kinematical variables
associated with a fixed point in space may be regarded as continedus
function of the spatial co-ordinates of the points. The dynamical state
of a body is determined if we know the forces which act on an
arbitrary 1opated and arbitrary oriented element of surface in the

body.

The "Relativistic Rheology" is. the study of deformation and
flow of ponderabie ma‘tter at high speed comparable with velowcity of
light (Radhakrishna, 1978). In general relativistic rheology the strong
and rapidly changing gravitational field can not be studied in

‘ is made

terrestrial laboratory. An attempt/ to overcome these difficulties by

Narlikar (1978) using the relations

GM p
2

M,

C% C o

Where G 1is universal gravitational constant, R is the radius of the

=~ 1, VZ/CZ ~1,

gravitating body, and M is the mass of the body.



The subject being of recent origin, we find very few persons
working on relativistic rheoclogy. The pm[fgatioh- . equation for the
expansion parameter is obtained by Ray-Chauduri (1955), Grot and
Eringen {(1966), Par‘ia. (1967] have investigated some aspects in special
‘relativistic rheology. The'propagati-onz .equétion of Shear Tensor is
expressed by Greenberg (1970). Carter and Quintana (1877}  has
obtained the equation for strain tensor in general relativity. Using
the Ricci identity the Kkinematical strain variation equation is workedout

by Radhakrishna and Singh (1983).

The kinematical strain variation equation along the time like
vector u is presented in section 2, while the section 3 deals with
the dynamical form of strain tensor for ferrofluid system. The strain
variation equation along the space like vector h is obtained in

section 4. The last section speakes about the dynamical form of strain

variation equation for ferrofluid.

2. RELATIVISTIC STRAIN . VARIATION EQUATION :

From the 3-space operabr hab the expression for the 3-space
projection of the flow gradient u,., can be expressed as follows
( Trautman, 1964).

w-==n®nfu .. .. (2.1)
) a hb e; f’
. € e f f
=(oa—uua)(6b-uub)ue:f.

{by defini tion of ha
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This can be simplified by using the relations ua.bua = 0, ua’bub - Cxa’
'ﬁaua = 0 in the form
UZ.p T Upap T WUy (2.2)

The second rank tensor which is written in the form of symmetric

part of u- ¢ is the strain tensor ©

This means that

ab(Greenberg, 1970 a).

eab = 1/2 ( “5;5 + u5;5) ..... (2.3)

From the equation (2.2) we write the equation (2.3) in the form

e - o _ o
ab 1/2 ( ua;b + ub;a uaub uaub). ..... (2.4)

This equation implies that the Strain Tensor eab can be expressed

in term of the gradient of flow vector and acceleration vector.

The rotation tensor Wab is defined as the antisymmetric part of the

i.e., Wa = 1/2 ( 05;6 B‘a) ..... (25)

From equations (2.2) and (2.5) we get

W = 1/2 [uab—ub

ab : - (gug ol (2.6)

The Shear tensor Gab has the expression



1o

5 = e _ . vy
b 1/2 [ua;b + Ub;a Uaub uaub)‘ghabe .
..... (2.7}
This is trace free and u-orthogonal.
So that from (2.3) and (2.5) we have
U—’B = Gab + Wab. ..... (2 8)

To derive the strain variation equation we prove the fcllowing Lemma
regarding the derivatives of material tensor. Any u- orthogonal tensor

Mab is called material tensor.

Lemma : For the material tensor Mab

c c c
Mab - Mab;c 4 Macu ) * Mcbu ‘a’

>R ¥ ol

Further from equation {2.2) the above equation becomes

e . f c c ,C c .C
‘L}’ Mab - Ga (Sb Mef:cu * Mac(u bt Y ub) * Mcb(u 2 4 ua)'
..... 12.10)
Also Mab is material tensor, hence we write
M. u’ = 0. el (2.11)

ab

By substituting the value % = h? + ¥



_ e e £ f C
l[j Mab - (ha +ua) (hb *d Ub) Mef;cu *
E . C E ‘2 C
+ Mac(u B + U ub) + Mcb(u 3 + U ua),
. _ e  f e f f e e f \ ‘ c‘~
i.e., 5 Mab = (ha hb + ha uub + hb u.ual + U uuaub) Mef;cu +
c c 'C eC. ... (2.12)
+ Macu S + Mcbu .3 + Macu ub+ Mcbu ua.

On using the results (2.1) and (2.11) the equation (2.12) reduces to

c e » f f e
LL; Mab = M B;CU + ha efuub + hb Mefuua +
XX
- c c
+ Mefueuf,uaub + Macu ‘b + Mcbu ‘a +
+ M uE-+M \IxCu + M du (2.13)
a b a b ¢b a2 e :
Further we have
ee I & e ¢ £
haMer ub = ( X u ua) Mef uub .
i.e h M ufu = I:/I ufu (vide (2.11)
Ut Ta ef b~ Taf b’ )
. e ¢ f f
i.e., ha Mefu Ub »—Mafu ub.
This with'equation {(2.13) reduces to
c c c
&' Mib = MEB;C us o+ M b " Mpc U :a
This is the required result of Lemma.
Now for obtaining. the expression for deformation tensor eab we use

the above Lemma and write



By the definition of © (vide equation (2.4)) the above equation

ab
becomes
_ e  f o . c
E"eab = 1/2 ha hb [ue:f + uf;e ueuf ueuf};pu +
c c
+ea(:u;b+ecbu,’
B e f c c
i.e., Llf eab = 1/2 ha hb [ue;f;cu + uf'e’cu - ueuf -
R . c . o
- Ut - (ue);cu up - (uf);cu ue] +
c c
+ acu B + ecb u U Y (2.14)
" The contracted Ricci identity for the flow vector uy is given by
C c c d )
ue;f;c u’ - Ue;c;fl = uu Rdefc . e {2.15)
On addding and substracting Us. o uc.f and ufl.cuc.e in equation (2.14)
and using (2.15) we get
8 - e | c C
f[I ab 172 ha hb [(ue:c;f uor ue:c: u ;f] .
+ ( uC + uC }] - u uC -
Uf;c;e uf. e e;c f
c c d
: "YUt M (Ryefe * Ratec
_ .o 8 C _ 8 c _
zueuf]+ac:Ll;tn)'&cu;za'

(Since f‘)wab u? = 0)
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0 = e 1 - Y 1 -
i.e., ‘_I_; b 1/2 hg hb [ ue;f + uf;e ] + 1/2 h h_[ 2u U,
o] c c d c
T Ueie Yir TVt e 2uu” Ryopel + %o U bt
C
+ ecb u 3 e (2.16)

Further by using the equation (2.16) and then making use of the
definition of Pab we write

i

8 . ne wni . s sf _ge | _
¥ b hy by Bg.py + 172 0 80 8 =060 u uy
- 68 e - - C B
U u_ + uu uaub) ( .Zueuf UB;CU . f
c c d c
- uf,c u ; + 2uu Rdefc] * Yac U b
0 c -
* ch u 1a
After simplification we get
8 _ & . f _ c
L[-]-‘ ab hy Py ‘u (esf) * 172 20,0, Ya.c U ib T
c c. d . . C
ub.cu; + 2 uu Rdabc * ua,c‘“l ub+
c d
+ub;c Ggu - 2uu u ub Rdafc -
c d c c
2uuu u, Rdebc} +8ac u 5 + Gcbu 3
..... (2.17)
But we note the results
, . .C
‘-‘5;5“ ub = (Ua;c - u uC) ¥ ub,
i.e u—-—ﬂcu = u uu
' Tasc b~ Ta;c b’
“rR o
&5"#@;‘ i
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Similarly u u’ = u= -u’
- a;c” ;b as;c ;b ’

cde
and u’uu Rdefc'

The axpr‘ession (1.17) with these results yields

) - e _f . e e ___‘5.._
é ab = g Dy Ugupy — Uy Uy + /2 (- ugmut g
- U= - - 0 c . ) ¢ _
ub.cu.a) * acu.b+ cbu.a+
+ucudR

dabc’

1

This immediately gives with the definition of uz. g (vide (2.8) )

