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CHAPTER II

MAGNETO-DUST DISTRIBUTION
AND

A GROUP OF GONHARMONIG 
CONFORMAL MOTIONS
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1. INTRODUCTION:

One of the recent symmetries known as Conformal symmetry plays 

a key role in obtaining space-time models for relativistic distributions of 

matter. This symmetry consists of both the earlier symmetries, namely 

isometry and self similarity (Taub 1971, Eardly 1974, Wilson 1986).

The Conformal symmetry property has been an essential geometric 

prescription for a good part of physics ( Duggal 1989 ). The Conformal 

invariance is the root of twisstar programme.

The aim here is to examine the effect of Conformal motion on the 

dynamical structure of relativistic Magneto-Dust Distribution. 

Accordingly, section 2 deals with several properties of Conformal 

motions. The next section 3 includes the study of Conharmonic 

Conformal motions compatible with Magneto-Dust Distribution.

2. IMPLICATIONS OF CONFORMAL MOTIONS:

We know that the necessary condition for Conformal motion is
L gab = 2 l|/ gab ,
%

2.1

t*®* 4a;b^~^b;a ~~ 2 t|f gab. 2.2

CASE (I): Let us choose £ = u .

For this choice equation (2.2) becomes

Ua;b“*~Ub;a = 2 l|l gab . 2.3

Theorem 1: If the flow vector {Ijs Conformal Killing vector then 

0 = 0, a = 0, i|i = 0 . ?
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Proof: On contracting (2.3) with gab, we obtain

Ua;b + g3b Ub;a = 2 iff g3b gab,

i.e. ub;b + ua;a = 2 lj/(4),

i.e. 2 0 = 8 if;, v ub;b = 0

i.e. 0 = 4 iff. 2.4

Transvection of (2.3) with ua ub, yields

UaUbUa ; b + UaUbUb; a = 2 iff uV gab ,

i.e. ( Ua;b Ua ) Ub + ( Ub;a Ub ) Ua = 2 iff ,

i.e. if; = Oi 2.5

V Ua;bUa = 0

Hence from (2.4) and (2.5),

0 = 0 and iff = 0 . 2.6

CLThe gradient of the flow vector u can be written as

Ua;b = O-ab + Wab + Ua Ub + (1/3) 0 hab . 2.7

If we use (2.6) in this, we have

Ua ; b = 0-ab + Wab + UaUb . 2.8

This implies that

Ub;a ==0-ba+ Wba + UbUa 2.9

Ua;b + Ub;a = 2 0-ab + UaUb + UbUa 2.10

V Wab = -Wba

O'ab — Oba
i.e. 0 = o-.

This gives a = 0 . 2.11
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Hence the Kinematical implications of (2.3) can be summarized as

8 = a = i}/ = 0. 2.12

Hence the theorem.

• Remark (1) : If u is Conformal Killing vector then flow lines are
expansion and shear free. VI5e • e ^ 2 • • >)

• Remark (2) : (2.12) implies that Conformal Killing vector is changed 

to Killing vector (i|/ = 0 ).

Theorem 2 : If uis the Conformal Killing vector then

i) ubhb = 0

ii) 2 jxh2 + jx (h2)* = 0

iii) p = l/2 jxh2

iv) |x;bhb = 0

v) hb;b = 0 .

Proof: On contracting (2.3) with uahb, we obtain

uahb(ua;b) + uahb(ub;a) = 2\|/uahbgab, 

i.e. (ua;bua)hb + (ub;aua)hb = 0, vhbub = 0 

i.e. ub;auahb = 0, vua;bua=0

i.e. ut,hb = 0 . 2.13

Further fransvection of (2.3) with hahb, gives

hahbua;b + hVub;a = 2 hahb gab, 

i.e. 2 hahbUa>b = -2 i{/h2. v haha = - h2

This with equation (2.5) yields,

hahbua;b = 0 . 2.14
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By using equation (2.13) in Maxwell equations I (8.7), we get 

M,[h20 + 1/2(h2)] + £h2 = 0,

i.e. 2 jxh2 + jx (h2)* = 0 . vide (2.6) 2.15

The continuity equation I (9.10) with (2.6) provides

p = V2 |lh2 . 2.16

If we use the condition (2.13) in stream line equations I (9.16), then 

we get

|x;bhb = 0. vp*0,h2*0 2.17

The Maxwell equations I (8.8), yields hb b = 0 vide (2.13), (2.17) 

Hence the theorem.

Interpretation :

i) p is invariant iff jx is invariant along flow lines.

vide (2.16)

ii) Magnetic permeability is preserved along magnetic lines.

vide (2.17)

CASE (II): Let us choose 5 = h .

For this choice equation (2.2) takes the form

ha;b + hb;a = 2l|lgab . 2.18

Theorem 3 : If magnetic field vector h is the Conformal Killing 

vector then
i) hb b = 4iua = (2/h2 )Lh2 = 4 t|> ,

h
ii) jx + p 0 = 0 .
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Proof: On contracting (2.18) with gab, yields 

gabha;b +gabhb;a = 2 ifl g®b gab , 

i.e. hb; b + ha; a = 8 i|i,

i.e. hb; b = 4 i|>, 2.19

Further, if we contract (2.18) with uaub, we get
uau\;b + uau\;a == 2 *Jj uX gab ,

2uau\;b = 2 if;, SL 1*.* U Ua = l

hV - l|i , v ha; b ub = ha 2.20

iiaha =

4 h;Ua = 4 i(i. 2.21

Also multiplying (2.18) with ha hb, we get

h\%,h + hah%,a = 2 t|/ hahbgab, 

i.e. ha; b hahb = - if; h2, v hahb = - h2

i.e. (-Kh'.bjh1 = — x|»h2,

i.e. h2;bhb = 2 »|/h2, 2.22

i.e. (2/h2) h2; bhb = 4<|i,
i.e. L h2 = 2 h21|<. h T 2.23

From equations (2.19), (2.21) and (2.23), we have

4i|i = hb;b = 4iua = (2/h2)h2;bhb . 2.24

On contracting (2.18) with uahb, we get

U^X ;b + uXhb;a = o , V Uaha = 0

i.e. h.;buahb + ha;bubha= 0, 

i.e. ha; buX - ua; bhahb = 0 , 2.25
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i.e. Uajbh^-hajbuV = 0,

i.e. ua;bhahb-ha;bhaub = 0, 2.26

Hence from (2.26) and Maxwell equation I (8.5), we have

p + fx 0 = 0. v h2 * 0 2.27

Hence the theorem. vide (2.27) & (2.24)

Theorem 4 : If the magnetic field vector h is the Conformal Killing 

vector then

i) p = 0 iff p = 0,

ii) |x ; bhb = - 2 p i|/ / h2.

Proof: We know the continuity equation I (9.10), viz. 

p + p 0 = Vi ph2,

But p = - p 0. vide (2.27)

Hence above continuity equation becomes 

p + p 0 = - Vi p 0 h2,

i.e. p + ( p + Vi ph2) 0 = 0 . 2.28

This implies, p = 0op = 0. Y0=-jx/|j.

*.* p, p, h2 * 0

We know stream line equation I (9.16), viz. 

p iibhb = Vi p; bhV, 

i.e. M-;bhb = (2/h2)pibhb,
= - ( 2/h2 ) p l%u‘,

= - ( 2/ h2 ) p 41, vide (2.20) 2.29

Hence the theorem.



21

Theorem 5 : If magnetic field vector h is the Conformal Killing 

vector then

i) = 0 OR

ii) p = ( 3/2 ) jxh2 OR

iii) if; = 0, p = ( 3/2 ) fxh2 .

Proof: We know Maxwell equation I (8.8), viz.

p, (Ubhb + hb;b)+p-;bhb = 0,

Putting K ii i

-£
5. vide (2.20)

hb;b = 4iji and v;4«C-2'19)

we obtain

u •y
jx;bh = - (2/h ) p ifr in above Maxwell equations,

V'l/t

p,(-i|; + 4i|/) + -( 2/h2 ) p if* = 0,

i.e. 3 jut i|/ - ( 2/h2) p i|i = 0,

i.e. if/ (3 |x - 2 p /h2) = 0,

i.e. 4/ ( 3 |xh2 - 2 p ) = 0 . 2.30

This implies that

a) 4# = 0 OR

b) p = (3/2) )ul h2 OR

c) 4/ = 0 , p = (3/2 ) |xh2

2.31

Hence the theorem.