6 _ ne . f. e a L w
1% ab ~ ha hb u(e;f) ua ub v 1721 (eac+ Wac)‘r
c C _ 9 c c
(9 .b+w-b) ( bc:+ wbc) ( e.a*w.a)]+
) C e <) C c
Jrac(a.b"w.b)"c;b(a.adpw.a)+
+ ucud
dabc
i.e L8 =n®nia 0 ou -+ w we . 4
' Zab a b (e:f) b c b
o Wl o+ 9 0% +a. w® o« uG9R
ac .b ch a cb a dabc '
e | c c
i.e Eeab = h h u(e:f) ay ub + (9 at W a) (ecb + ch) +
c d
+ U u Rdabc'
e . . c c d
1.6, E ab = D Dy Ye:f) Uy * Y .3 Yg.p * U U Rdabe
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This equation is described as the kinematical equation for deformation
tensor field. Carter and Quintana (1977) has“derived this equation
for the signature ( +, +, +, -). Where as we have chosen the metric

signature ( -, -, -, +).
The Weyl's Tensor has the defining expression

Cabcd = Babcd * 172 (8¢ Ryg = 8aaq Rpe *

* 8haRac = 8coRaa) ~ R/6 (8,48cp™ 8acBpg): ++---(2:19)

So that the eequation (2.18) is transformed as

’ 6 - e f . oo . E e L -
{-3 ab ha hb u(e;f) Ya Yp T Y ;auc;b
-w®fe 12 n R 0fuf -r/3)s
aebf ab™ ef
e . f o
+ 1/2 ha hb Ref' v .0 (2.20)
This is the strain variation equation along flow.
3. DYNAMICAL FORM OF STRAIN VARIATION EQUATION IN FERROFLUID

SYSTEM :

The stress energy tensor for ferrofluid is characterized by

(0.3.1)

T =(p+p+uH2)uu

2
ab alp = (P + VZWHT 8, -

- uHaHb. ..... (3.1)



We recall the value of Rici Tensor for ferrofluid from equation (0.3.3)

in the form

2 2,
Rab = -~ K{ {(p+p+pH) uaub - 1/2 (p - p +uH )
xgab - IJHaHb] Ll (3.2)

The twice contructed Bianchi identity yield for ferrofluid

(p+ p+ UHZ} @ - (p+ 1/2&1}12)_b h3l -
- (“Hb3-b H? = o, ( Vide (0.4.9))
e, v = ATV [ (p o+ 1/2 Hz),b n3P - qu)‘b HY].  .....(3.3)

Here the value of A is given by

2
A= (p+p+uH").
Now recall the kinematical form of Strain variation equation

f, .o c
9 = n® - - u- -
‘—i‘ ab ha % u(ez;f) ua Llb * ,u ja uc:;b

e f _ e f
- uu Caebf + 1/2 hab [Refuu - R/3 ]

e f ' y
+ 1/2‘hahb Ref' ..... (3.4)

Let us write this in the form

3] =
I: b Ll + Lz + L.3 + L4 ..... (3.5)
1
Where L, = he f 1','1 |
, 17 Ta hb (e;f)’
L, = - a0, + u® ~u- =
2 ab ia ;b
e f
IJ3 - u‘u Caebf’
: e f e, I
L4 = 1/2 hab {Ref u - u - R/3 1 + 1/2 hahb Ref‘




To simplify Ll : We note the following trivial result

e f . R e
hahb u(e;f) - he(ahb)f Uog oo

This result under the expression (3.3) provides the value of Ll as

L { a7 (p + 1/2u Hz).c hee .

1 - he(ah.b)f

Cc e
G 0 DU O B S

]

e

Al p + 1/2uH%), 0 .

17 he(ahb)f A

2
( UHC)§CHG]:1’ - A;f[(p + 1/2uH );chce +(‘UHC);CH8” .

-2 2 ce ce
le., L, = he(ahb)f A {(p+ 1/2 uH );C[Ah ;f-—A;fh 1+
c e e
+ (UH);C[ AH ;f-A;fH] +
2 ce o e
+ A [(p+ 1/2uHT), h™ + (uHT), H 1 S (3.6)
To siniplify Lz : We have
L, =-3_ 0 +ua-u-—
2 "a b ;a c;b
ie., Lo=-uu + (8% +wl ) (g + W, ) ; (3.7)
Tt T2 ab a a cb ¢’ U )
To simplify L3 : We write LB in the form
: e f
Ly = WU Coepg
. e f
If we denote the expression Caebfu u by Cab
Hence L., = C_.. e {3.8)

3 ab
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To simplify L4 : We have

_ e f e  f
L4 = 1/2 hab [,Refu u - R/3 1 + 1/2 ha hb Ref‘

This with (3.2) takes the form

Ly =1/2nh, {-K [p+p+ut’) - 1/2(p-p +uH’ -

- K/3 (p -3p)} + 1/2 ( 67 - v®u) (8] - ufub)

- 2 - _ 2
-k Co-p+uHYuu ~-1/2 (0 p + nH)g -

\ - Her]} , (by definition of ha )

b

After simplification we get

L, = = K/2 [ (P/3 +p) h

4 - U HaH

b b]. .....

By substituting the values (3.6), (3.7), (3.8) and (3.9) in equation

(3.5) we get

0 - -2 2 ce _ ce
ap = A he(ahb)f{ ( p+ 1/2WH"), (Ah ALY s

e

[ e e
+ (HH);C (AH;f-A;fH)+

A [(p+ 1/24 HZ),thce +

[ e . . C C
+(uH);CfH]} -ha e (8 W)
x( ecb * wcb) - Cap T K72 T(p/3 + p) Ny -
- W HH T . (3.10)

This 1is the required form of Strain variation equation in dynamical
form as it consist of kinematical parameters as well as dynamical

variables of ferrofluid.
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4. STRAIN VARIATION EQUATION ALONG SPACE LIKE CONGRUENCE :

In order to obtain the decomposition of ha'b on 2-diamensional

projection plane we start with

e f
ha;b = da Gb he;f' ..... (4.1)
. _ e e e f
i.e., ha;b = (p, + uu, - h'h) 6b ne;f.
Nhere Pab is, given by (0.2.10).
“urther
e ¢f e f
= $
ha;b ( Pa bt Ul Gb) he;f'
. e
(Since he;f h” = 0).
e f e f f e
e, ha;b = P, Py he;f * Py (u U, - h hb)he;f +U uahe;b' ..... (4.2‘)

< e f _ ' e . .
since p_ Py he;f = hé;% and h_ = h . h” we write the equation (4.2)

3

A C .
ha;b = hQ;@, + Ubha - u Uaubhc hbha +
C ! C -
+ u Uahbhc + u uahe;b'
Therefore
L 1 *
= A - c -
ha;b hé;b ubha + hbha + U uaubhc
e ! e
- - e i 4.3
u Uahbhc u uahe;b , ( )
Jefinition (1) : The Strain tensor for space like unitary congruence

71 is the symmetric part of hé_/%) (Greenbe rg, 1970)

i.e. eab =1/2 ( h(é,l;\) +]"%;Q ). w...(4.4)



This expression from (4.3) directs

gab =172 “ha;b ¥ hb;a) B Llbr‘la - uar.]b * hbh’a *
+ han’b + Zucuaubr.mc - ucuahbh;—ucubhahc'-
-.ucuahc;b‘— ucubhc;a]. ..... {4.5)
2) The rotation Tensor Ct]ab is the antisymmetric part of hQ;Ab

EX3

Wap = 172 ( h’é;[}: - h%;%)'

From equation (4.3) the equation (4.6) becomes

v
*

Wabl— 1/2 | (ha b~ h

c c
- u Llahc;b u ubhc;a]'

Thus equations (4.5) and (4.7) give

e B3

A= B
hg'b ab ' Wab )

; b;a) - u

c ! c
hahb - u uahbhc + u ubhah

b

h + uh + h
a a

?

Cc

b bha

The decomposition of the Strain Tensor (4.5) provides

ab * *a 3%
8 6,5, =6,=6 =N
3) The Shear Tensor gab

*

ya

Oab = eab - 172 epab'

ha;b

is defined as

u

a

b

u .

So that its expression in terms of h is given by

.....

Y

.....

------

oo

-~

g

Nt



N
Facid
o

e = -
ab 1/2 [ (h ‘b + hb;a) ubh u hb + hbh +
H ]
+hh +2u%un -unhnh
abegc abec
' c c
uubhh uuh;b-—uubh 1-1/2 6pb
..... (4.9)
Note : It follows from the definitions
6o Y =O0and 6_n=0 ... (4.10)
Hence e}.‘ab is u - orthogonal and can be treated as a material
tensor. So also é‘ab is h - orthogonal.