Remark: We have i|/ ^ 0 always. Hence the only possibility is 

p = (3/2 ) |xh2 is considered.

CASE (III) : Let us choose u = h = £ be Conformal Killing vectors, 

then we have the following results :
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e 0, vide (2.6) 2.32

* = 0, vide (2.5) 2.33

cr = o, vide (2.11) 2.34

W * o, vide (2.8) 2.35

Ua o, vide (2.44) 2.36

o
fla

£•43 = Uaha vide (2.13) 2.37

h\b = 0 ; vide (2.19) 2.38
Lh2 - (h2 
h

;b)hb = 0 vide (2.23) 2.39

P = o f vide (2.28) 2.40
P<;bhb= 0 vide (2.29) 2.41
* bfl = |X;bU = 0 vide (2.27) 2.42
M.(h2)-= 0 vide (2.15) 2.43

From (2.39) and (2.41) stream line equations gives

|la = 0 . 2.44

• Conclusions : When the time-like flow vector u and magnetic field 

vector h both are Conformal Killing vectors then we have:

1. Flow lines are expansion free, shear free and geodesic.

vide (2.32,2.34,2.36)

2. Magnetic lines are divergence free. vide (2.38).

3. Magnetic permeability and magnitude of magnetic field are invariant

along magnetic lines and flow lines. vide (2.39,2.41).
cx

4. Matter energy density is conserved along u vide (2.40)
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3. CONHARMONIC CONFORMAL MOTIONS AND

FIELD EQUATIONS FOR MAGNETO-DUST DISTRIBUTION:

For Conformal Killing vector §, we have ( Coley & Tupper, 1989)
LRab = -2\|/;ab-(lf/;cd)gCdgab , 3.1
$

This for Conharmonic Conformal motion (CCM), yields
LRab =-2^ ,i,asi|;;cdgcd = 0 forCCM . 3.2
4

By using field equations in (3.2) gives
- 2 Iff ;ab = L Tab - V2 L ( T gab ) 3.3

5 $
This with I (3.4) and I (4.7) provide^

- 2 l|> ;ab = L [ ( P + ph2 ) UaUb - !/2 ph2 gab - p hahb ]
4

— V2 L ( p gab ) ,

i.e. -2iJ>;ab = L[Auaub + B gab+ D hahb] . 3.4

where A = p + ph ^

B = - !/2 (p + ph2)

D = - p (variable magnetic permeability ) .

We know if a fluid space-time admits a Conformal Killing vector then 

(Maartens et al., 1986)
Lub = i|/ub + hb. 3.5

Equation (3.4) on simplifying, gives

-2i|>;ab = (L A)uaub +Aua(Lub) +Aub(Lua)
Z $ £
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2 4' ab

+ (LB)gab + B(Lgab) + L(D) hahb
£ £4

+ Dha(Lhb) + Dhb(Lha),
5 % ’

( L (A) ) uaub + A ua (if/ ub + hb)
\ —----------------

+ Aub(4>Ua + ha) + (LB)gab + 2B\|lgab
%

+ (L(D)hahb + D (Lhb)ha
% \

+ Dhb(Lha)
k

vide (3.5) 3.6

? rV^)-
Theorem 6 : If Magneto-Dust Distribution admits Conformal Killing 

vector 4 then
a b ,2 L ixh^ = ( 4/lF ) ip; ab hahb - 41|/; abuaub-^ a-y* l\2—

Proof: On transvecting (3.6) with ua and using uaua = 1, uaha = 0, 

we get
-2i{/;abUa = (LA)ub + A(4/ub + hb) + AiJjUb

+ (LB)ub + 2Bif/ub + D uahb ( L ha), 3.7
£ 4

Further contracting (3.7) with ub, we obtain

2 di; ab uaub (L A) +Avj/

+ L(B) + 2Bi|i + Ai|/>

v ubub =4, u^b = 0

^e. L(A + B) =-2(A + B)4/-24/;abuaub, 3.8

AsA + B = !4 (p + jxh2 ), we have

y2[L(p + p,h2)] = -2[1/2(p + ^h2)]4/-2 4/;abuaub,
q
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i.e. L ( p + jxh2 ) = - 2 ( p + jxh2 ) - 4 i|i ab uV5
l