According to the definition of Lie derivative along space like

congruence h we prove the following Lemma for material tensor

Lemma : For the h - orthogonal tensor Mab

Iﬁ Mab = Mgg;che * Maché\;{:\) * Mcbhézg‘ """ (4.11)
Proof : W('a know the expression of Lie derivative of Mab along the
space like congruence.

II—; Map = Mab;chc * Machc;b * Mcbhcza‘
i.e., 11_:i M, = 6‘: afb Mef;(tlc + M. hc;b .M hC‘a

On using the defining expression of Pab this equation can be written

as

e e e f f
L M = (p +uu =-hh)(p +uu, - puxf
i ab a a a b b hb)'-



Do
~d

e f c e f <
Le., LMy, =p, P, Mef;ch * Py Uy Mef;c h -
e | f c e c
- pa h hb Mef;c h™ + pb u_ u Mef;c h™ +
f . e c e f c
pb h ha Mef;c h™ + u'u uau’O Mef;c h -
e f c
- uh uahb Mef;ch -
f e c e f c
- u'h haub Mef;c h” + h'h hahb Mef;c h” +
c c .
+ Mach ‘b + Mcbh At e (4.12)
Following the results pe pf M = MA and M uf = M f= 0 the
a b ef;c alt\a;c ef efh
equation (4.12) reduces to
e ! f !
é‘ Mab = MAJ, 0+ by wugM p = P, By M g
e ! f e !
+ pb u uaM £ pbh ha.M of +
c c
+ Mach ‘b + Mcbh et e (4.13)

By substituting the value of ha from (4.2) in equation (4.13) we

b
get
c e f ! e f !
.LMab'Mgg;ch * Py U, Mo e - py Ry Mo s
h A
f e ' f e ' C A > C
+ pb u uaM of ~ pb h ha M of + Mac h ;b‘+ Mach vub
c! Ic\: *C
- A y -
Mach hb + Mcbh - + Mcbh ua
C'
-M h h. L (4.14)
ch a

Further we note the results



e f ! e  f!
=P M p = P B M,
B e e e f!
, = (8 g YUy h ha] Mefh hb’
e!
= h hb Mae'
, e f ' e'
i.e., - p h hbM of = h hb Mae’ ..... (a)
Similarly pe u'u M' = - pe uf'u M
a b ef a b ef’
‘f .
= -p ah uy Mef {vide Co.2.14}))
‘e
= = Mgl Yy
. e f ! ‘e
il.e., p au ub M of = Maeh ub. ..... {(b)

These results {(a) and (b)) when used in

A

C c
M = Mgg;ch + Mach

L
Fl ab

This is the required Lemma.

equation (4.14)

h%;%.

produces

;% * Mcb

This Lemma is the computational aid in obtaining the strain variation

eguation along the space like

below.

We use the Lemma (4.11) to Strain Tensor

jo gl o

. e
This equation with definition of Strain Tensor ©

congruence

-

h. The process is given
eab to get
d e Q ats é\
i A .
+ ead h A + edbh ;g.

ab (4.5) yields



We know the results pabua = 0 and pabha = 0.

Hence the equation (4.15) becomes

e f d d d;
8ap = 1/2 P P [h . pqn" + hy h" - u,. . hn

L
h

' d
= 1/2 peapfb (Ng.qip N * Npgig N+ hoRs

xX(R +

kefd * Rkred) ~ Y e -

¢! ¢! oo dog N d
-u u h -1 u h + & .h
e ¢t i c;e]



d d
By adding and substracting the terms he;d ,h -t and hf;d h e in
equation (4.18) we get
e f d d
E Oap = V2 Py P pllh . g B+ Do g op) ¥
e d d
* (hf;d;e ho o+ hf;d b ,e) - he,d h : f
d d .k !
"hf,dh; + 2h~ h Rkefd ufhe-
] » 1 1 C 1 )
-uehf+ Zhehf—u uehc;f—uufhc;e]*
d d
* 6adh,{\)+ Bdbh;%
d d d
Further he;d;f h™ o+ he;d h T (he;d h );f,
t
= h e f’
, d d !
i.e., he;d;f h™ o+ he;d h o h o |

This with the above cquation produces

L o5 =12 p®pf (n s+ n . y+1/2 0% ,f .
= ab P 4Py e;f fie Habhyp
| t - 1 t d K d
-u ghy = u hes 20 b e2n®n R e-ngn® -
d c ! c '
—hf;d h e~ 0 U ehc;f—u Uy hc:e]+
A A
N d, (4.19)

x d b
togg MY egp DA

From the definition of pab the equation (4.19) yields

* e f ' o 8 e e
L =P p h o+ g = uu +h"h_ )«
A ab a b (e; ) 5 a a a
f f hf ) | B 1 . . ' 1
x{ & b~ uub+ hb) [-u fhe - u ehf + 2h eh ? +
d k d d
+2hhe Ryoeg T he;dh f T hf;d h e



b

-~
A

e E é:gab N I:’eapft:, h'(e;f) v 12 6ea 6fb h sea ufulf ‘Seahfhb_
- chb ueua + 6fb heha + ueufuaub - uehfuahb+
“fheubhglﬂ + hohfhahb) ( —U'fi]e - u'ela\f +
+ :/:h‘eh'f + ledl)k Reeta = he;dhd;f -
- hf;d hd;e - u® g'd hc;f - ucu'fhc:e] +
¢ By hé\;g ¢ 84 hé;/g . (4.20)

After simplication and rearranging the terms in equation (4.20) we

get

t v t .

e ' ' ]
- p® pf £ 1/2 (- u ho-uhyo-2hh

IL; 6a\b_papbh(e;f) b a ab b

+ 209K R - 20th9nK uw R - Zuehdhkua‘

kabd b kafd

e f d k e !
*Rigpg © 2uuhhiuu R g+ uuu

f v
uubu ah

bhe*

e 1 [} f ] [
f—Zuuahbhe—Zuubhahfm,

e t . f | 2 ef .l | B
- h hau ehb - hhbu fha + 2u uuaubh eh £ +

] fe - 1
b £ + uh ubhahfu e ~ ha;dh ;b-
d e d e hd

- hb;dh ;a+uuahe;dh ;b+uuahb;d e

+ uehfu h h u
a e

d f d e_ . d
bPaza Mgt U Uleg M ia T h S L

f d e f d
—hhbha;dh - uu ua.ub he;dh :f—

f
S+ .Uy

e f d e f d
- u'u uaubhf;dh ‘e + u'h Uahbhe;dh £ +

f e d e ! £f!
+Uhubhahf;dh ;e_uuahe;b_uubhf;a+



+

]

17
o

e 1 . t o 1 L]
u h

f e
wu hoo+ uuaubhf—uhau bhe_
f v e f te f e v
u hbu ah ¢ + uh uahbu fhe + uh ubhau ehf—
e f ! f e ! f e v
u'h hbu fhe;a - u'h hau ehf;b - uh hahbu eh'f~
®h'hon u' oh 0 né 5
u 2% u £ e] + ead ;g + edb h;[g. ..... (4.21)
k ad k,a, d
{Since uuu Rkabd" h " hh
*Ryaha = 9

Further' from the natural transport law (0.2.14) the following terms

from the equation (4.21) becomes

By substituting

fou' b= 20fuu' by - uluu' b
upt ghip = atbupll Ay = WUl (0
f ] . f . . e f - -
= 2u ubu ahf - u ubhahf + Uuu uaub hehf-
e f .
- uu haubhehf,
. } f 1 f ] f 1
and - uu ahf;b = - 2uu ahf;b + uu ahf;b
f! f: e f
= - 20U ahf;b + U hahf;b -uu Uahehf;b*
e f !
+ uu hah ehf;t)'
e C v c !
Similarly for the terms uwu uw h_ and - u’u  h_ .
a b e b e;a

these wvalues in equation(4.21) and after then

-simplification we get
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jo g tnn

%b = P apf p 1/2 [~u . h -u h "
a bt (e:ny * /2 [-u b~y alp * 20 al

Lo d k e f i
AR Ry aba T WY Reeba T WYy Reapg

+ ueufuu R + Zueu u‘ h + 2ufu u’ r.1-
abkefd) a b'e b a'f

e f v e f vt
2u uah bhe - 2u ubh ah £ + 2uuuaubh ehf +

e ! :
+2uhuhufh +2uhuhu hf+uvuéubhe+
f! e v f v
+uubuahf-uhau bhe-uhbu ahf-

e f vt f e vt
uhhahbufhe—uhhahbuehf-

e ! f! e I
zuuahe;b_zuubhf;a+ZUUhh hfb+

e f ' d *d 4
2u uhbh fhe;a - ha;d(h b T h ub +h h +

ed e d ! e d ,
+uuubhe—uuhbhe-uuhe;b)—hb,d\

. t .
n(hd. - hdu + hd h + ufudu h, - ufudh h -
;a a a a f f

fd e d ‘d d’
-u'u h .a) + U uahe;d(h ;b—h ub +h hb +

fda f d ! fd f
+uuubhf—uu hahf— uu hf;b)+uubhfd

» L
(hd - hdu + hd ha + ueudu h - ueudh h e

+

a a

A
e d s d,
-uu he:a) * 0 B ‘b db’ :a’ =

Again using the natural transport law (0.2.14) and rearranging the

terms the equation (4.22) reduces to

% e f ] 2!! thhv
eab=p<e1pbh(e;t”)+1/2[.uaub+ alb+

d, k e f
+ 2hTh (R g - WU Repg T WY Reara

L
" h



R

3(1

£ e o f to.
+ U u Uaub Rk efd) + 2u uau bhe + 2u ubu ahf -
e ] 1 f 1 ! e f ] [
2u uah bh o -2u ubh ah £ + 2uu uaubh eh £ +
e f ' f e ' e f v
+ 2u'h uahbu fhe + 2uh Ubhau ehf - 2 u’h hahbu ffl ,
e ! f! f
—Zuuahe;b—2uubhf;8+Zuuhhehf +
e f ! 3 cfl\
- - A
+ 2uu hbh fne;a ha;dh ;{&) hb;dh A
e é f (/i\
+ u uahe;d h ;{\) + U ubhf;dh ;/g] +
.
% A
+ aadh b + edbh ;g.
- e ' ..
{Since u h? = - ﬁdh and u h? =
a 2 a a
a!
':.—Uah )
s e f t ' ' 1 ' d k ,
f—; Oab = P aP pl (eig) * Walp * Ry YRR g -
e f e f .
WU Riebd ~ YU Reapg * W WYYy Regpg * 172
1) 1 O ) f 1 , G 1
xE - 4 u AT 2u’u (h);b - 2uu bhf;a + 2u ut hoe
Ty
f 1 " e ] 1 f ] L] []
+;_ 2u ubu ahf, - L 2u uah bh o - 2u ub'} ah ‘
e T,y ‘
e f e f f e - A
+ 2uh uahbu f1'1 + 2.1r1_3u h h fhe ‘a + 2u'h ubhau ehf +
e f e f e f !
.+ 2uu hah ehf;b‘ +’12u u uaubh eh £ Zu'h hah hu f‘h o
x ~ i T
- A - u® - - - -
b phaiq — WU g = 2 8,4) h® ﬁ(hb,d
fon 2 4 (4.23)
-uubf;d- ebd)} ..... .
: T .

5



Step 1 :

fo simplify

(Since ug,@he

1]

30

g

t 1
- 4u u
a

t

+ Zufu u

e?
- 2 h
uuae b

b b ah

fl t .
- 2uu bhe

bhf;b

'

e
+ 2uu u
a

_ A A e f f!
4ua;% ub;? h™h + 2h'u _ (

Y. b

.
- u u
e

]
+ Zheu

b

u
eja

t
( ase

s

f

x(ual\\;é - ué;é\ b

f

e
- 2( eae Wae)(Zbe)hh-Z(e-bf+

e f

1(2Wa)hh.

e

(Vide equations (2.3) and {(2.5))

1

Step II

T

- 4n®°h

To simplify T

2

f

2

[ w

ae

W

bf ) w

ae Dbf

+ +
eae

-----

2

(
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Step III : To simplify T3

Zueuf

3
1

t f e 1] -
hah ehf;b + Zu.h ubhau e hf +

e f ! e f v
+ 2 uu hb h fhe + 2u'h Uahbu fhe .

f

]

1
2 nenf hou ,»

]
haue(u b f

i

. e
£:b - ufub) + 2 h'h

«(u - au
(e;a ea)’

a' a
(by uah =-U ha)

d

e f d
A A A
2h "h™h haue;d u?;b + 2 h

e f
el

doe f A A A A
2h"n"hiug. g [h (ue.p ) + hyCug 1,

de f
2Zh ' h™'h ( 88d+Wed)[ha(8fb+Wfb)+

+hb(6fa+wfa)],

. . 2 A
(By definition of ua;{:\) ).

ie.. T. = 2n%®nf 8 [ n
: ed

3 +Wfb)+hb(6 + W

al efb fa fa) 1.

Step IV : To simplify 'I‘4

e f 1 ]
T4 = 2u’u uaubh eh

ef 1 1)
f—Zuuhahbufhe

] 13
} Zueufh h
e

( uu,_  + hahb]

f ab

efll
Zhhueuf(uaub

]

+ hahb)
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dkef AA A
Zh h'h™h ue;duf;k { uaub + hahb )

d k e f

= ) 0 :
2Zh h'h’h" ({ ed * Wed ) { e Wfk)>
x ( uaub + hahb)
. d k e f
‘] = 6 ]
i.e., F4 2h h 'h"h ed Kk ( uaub + hahb). ..... (4.27)
Step V : To simplify T5
A
I -y - f -
TS =-h A;b ( Dara ~ ¢ uahe;d 2 éacl )
d f #*
- A - -
hod (Rpg ~Wygheg =2 8y, )
e ' L s A A *a - *a - *a -
S5ince by the definition ha;b (4.8) and 6 b ha ¢ b ua w bUa
\:\Ia')hq = () the above equation becomes
) d % A 0 sd *d
r5:"(Ob+wb)(h/;&;d 26{:\d)(ga+wa)lr
x AL -
( héi;b zadb )
. é“d % 3 _ % _
(57 + W) O Wag v Baq - 2 854
“d :::d ES sk 5
"l gt WU Wap t Bgp T2 Ogp )
#d * 34 %
1.e. rls = ( g b + W

By substituting the value from (4.24), (4.25), (4.26) ,(4.27) and

(4.28) the eguation (4.23) reduces to
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[l Bl
D
1

ef 1 | SR | vt dk
ab—papbh(e;f)+uaub+hahb+hhx

e f e |
Reaba ~ Y YaRkebd)™ Y YpRiara * U U “a“bRke;d

+ 0 6 .0 )~

e f
2hhe (2 waew aewa * bf ~ ae

bf

- 9 ' ' de f . .
1/2 of {uah +uha]+hhh6

N 6
[ha( fb fb

+ h-h'n'h ed fk(ab ab

%d % d
+1/2(Gb+Wb)(

% d *d % &
po1y20 00w WO (e - W) L. (4.29)

This is the reguired strain variation equation along the space~like

-

vector h.

5. DYNAMICAL FORM OF STRAIN VARIATION EQUATION :

To bring the dynamical quantitives in the strain variation

equation (4.29) we use the Weyl Tensor expression ziven by (2.19)

Let us consider the terwm in strain variation equation (4.29)

d k e f e f
hh(Rkabd-uuR - uu R + uuuwu R )

a kebd b kafd ab kefd’’

We write from (5.1)



&2
~ o
Satan?

d kef dkef
h™hu U Uy Rkefd = h hwu uu Uy [ Ckefd - 1/2 { 8kfRed
BiaRer * Bed Rkt ™ Ber Rka)™ R/6 (8 48pe = 8xBog):

. d ke f dk ef

i.e., h huu uaub Rkefd = h"™h u'u uaubckefd - 1/2 UaubRef

e f e f
»(u u -hh)+R/6uaub.