i.e. L(p) + jxLh2 + h2Ljx =
l £ %

3.9

= - 2(p + jxhz)v|/-4i|/;ab uaub,

Multiplying equation (3.6) by ha, we have
-2i{f;abha = -Ah2ub + hb(LB) + 2Bi(;hb

-Dh2(Lhb)-h2hb(LD)
l l

+ D(Lha)hah\ 3.11
k

Yuaha = 0,haha = -h2

Further contracting (3.11) with hb, we get
-2 ^ abhahb = -h2(LB)-2Bh2i|i-Dh2hb(Lhb)

+ h4LD - h2ha D ( L h^) . 3.12^

vubub = 05hX = -h2

3.10

Putting B 

we get

i.e.

- ‘/2 ( p + |xh2 ), D = - p- and simplifying equation (3.12), 

-P2 Lp-1/2^Lh2 + (h2/2)Lfji =
l l l
= ( 2/h2 ) [ 4*; ab hahb ] + ( P + p.h2 ) l|l 

+ 2p,ha(Lha^),

L(p) + M-L(h2)~h2L(p,) =
III

= - (4/h2 ) [ i|> ;ab hahb ] - 2 (p + |ih2 )\|i-
- 4 fx (~ 1/2 L h2) g, - 2-V'

l
= - (4/h2) [ i|/; ab hahb ] - 2 (p + p,h2) t|/

- 4 p, (- Vi h2 ; c£c) # — 2.

3.13

/
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= -(4/h2)[*!»;abhahb]-2 (p + ph2)<|,

314
5 vh*Lha = -'/jLh2 -

i.e. L(p)-p,L(h2)-h2L(p.) =
5 5 5

= -2(p + ph2)^-(4/h2)[^bhahb]ri^V,1

i.e. L(p)-L(ph2) =
5 5

= -2 (p + p.h2) «|<- (4/h2) [ >)/ ;abhahb]^i^3' 3.15

On subtracting (3.9) from (3.14), we get

-2L(|ih2) = +4<(i;abuau,’-(4/h2)[^abhahb]riy-ti2-
5

i e. + 2 L ( ph2) = (4/h2) (febhahb)- 4 <|> ;ab uaub+ vffi.16

Here proof of theorem is complete.

On contracting (3.6) with gab, we get

-2*|/ abgab = L(A) + A*|/ + 4L(B) + 8B*|/ + Af
l l

v + D ha (L ha )fD hb L hb - h2 L (D) , 3.17
III

L(A + 4B) + 2(A + 4B)i|/ +
l

+ 2DhaL(ha)-h2L(D) = 0, 3.18
l l

Putting A + 4B = -(p + jxh2) andD = - jx in(3.18), we get



= - 2 ( p + jxh2 ) vji^— J2.0 l\ 3.20

Theorem 7 : If Magneto-Dust Distribution admits Conformal

Killing vector £ then
ilCabuV = ( p/2 ) h2.

f1vy.A C

Tv. s 
1w-i

Proof: If we transvect (3.7) with hb, we get

- 2 iJj ■ abuahb = - Ah"-Dh"uaLha,
4

,2 a

v haha = - h2, uaha = 0

i.e. 2i|» abuahb = A h2 + D h2 ua L ha, 

i.e. (2/h2)i|/;abUahb= A + DuaLha,

3.21

= (P + M<h ) — p- [-haLua]
£

( P + p,h2 ) + p. ha [ Ua+ ha] ,

3.22

ha L ua = - ua Lha
5 l

— (p + p,h2 ) + p, (— h2 ) ,

(2/h2)l|/;abUahb = P,

i.e. iKabuV = p(h2/2). 3.23

Using ha L (ha) = -V* L h2 in equation (3.19), we get

L(p) + M.Lh2 = - 2 ( p + p.h2 ) <|/ + p, L \i
l l l

L(p)+p,Lh2 = - 2 ( p + p,h2 )*|/-2p,haL(ha), 3.19
It ■ k

27

b ■D

Hence the theorem.
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Theorem 8 : If Magneto-Dust Distribution admits Conformal Killing 

vector ^ then
fabuV = -% L (JL h2.