This equation with Ricci Tensor expression (0.3.3) gives

d ke f d ke f 2
h™h uuuaub Rkefd = h h uuuaub Ckefd + K/2 (2p + u H" )«
.uaub + R/6 uaub,
. d kef d, kef
i.e., h'h uuuaub Rkefd = h h uuuaub Ckefd +

+ kK/6(p+ 3p + 3 UHZ) uau

b
(Since R = K (P - 3p)) ..., (5.2)
Similarly we get
d ke d k e 2
= U
hhuua Rkebd hhuua Ckebd+K/6(O+3p+ H)uaub,
..... {5.3)
d k f _.d k f 2
h™h uub Rkafd = h™h uub Ckafd + K/ 6(p+ 3p + UH )uaub,
..... (5.4)
and
d, k d, k 2 _
h™h Rkabd = h™h Ckabd + K/2 (p+ p + QH ]uaub

- 1/3 KP ( hah Yoo o {5.5)

b * 8ab
It follows from equations (5.1), (5.2), (5.3), (5.4) and (5.5)



e f
h™h™ { Ryabg = Y'Y Reebd = Y'Y Ryearq

e f _ nd K e
t Uy, Ryoeg) = hoh (Ckabd - a “kebd ~

e f
+ uuuu C

- ufu C
bCkatd a"b Cketd!

B

2
p -
K/2 ( P+ p + HUHT) uaub

1/3 Ko (hh + g )

2
2K/ 6 (p+ 3p + SUH)uaub+

2
+ K/ 6 (p+ 3p+3uH)uaub,

. d k e
i.e., h™h ( Rkabd' uu

+

£
a Rkeba ~ Y'Y Ryatg

e f d k e ‘
ruuuguy Reegg ) = b 0 Cpg — WY, Crepg -

f e f
S wu, Cpapg YUY ULy Croeg )

— -1/3 KpPab «.. ..(5.6)

This in terms of tensor éa = h"h C produces

b adbk’

e f e f
Bh™ ( Reapa™ WY3 Tkeba = YU Rkata * ¥ ¥ Y Riefd)

= f e f
=-Ca +ueuC + uu C-uuuau

b a be b Taf Cefnl’/BKp pab'

b

Henco from equaation (5.7 and (4.29) we have

* e +; 1 1 1 L ]
o — . h h .
Loy, = PPl e ¥yt "ahy ab *

: - - c f - 2
+ueuC + uu, C - uuuu (Je -2h"h

¢
a be b Taf ab f *

. )
(2 0 W Wop * 8 Wop + 0 Wae ~1/2 BfllUah p *
' Uph o) +



d e f 8 8
+hohrhe g Uy (Vg + W)+ by O 5+ W)l o+
defkg g *d %4
+ h h"h'h ed fic ( uaub + hahb) + 1/2 { ¢ b + W b)‘
(6 - ez 0%« R ye I h -
ad ad a a db db
-3 Keop,. (5.8)

This 1is the required dynamical form of strain variation equation
along the space like congruence involving the kinematical parameters

and parameters associated with the space like congruences.

I. INERTIAL - REFERENCE FRAME (IRF) :

A cloud of free test particles which moves rigidly and

-

without rotation represents an inertial reference frame (Audretsch,

1971). So it is characterized by

Ujp ® 0 ( covariently constant flow)
> u, = 8 = Wab = eab =0 . L. (5.9)
From Ricci identity (2.15} we have
Yaibe T Yazeb T Riabe
This implies that
a
Robea ¥ F o - .
Consequently
R, u® = 0. 4 . (5.10)
ab - ,
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In case of the space-time admiting IRF, the strain variation equation

(4.29) becomes

8 ) ef' || d k

Eofap T Pap " (o) * Mo p B P Rgpg *

:::d *d 2 sk
2oy W) (6ag T Waq)
*d *d * o
+1/2 Lo g+ W) (g, - Wy )
..... (5.11)
UNIFORM MAGNETIC FIELD (UMF)
This is described through the condition ha'b = 0.
Lo
i.e., h_. hb = h = 0, ha =0 ,
ab a ;a
..... (5.12)
e B =Wy s By T 0
Hence the Ricci identities for space like congruence given by
k

Paibie ™ Paseip = P Riane

yields
a
Rabh =0. (5.13)

Thus the strain variation equation (4.29) in UMF is in the form

e £ v o f. .
% 6ab =Pa Py h (e;f) © Ua%p 2hohl 2 Waewa)*
' d. e f _
* eacwa * eae 6bf I+ h'h'h sed’
“f ha { efb + Wfb) + hb ( efa + Wfa) ] +
d, e f e 9 )
+ h%n®n'k od O (uuy + hhL (5.14)



1. INTRODUCTION

The general transport equation in classical rheology is due to
Fredrickson (1964). There exists several types of transport equations
available in the literature of classical continuum mecﬁanics. The
well-known types of transport equations deals with material transport
of entities like mass, energy and momentum. The extension of these
transport equations in relativistic domain are due to Narlikar (1978).
He has given a concept of parallel tr‘anspovrt facilitating the difinition
of constant congruences. The astrophysical applications of. optical
transport equation have been given by Dyer (1977). The trénsport
equations of the kinematical parameters are found by Greenberg
(1970). The consequences of Lie transport of a 3-space projection
operator leading to Born-rigid motion has examined by Pirani and
Williams (1962). Lie‘ transport of different types of tensor fields have
- been extensialy studied by Davis (1977}, Oliverl and Davis (1976),
Radhakrishna and Rao (1876), Asgekar and Date (1978). The concept
of convective transport for non-geodesic congruences is introduced by
Oldroyd ({1950)and further developed by Carter and Quintana (1977).
The relavance of Truesdell transport is explained by Radbakrishna

and Walwadkar (1984).

In this chapter we examine the special types of transport
equations concomitant with ferrofluid space--time. Our efforts will be
directed to evaluate the effects of these transport conditions on the
geometri031' structure of the space time. Especially we examine how

strain and stress and their rates of change are affected by these

transport equations.



The section 2 includes the study of self similarity of space
time corresponding to ferro-fluid system. The contributors in this area
are Taub (1971), Eardely (1974), Asgekar and Date (1977} and Wilson
(1986). Our aim in section 3 is to expose the rheological properties
of  ferrofluid andor Jaumann  transport,  The section 4 includes  the
Truosdell stress rate and stress ficld of ferrofluid system. The last
section is devoted to study of Fermi-Walker and Convective transport

along space like congruences compatible with ferrofluid space=time.

2. RHEO'LOGY OF FERROFLUID SPACE-TIME :

We consider two special types of spaces in this article.

1) A Self Similar Space-time :

Definition : This space is characterized by the following mathematical

expressions (Davis; 1984).

= A

%‘ 8ab 1 8p

Where X is any arbitrary vector and A s any scalar function of Co-

i
ordinates.

We present two special cases of condition (2.1)
Case {1) : Let X = X.Q ,

Where 4 is time like unit vector.
For this choice equation (2.1) produces

Xu + X u + Xu + X u A veea(2.2)

a: b iba b;a ja b 1gab’

. . b
If we contract these equations with gab, uaub and H%H® we gat the

following results



X0 + X = 2 Moo (2.3)
X = A

2X L (2.4)

b . b
X;bH + XuH =0, L (2.5)
and
Y 2 . a..b
JHY = (2X) 6ahH H . . (2.6)

INTERPRETATIONS : We conclude from the above results that the scalar

ab
magnitude of vector X. [vide equation (2.3) and (2.6)].

>\1 and the deformation tensor field © depend explicitely on the

REMARK : It follows from (2.1) that >\1 = 0 for unit vector X. This
states that, the self similar transformations are not compatible with

time like unit flow.

Case (2) : Let X = ﬁ[Magnetic field vector). Then the equation (2.1)

becomes
= A
:% 8.b 18ab’ e (2.7)
Where >\1 is scalar function.
. = }\
i.e., Ha;b + Hb;a 1gab‘ ..... (2.8)
These conditions when contracted with gab. uaub.uaHb and HaHb give
rise to following results respectively.
x = a R R .
1 1/2 H g .o (2.9)
2w =N, ., (2.10)
a 1
o w120, L (2.11)
2 by 42 :
(H A);bH = 1H B e (2.12)
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From equation (2.11), the equation (0.4.3) reduces to

W+ =0, (2.13)
This implies that

8 = 0&M =0. (2.14)

We infer from this that the magnetic permeability of ferrofluid is

preserved'along the expansion free flow.

Further we obtain from equations (2.13}, (0.4.3) and (0.4.8)

O + (0 +p+ 1/2UH0 = 0. ... (2.15)
This produces the result
6o =0&06=0 .. (2.16)

Hence we conclude that the energy density of the ferrofluid remains

constant along the expansion free flow.

On using the results (2.9) and (2.10) in Maxwell equation (0.4.4) we

get
N W TR
3 2/3 ;bH o e (2.17)
Fr‘om. the local conservation laws Tab_b = 0, we get (0.4.10)
L¥=1 b 2 «a b
(p+p)uHa—p;bH + H [u(u Ha+H;b)+
+12v H’Y =0, L (2.18)

b

Further by substituting equations (2.9) and (2.10) in equation (2.18)

we derive



M= -4(20 +2p - 3 uﬂz)‘lp;bﬁb. ..... (2.19)
This shows that the explicit dependence of isotropic pressure
p on A X
" Thus it follows from {2.17) and (2.19) that

u:be = 6u (20+ 2p - 3u HYL p;be. ..... (2.20)

This providss

b ) b
M b,H = 0& p;bH

A

I
o
—~
83
N
=
g

It is observed from this result that the magnetic permeability along
the magnetic lines is preserved if and only if the isotropic pressure
to ferrofluid remains constant along the magnetic lines.

1I) EINSTIEN SPACE :

Definition : The Einstien space is defined through the following

expression (Petrov, 1969)

Y
Rab =™ ™8+ e

Where Rab is Ricci tensor and >\2 is Scalar. From the expression
(0.3.3) of the Ricci tensor of ferrofluid the equation (2.22) becomes

2 2
.—K [(P+ p + HHT) u Uy - 1/2 (p- p + uH )gab-

b

- =A
E HaHb] 28abt e

The transvections of this result (2.23) with uau» and HH

respectively produces the following results



-K/2 (p + 3p + uuz) = Az v (2.24)

K/2 (p - p - pii?) = A, . (2.25)

From the equations (2.24) and (2.25) we get

and

(UHZ)zO#'U:Oor‘Hz

il
[w]

The equations (2.26) and (2.27) states that the ferrofluid space- time

cannot be Einstien space.

3. JAUMANN TRANSPORT WITH HYPOELASTIC MEDIA :

I) Jaumann Transport of Ferrofluid

From the definition of Jumann stress rate (0.5.3) and the stress energy

tensor expression (0.3.1) for ferrofluid we get

T = (P+ p + UHZ)'uau

2. ..
ab + (P+ p + U H )(uau

L1

b +

- 2..
+ uaub) - (p + 1/2¥ HY) 8ab - (UHaH

b
b)
+UHH w® +uHHWE

C .a CcC a R

b bt e

The condition J Tab = 0 characterizes Jaumann transport of ferrofluid.
u .

We write from equation (3.1)

c 0+ p +HHS (B + Ul )

b b a

2.. .
- (p+ 12HHY) g - (WHH)" +u HHW

2..
(D+p+UH)uau b

.
u
Cc
a

u C -0 3.
+WHH W™ =0 o (3.2)
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From this we derive the following results

4)

6)

8)

.10)

{f-3p)=0, e (3.3)
2.. ' 2. .
(P+ p +uH) U + (p+ p+UHY) O -
2., v o.a B
-(p+1/2uH)ub-uHaqu-—0. ..... (3.
2.,
{(p+ /2 yH?Y)" =0, L. (3.
2, . ..a 2..
(p+p+uH) uHu - (p+ 1/2uH)H +
- .2 , 2 2
+ uHHb-l- u/zHHb+uHHb-
2 H_ wE = 0 (3
.-L{ C b = F e S T *
2., ;
{ p=-1/2u H") =0 . e (3.
Again by inner rmultiplication of (3.4} with Hb we get
(p+ p) {Jbubzo .
. b
ubH=O,aSpr+p;!0. ..... (3.
This shows that the acceleration is normal to the magnetic lines.
From equations (3.5) and (3.7) we have
P + b =0 L, (3
Hence we deduce
P=0, p =0,
and
i=o0, #® =0, (by (3.4)) ... (3.
On using the above results in equation (3.6) we get
, c
Hb - chb = 0. i (3
From (3.8),(3.9) and (3.4) we get
a = 0 o (3

a

.10)



— ‘—.——'—'2-—.-
U!Tab 04>0=p == H =u, =0,
H - HwS =0 3
b ANy =0 (3.11)

INTERPRETATION : If the Jaumann stress rate of ferrofluid system
vanishes then the density, pressure, nmagnetic permeability and

magnitude of the magnetic field are preserved with respect to the

geodesic flow (vide (3.11).

I1) J-Type Hypoelasticity : Hypoelstic material is characterized

through the constitutive relation (Prager, 1961)

T o= pcd

Tab abecd o i (3.12)

o . A . .
Where Tab is stress rate of Tab and abcd 1S the responce tensor

which is the function of deformation tensor as well as stress energy

tensor.

There are twelve choices of )\abcd (Synge's C(uckoo Process)

out of these we have considereed only f{our cases with Tab

stress energy tensor of ferrofluid system. In case of Jaumann

as the

relativistic stress rate, constitutive relation (3.12) becomes

{(Walwadkar, 1983)

_n led
g Tab = abcde ..... (3.13)

We study the four cases due to the choice of the response tensor

kabcd in the form



O |
e

Case (1) Xabcd =h,ho (3.14)
Case (2) e = LT el (3.15)
Case (3) »oed = TabPear (3.16)
Case (4) A . =h h +h h ....'..(3.17)

. Y =
Case (1) : Let us choose abed habhcd‘

Theorem (1) : For the Jumann stress rate of ferrofluid system with

>\ = . N .
abcd habhcd the following relations are equivalent.

' _ X Cd_
A) l%Tab abcd 9 0,
B) 5:{3:1:1 :ﬁ:é2=e=0ﬁ-ﬁwc.=0.
a ' Ta c a

Proof : To prove (A)=» (B). We use the constitutive equation (3.14)

for a general hypoelastic material

cd
Tab - habhcd'e !

By using equations (3.1) and (3.18) we have
(o+ p + uH%) wu_ + (p+ p +uHY)( G u +ud)-
pr P H ab ab ab
~(p+1/2u HY)'g . - (MHH) + pHH W .
p ab ab c b -a
C -
+ uHCHaW. -h , 8=0. ... (3.19)

b ab

. a_ a a,b
The various contractions of equation (3.19) with gab u,u uﬁ{a and H'H
yields

(p -3p)" -36=0, ... (3.20)



())~u
2.. 2.
(O+P+HH)ub+(p+p+UH)u -
b
- (p+ 1/2u B u-unWH = 0 (3.21)
b a b v L, .
2.. - |
(p+ 1/2 wH™)Y =0, . (3.22)
(0 + p+uB’) G Hu - (p+ 1/2uH%)s
.2 -2 2. 2, . C . ,
+M4 H Hb + U/ZH Hb + H Hb - yH chb ‘—Hbe =0, ..... (3.23)
, 2.
(p=-1/2H*) 49 =0 . . (3.24)
From equations (3.20} , (3.22) and {3.24) we obtain
* . . . '2
=0, p=0,H =0and H" = 0. ... (.3.25)
Also from the equations of continuity (0.4.8) and (3.24) we get
-0, and 4, = 0 (vide eguations (3.21) and (3.25) -«:-- (3.26)
So also (3.23) and (3.25) provide
- C I
H -H W =0. (3.27)
a c a

Hence the equations {3.25), (3.23) and (3.27) proves (A)=>(B}.

To prove (B) =% (A) We substitute (3.25), (3.26), (3.27) and 9 =

in equation (3.18).
Hence the proof is complet,
Thus {A} and (B) are eqiivalent conditions.

Case (2) : Let us write Aabcd = hachd’

For this the constitutive equation (3.12) of hypoelasticity yields

0



A ~cd cd ,
abcd G = hachd 9 ' NERREE (3.28)
. cd _ 2 _
i.e., )\abcd g = hab [(p+ p + uHT) u Uy
2 cd .
- ( p +1/2 uH )gcd-u HCHd] g8 -, vide (0.3.1)
. cd 2., \ d
ie., Nabed & = - hgpl (p o+ 1/2 pHY) 8 wH H, €71
..... (3.29)
This ejuation together with equation (3.1) prodices
= }\ Cd : = r :‘ = .2 =
é Tab abcde P p =y H 0.
6 A g = H
0, ab eab. e (3.39)

Hence we conclude that if th=2 constitutive relation (3.28) holds then
the pressure, density, magnetic permeability, magnitude of the

magnetic field remains constant along deformatinn free flow.