£

Proof: Subtracting result (3.20) from (3.9), we get 

L(|xh2) = - 4 >|<; ab u“ub ,

i.e. \}i ab Uaub = - 1/4 L jx h2 »
k

Hence the theorem.

3.24

Theorem 9 : If Magneto-Dust Distribution admits Conformal Killing 

vector 4 then
; ab hahb = (h'/4 ) L (iih*1),

Proof: We have equation (3.16), viz

+ 2L((jJi2) = -r (4/h2)^.;abhV-4^;,bu,ub.
4

If - 4 iji ab uaub = L (gh2) vide 2.24

Hence the above equation (3.25) reduces to,

+ 2L(gh2) - Ugh2) = (4/h2)*;abhah\
k £

i.e. (h2/4)L(gh2) = i|/abhahb 

Hence the theorem.

3.25
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Therefore, from theorems (7), (8) and (9), we get

4';abU*Ub =

vf^ab hahb =

-l/4L(M,h2),
5

(h2/4)L(MJi2),

*!* ; ab uahb = ( p/2 ) h2.

Sub-case of Case (I):

Let £, = u be Conformal Killing vector 
Then we have

6 = 0 , vide (2.6)

^ = 0 , vide (2.5)

cr = 0 , vide (2.11)

Ubhb = 0 ( vide (2.13)

We recall equation (3.16), as

+ 2L(mJi2) = ( 4/h2) (i|>;ab lyfy/- 4 ; ,b ua iib ,

As ip = 0, this gives

L ph2 = 0 . 
u

Again, we recall equation (3.20)

Lp = -2(p + |xh2) ij/, 
u

As i}i = 0, this gives

Lp = 0 . 
u

Hence we have a claim that matter energy density is preserved.

3.27

3.28

/
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i | 2

We have equation (2.16) vlz p = y2 p.h 

Hence from equation (3.28)

uh2 = 0 ==> L jx = 0 ,
u

This gives from (3.27),
Lh2 = 0 . 
u

Thus we have
L(|x) = Lh2 = Lp = 0 . 
u u u

3.29

3.30

3.31
'0

Sub-case of Case (II):

Let E, = h be Conformal Killing vector 

Then we have a result, (3.20), viz.

L ( P ) = - 2 ( p + jxh2 ) t|r . 
h

If we put ip = (l/2h2) L (h2 ) in above equation, we get
h

L(p) = -2 ( p + ph2) ( l/2h2 ) L (h2 ) 
h h

vide (2.23)

i.e. ^(P) -(P + Hh2) L(h2),
h = ' h2 h

i.e. L ( p | = 0 iff L h2 = 0) . 
h ' h

This implies that L(p) = -(p/h2)iff Lh2 = 0.
h h

Sub-case of Case (III):

Let 4 = |x = h be Conformal Killing vector 

For this choice we have from (3.16)

3.32

3.33
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L(nh2) = 0 .

Also equation (3.20), yields 

L ( p ) = 0 .

Equation (2.39) and (3.34) implies that 

L p, = 0 ,

Lh2 = 0.

vide (2.33) 3.34

vide (2.33) 3.35

3.36

3.37

Thus we have a claim

Lp, = Lh2 = Lp = 0 .

This implies that,

Lp = Lp = 0 
u h 7

3.38

Lr = Lh = 0 , 
u h

3.39

L |x = L(i = 0 
u h

i.e. p;a = h2;a = |X;a = 0 3.40
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THE RELATIONS BETWEEN CONHARMONIC AND 

OTHER SPACE-TIME SYMMETRIES.

(Abdussattar and Babita Dwivedi, 1998) #