Case (3) : Let us take A h

abcd Tab cd’

Theorem (II}) : If for the ferrofluid distribution with uniform

magnitude of magnetic field the response tenser is governed by

A =
abcd Tabhcd' then

—}‘ d: .='=a=.:
-éTab abcd6 00 P =u=yy 0,

= = O
8 0 and eab ab’

Proof

For hypoelastic material we write

- eCd
é Tab Tabhcd *

“1 Tab - Tabe !
u

. - u 2 _ 2
1.8.,3_ Tab [(c+ p + YH )uaub {p +1/2 HH"Y) 8.b "

- U HaHb] g . '
WURR. BA: A52urR 7 *RDEKAR LIBRARR
SWivad; LiveweiialTy, KOLkhAPRS.




From equation (3.1) and (3.31) we have

+ uHaHba =0, (3.32)
For the uniform magnitude of magnetic field (Ha‘bz 0), We obtain
the following results from (3.32)

(0 - 3p)" - (p=-3p)06 =0, ... (3.33)

(p+1/2 ¢ Hz)'u + (p+ p + UHZ)‘:I —u}’{ ua’H -

b b " a b _
- P+ 12z uHY wp =0, Ll (3.34)
2.. 2
{0+ 1/2 UHT) - (O+1/2W HYO = 0, ..., {3.35)
2.+ ..a s 2 “2
{p+ p + uH )uaH Uy tH H Hb +u/2H u, *
20 2,. 2 c
+ 1 H Hb - (p-+ 1/2 U HY) Hb—u H ch b~
2 2., -
- (p+ 1/2uH )Hbe + WHTH B = 0, ... (3.36)
2,. 2
(p-1/2uH) - (p - 1/2uH)8 =0, ... (3.37)

and = 0. e (3.38)
From Ma>}<we11 equation (0.4.4) and (3.38) we get

y . "2 ,

W =0 . (since H" =0} ..., (3.39)

2.. 2 . .
(D+D+UH)Uan+(D+p+UH)(uu +uaub)

o

a

25, .
-(p + 1/2u H7) 8.p (u HaHb] + uHCHbW

+

om0

an
N
el

fuHH WS - (o poruHu e v (p v 1/2uH g 0

Further the equations (3.33}), (3.35) and (3.37) yield



i

A

p=0,0=0. (3.40)
and
fxa = 0, (vide 3.34)
) ¢ ‘
H - HW'_ = 0. (by 3.36‘) ..... (3.41)
- - O
Consequently,® = 0, 6ab =%abs e (3.42)

Finally the equations (3.39), (3.49), (3.41) and (3.42) imply

3 Top = abea 8 0P = p=i=n =i =0,

Case (4) : Let us consider A = h

abcd achbd *

hadhbc’

This with the constitutive relation (3.12) of hypoelastic material

produces
A cd _ cd
abed 9 ° (hachbd+ hadhbc) & o
: )\ Cd = e
1€+ Hbed e 2 ab’

This equation together with equation (3.1)and (3.12) with expansion

free flow yields



J

an
Vil
A

III) RELATIVISTIC- LAME'S PARAMETERS :

.

The isotropic elastic material characterized by the relation

(wWalwadkar, 1983)

A =0
abcd [A habhcd‘fB(hachbd+ha\dhac)]'

Here the constants A and B are the Lame's parameters.

We recall the J-type constitutive equation for hypoelastic material

= A gcd
ﬂ Tab abcd !
u
i6.. JT . = [Ah .h_4B(h_ h._+h nh )] 69, vide (3.43)
T 3 ab ab cd ac bd bd ac '
h) T = O o y 0 P T S Y u4
l.e., J 1ab Ahab + 218 ab (3.44)

From equation (3.1) and (3.44) we have

2 2, .. .
| . -
(P+ p + HHT) uaub + (P +p +uH )(uaub + uaub)

2 . c
- (p + /2 uHT)g o - u (HH H)® +wHH W™ s

+ uH_H wc.a = Ah_ 8 + 2B 9 . .....(3.45)

By contracting equation (3.45) with gat"ual—laand utuP respectively we

get the results

t

(P-3p)" = 368A+ 286 , ... (3.46)
(p-12ut)H —cag u? + 280 HH®. ... (3.47)
(P+1/2 HHE )= O

After solving the above iwo results simulteniously we obtain the value

of A and B



a
~d

| : 2,..2
A= -3p) | 2/3( WHT)'H \

36 oH: + 36  H3HP
ab
- (uH%) H? vide 3.47
B = =] —— . (vide 3.47 1)) (3.48)
OH® + 390 apH B

Remark : This equations give the Lame's coefficients in terms of

kinematical and dynamical variables.

4. THE TRUESDELL STRESS RATE :

Truesdell transport of a vector field X has the defining

expression (Walwadkar, 1983)

Tox? =X ox%® e x®o. (4.1)
u

By using the Leibnitz rule the value of Scalar {i is 1/2

Hence if the field vector X along the magnetic lines then we write

TH* =802 - ch?c L1208 L (4.2)
u *

The magnetic field vecior H is Truesdell rate free if

§
The contractions  of  this  rosalts (4.2 ] with U and II_‘ producos

respectively the results

172 (0% - ua.bHaHb 1200 = 0. ... (4.4)

1t follows from (4.3) and the Maxwell equation (0.4.3)



Further ’by using equation (4.4) in Maxwell equation (0.4.3) we have
.p/ze + 0 o=0. (4.6)
OBSERVATIONS : We note the following results
1) TH = 0=0 =00 =0, ... (4.7
u

b b

2) U;bH &=y H b= o. ... (4.8)

ci1-
ju sy
1
<
$

The equation (4.7} states that the magnetic permeability is invariant
along the expansion free flow and (4.8) shows that .the magnetic

permeability is invariant along divergence free magnetic lines.

TRUESDELL TRANSPORT TO FERROFLUID :

Theorem : The necessary and sufficient conditions that the siress
energy tensor of a ferrofluid is Truesdell transpoited with expansion
free flow  that  the matter  densily, lIsotropic  pressure, magnetic
permeability and magnitude of magnetic vecter are con.serv‘ed along

U with respect to killing flow ( ﬁa = eab = 0).

Proof : (Necessary)

The Truesdell transport of ferrofluid is given by

T 'rab = (P+ p +¥ 1-12)' uaub =~ (p+ 1/2 UHZ)'gab -
u

CHHRHD) s (p + 1720 HH WP & WP

aub_ + Hbua ) + (p+ p + UHz)liane -

+ WHO(H c iC

(p + 1/2u %) g2Ps - uudub . C (4.9)



Now we impose the condition of T 1° - 0 and the. medium
u
expansion free with suitable chosen contractions, we obtain
equations
, . a;b
(p=-3p)'+ 2UHH,_u =0, .. (4.10)
ab
Cper/2 wn®yu? - (p v 172 vu®Hu? - l'lauaub = 0,
..... {(4.11)
( P+ 1/2 UHZ)' =0, i {4.12)
2,. b v 2..b 2, b .
- (p + 1/2 HH ) u +U/2HH + 4 H'H +U/2
2P 4 (p o+ 172 BHY) (ua‘bua " ub‘aHa) = 0,
L e (4.13)
(p - 1/2uH5) 8% + 2 (p + 1/21 Hz)ua‘bnanb - 0,
..... (4.14)
Al =0 L (4.15)
a
We recall the equation of continuity
(P+ 1/2UH2}' + (P+ p +1JHZ)6 +
i d;b - =
+ Hu HaHb 0.
This with above deduction supply
WP gH =0, (byo=0) (4.16)
ab )
From equation (4.10), (4.12) and (4.14) we get
by v a . 2
9 = P =u=H = 0. e {(4.17)
Also &a = 0. (vide equation (4.11) ..., (4.18)

is

the



o
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From Maxwell equations (0.4.2), (0.4.4) and (4.15) we gat

By substituting the equations (4.17), (4.18) and (4.19) in equation

(4.9) we obtaining the result.

i.e., gab . 0 amdcrab = 0.

sufficient Part : If we substitutes the conditions (4.17), (4,18) and

(4.20) in equation (4.9) implies

ab

rt =0 . (4.21)
u

Hence the proof of the theorem is complete.

t

5. FERMI-WALKER,CONVECTIVE TRANSPORTS AND FERROFLUID
RHEOLOGY :

Fermi-Walker Transport along a space like congruence

A Fermi-Walker (F-W) transport along space like vecter is physically
much less similar than F-W transport along time like congruence. To
discuss the physical interpretation of F-W transport along a space
like wvector, We can use the same argument of F-W transport along

time-like vecter with making the suitable changes in sign (Synge 1960) .

According the F-W transport of tensors along the time like

vector is studied by Radnakrishna and Bhosale (1976). Adopting the



same procedure and taking into account the sign changes we define
the F-W transport equation along h as follows

L]

. ' c tC
_rf_‘] Xa = Xamh XC(hah hah ).
and
. - c ' c' '¢C
%1 Xab = xab;c h cb (B - hh7)-
c! ' o
xacthbh - hbh Yoo, (5.2)

It follows (from (5.1) and (5.2)

Fh_ = 0ad Fg, k6 =0 eeen . (5.3)
n @ h ab

Then we observe that the metric tensor and the magnetic f{ield vector

are Fermi-Walker transported along the magnetic field vector h.

%

FERMI-WALKER TRANSPORT OF FERROFLUID :

Theorem (1) : The stress =nergy tensor of ferrofluid is Fermi-Walker
stress rate free along the:. magnetic lines if and only if the matter
density, isotropic pressure, magnetic permeability and magnitude of
the magnetic field are invar'iant-along the Fermi-Walker transported

flow.
Proof : (Necessary Part)
The Fermi-Walker transport of stress energy tensor is given by
equation (5.2)
F .
g ab ab;c

'
- T_(h h -~ h h7)



This for ferrofluid distribution yields

F
+ “ab
h 1]

x(u_u 2

1)
a%b + uau |3)-—(p + 1/2 uH™)

)
- (P +p +UH2) UL~ hbhc .

If Tab is Fermi-Walker transported along 'h then we have F Ta

Hence we write from (5.4)

(p+ p + HHZ)‘ uaub

] 1 2'
- ¥ - :
suu) - (p o+ 1/28H%) g - (HHY) hoh

2 C
- M
(p+ p + HHT) ucubhah
1
xucuahbh ¢ = 0.
It follows easily from this

(D*‘ 313) = 0,

¢

1
T, = (0+ D +uH) uu + (o+ p + nH )

1
8ab”

2! 2 C!
-(UH)hahb—(p+p+uH)uCubhah -

+ (p* p +u HY

- (p+ p + UHZ)!

.....

h

+

......

.....

(p+ 1/2 IJHZ)'ub + (P+ p + UHZ)U b " {(p+ p =+

2 c'

+ uH™) uchbh = 0,
2 1]

{p+ /2y H") = 0O,

(p-1/2 uHY) =o0.

From equation (5.6) , (5.8) and (5.9), we obtain

¥ i t 2'
P =0, p =0, p =0andH =

ccccc

.....

-----

b

(5.6)

(5.8)



,
et
Co

These conditions when used in equation (5.4) provides the result

c' c!
u aub + uau b~ ucubhah —ucuahbh =0,
1 ]
i.e., u —uhhC = 0,
cC a
t.e., Fu =0 .. (5.11)
h

Hence the flow is F~W transported along h.

Thus the equations (5.10) and (5.11}) are the required necessary
conditions of the theorem.

Sufficient Part : Now on substituting the results (5.10) and (5.11)

in equation (5.4) then we easily get

F T = 0.
hat:)

Here the Ta is F-W transported along h.

b
Here the proof is complete.

Theorem (2) : For ferrofluid system

ﬁFTab=0¢:)(A) P=p=u =‘H = 0,
(B) [jha=0
u
Proof : If part
Llet F T = 0. i (5.12)
5 ab

From the definition of Fermi-Walker operator (vide (0.5.6), we write

Il

the stress energy tensor of ferrofluid as,



. - 2,.
F T = (P+ p + UH") u U,

2

2.. .
-(p + 1/2 WH")" g - (uH hahb) -

ab

2 -G 2 C
- U -
H hchbuau HH hchaubu . e (5.13)

From the equation (5.12), we get
(O+p+UI—12)’uu - (p + 1/2 Hz)‘g -
7 ab H ab

2 2

. . C 2 - C
- ( MH hahb) - UH hchbuau - uH hchaubu
..... {5.14)
. . . ab a b a
On account of contractions of equation (5.12) with g ",uu’, h  and
hahb, we obtain
(P~ 3p) =0, vernn(5.15)
2,.
(P+ 1/2 uH)" =0, L. (5.16)
2,. A -2 2
—(p+1/2uH)hb+Uth+ uth+uth+
2 « C
+ H hchbu = o, {5.17)
2..
(p - 1/2 yH™)" = 0 o i (5.18)

Byusing equations (5.13), (5.14) and {5.16) we deduce that

Consequently the equation {5.15) implies that

. ‘o
h 4+ huu’ = 0,
a ca
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Only if Part : If the conditions (5.19) and (5.20) are satisfied then

the equation (5.13) implies

rab = 0.

=1

Here the proof of the theorem is complete.

Remark : We observe from the result (5.19) and the equation of

continuity (0.4.8) that 6 = 0 .This means that the flow is expansion

free.

i

CONCLUSION : The equations (5.19) and (5.20) imply that the
isntropic prossuro, magnoetic pormoability, matter donsity and
magnitude of magnetic field are conserved along u and the magnetic

lines are F-W transported along u.

t

CONVECTIVE TRANSPORT ALONG SPACE LIKE VECTOR :

The expression for the Convective transport of a tensor field Xab

along the flow is given by expression (0.5.5). On similar lines we

provide the definition of Convective transport of Xa along the unit

b

space like vector h as

C;\Xab N Xabie * XenMia - hcuc - hC'ua ¥
. udu"uaind - uducnah'd - hduchd;a) .
+XaC [hC;b - hcub —hc'ua + uducubhd -
- u%lhn’, - hduchdrb} ..... (5.21)



This implies that

' %
Cg., =26_.
n ab ab

CONVECTIVE TRANSPORT AND FERROFLUID SYSTEM :

We recall the result ( 0.4.10)

H 1
(p+ p + qu) ﬁaha - (p+ 1/2 UHZ) + qu

t
NETTTC T e n? =0,

L3

uaub - UHZ(ha.a -

+

t
i.e., p+(P+ p) ha‘b

ab 2.
-ha;buu)-l/Z(uH) = 0,

1 % 1
i.e., p + (P+ p) ha_buaub -2 Hze - 1/2 (qu) =0

. é“ - a _ ab
(Since 1/2€¢h 2 ha;bu u)

The Convective transport of the stress energy tensor

ferrofluid along the magnetic field vector h gives

2. 2 '
%Tab = (P+ p + HHT) u o+ (°+ p + UH )(ua ug+

!

| 2!
+uaub)~ ( p + 1/2 UHY) 8.p "

2 ' 2
- cuetnn)) -2 0o+ /2 ey 8

From equation (5.23) we have

ab
g CT
hab

2

H
Bl e T = (04 172 HHY
l_] ab

= (p~3p)' -2 (p+ 1/2 unz) B .

AR

SRS

+

(0.3.1)

....(5.23)

of
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a _ 2 ' a 2.
hgTab~(p+p+uH)uaubh-(p+1/2uH)hb+
Z 1
+ ((WH hb) v, (5.26)
a, b ‘ 2.
h™h™ C Tab = (p~-1/2WH") , L e (5.27)
h

a b ' b
u h %Tab = (P + p) ubh e, (5.28)

If for the geodesic flow of ferrofluid the equations (5.22) and {5.27)

are used in the transport equation C Tab = 0, then we get
h

Further using the results (5.24) , (5.25) and (5.27) we obtain

1 ' ' 2t
P =0, p =0,4 = 0 and H = 0. L. {5.30)

Finally by substituting the results (5.30) and (5.31) in equation

(5.23) we got

% d %
8 p =0and o =0. L. (5.32)

REMARK : The condition C T = 0 directs that the system is
h
physically constant ( Ehlers, 1973).

CONCLUSION : The convective derivative of stress energy tensor of
the ferrofluid system is physically constant along Tl. if and only

if the pressure, density magnetic permeability and magnitude of the

-

magnetic field vector are conserved along h. Moreover the space like

N % £
congruence is killing congruence. It means that eab =0, = 0 = 0.



