FIXED POINTS OF GENERALIZED NONEXPANSIVE MAPPINGS IN GENERALIZED hilbert space

3.1 INTRODUCTION

Precupanu [36-39] studied the H-locally convex linear
topological spaces (i.e., the locally convex spaces whose
generating family of seminorms satisfies the parallelogram law).
Hicks and Huffman [14] have considered such H-locally convex
spaces for completeness and termed them as generalized Hilbert
spaces (GHS) and they extended some fundamental results of
Jrowder [3], Browder and Petryshyn [8], Z.Opial [32], et. al. for
nonexpansive mappings in generalized Hilbert spaces (GHS). Further
Mukherjee and T.Som [27] have studied generalized nonexpansive
and contraction mappings in generalized Hilbert spaces and extended
the result of Hicks and Huffman [14]. In this chapter we have
proved the results concerned the convexity of fixed point set,
demiclosedness of a mapping g construction of fixed points by using the generalized contraction mappings. The result thus obtained
generalize those of Browder [3], Browder and Petryshyn [8], Z. Opial [32], Hicks and Huffman [14], Mukherjee and T.Som [27-28] etal. Now we prove the result about convexity of fixed point set as follows :

Theorem (3.1.1) Let X be a Hausdorff H-locally convex space and T be a generalized contraction selfmapping of a convex subset C of X. Let $F(T)$ be the nonempty fixed point set of T. Then $\mathrm{F}(\mathrm{T})$ is convex.

Proof : Let $x, y \in F(T)$ and $0<t<1$. Suppose $z=t x+(1-t) y$ and $z \notin F(T)$ i.e. $T z \neq z$.

Now, using the parallelogram law and the property of T (1.412), we obtain

$$
\begin{aligned}
& { }_{\rho}^{2}(x-y)=\rho_{\rho}^{2}((x-T z)-(y-T z)) \\
& \leqslant{ }_{\rho}^{2}(x-T z)+{ }_{\rho}^{2}(y-T z) \\
& =\rho^{2}(\mathrm{Tx}-\mathrm{Tz})+\rho^{2}(\mathrm{Ty}-\mathrm{Tz}) \\
& \leqslant a_{1} \rho^{2}(x-z)+a_{2} \rho^{2}(T z-x)+a_{3} \rho^{2}(T x-z)+ \\
& +a_{4}{ }_{\rho}^{2}[(I-T) x-(I-T) z]+a_{1} \rho^{2}(y-z)+ \\
& +a_{2}{ }_{\rho}^{2}(T z-y)+a_{3} \stackrel{2}{\rho}(T y-z)+ \\
& +\mathrm{a}_{4} \rho^{2}[(\mathrm{I}-\mathrm{T}) \mathrm{y}-(\mathrm{I}-\mathrm{T}) \mathrm{z}] . \\
& =a_{1} \rho^{2}(x-z)+a_{2} \rho^{2}(x-T z)+a_{3} \rho^{2}(x-z)+ \\
& +a_{4} \rho^{2}[(x-z)-(x-T z)]+a_{1} \rho^{2}(y-z)+ \\
& +a_{2}{ }_{\rho}^{2}(T z-y)+a_{3}{ }_{\rho}^{2}(y-z)+ \\
& +a_{4} \rho^{2}[(y-z)-(y-T z)] \\
& \leqslant a_{1} \rho^{2}(x-z)+a_{2}{ }^{2}(x-T z)+a_{3}{ }_{\rho}^{2}(x-z)+ \\
& +a_{4}\left[\rho^{2}(x-z)+\rho^{2}(x-T z)\right]+a_{1} \rho^{2}(y-z)+ \\
& +a_{2} \rho^{2}(y-T z)+a_{3} \rho^{2}(y-z)+ \\
& +a_{4}\left[\rho^{2}(y-z)+\rho^{2}(y-T z)\right] \\
& =\left(a_{1}+a_{4}\right)\left[\rho^{2}(x-z)+\rho^{2}(z-y)\right]+ \\
& +\left(a_{2}+a_{4}\right)\left[\rho^{2}(x-T z)+\rho^{2}(T z-y)\right]+ \\
& +a_{3}\left[\rho^{2}(x-z)+\rho_{\rho}^{2}(z-y)\right] \\
& \leqslant\left(a_{1}+a_{4}\right) \quad \rho^{2}(x-z+z-y)+ \\
& +\left(a_{2}+a_{4}\right) \quad \rho_{\rho}^{2}(x-T z+T z-y)+ \\
& +a_{3}{ }_{\rho}^{2}(x-z+z-y) \\
& =\left(a_{1}+a_{2}+a_{3}+2 a_{4}\right) \quad \rho_{\rho}^{2}(x-y) \\
& <\rho^{2}(x-y) \text {, }
\end{aligned}
$$

since $a_{1}+a_{2}+a_{3}+2 a_{4}<1$. Thus $\rho^{2}(x-y)<\rho^{2}(x-y)$ and this contradiction implies that $z \varepsilon F(T)$ and $F(T)$ is convex. This completes the proof.

For the following result we need def inition (1.4.12) and theorem (1.6.5) of Hicks and Huffman [14].

The result runs as follows :
Theorem (3.2.1) : Let C be a closed convex subset of a GHS X and T be a generalized contraction mapping of C into X. Then (I-T) is demiclosed.

Proof : Let $\left\{x_{n}\right\}$ be a sequence in C which is weakly convergent to an element x_{o} in C and let $x_{o} \varepsilon F(T)$. Let the sequence $\left\{x_{n}-T x_{n} .:\right\}$ converge to an element y_{0}. in X. Now, as T is generalized contraction mapping and X is.a GHS, we obtain

$$
\begin{aligned}
\rho^{2}\left(T x_{n}-T x_{0}\right) \leqslant & a_{1} \rho^{2}\left(x_{n}-x_{0}\right)+a_{2} \rho^{2}\left(T x_{0}-x_{n}\right)+ \\
& +a_{3} \rho^{2}\left(T x_{n}-x_{0}\right)+a_{4} \stackrel{2}{\rho}^{2}\left((I-T) x_{n}-(I-T) x_{0}\right) \\
= & \left(a_{1}+a_{2}\right) \rho^{2}\left(x_{n}-x_{0}\right)+a_{3} \rho^{2}\left(T x_{n}-T x_{0}\right)+ \\
& +a_{4} \rho^{2}\left(x_{n}-x_{0}\right)-\left(T x_{n}-T x_{0}\right) \\
= & \left(a_{1}+a_{2}\right) \rho^{2}\left(x_{n}-x_{0}\right)+a_{3} \rho^{2}\left(T x_{n}-T x_{0}\right)+ \\
& +a_{4}\left[\rho^{2}\left(x_{n}-x_{0}\right)+\rho^{2}\left(T x_{n}-T x_{0}\right)-\right. \\
& \left.-2 \rho\left(x_{n}-x_{0}-T x_{n}+T x_{0}\right)\right] \\
\leqslant & \left(a_{1}+a_{2}+a_{4}\right) \rho^{2}\left(x_{n}-x_{0}\right)+ \\
& +\left(a_{3}+a_{4}\right) \rho^{2}\left(T x_{n}-T x_{0}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
\rho^{2}\left(T x_{n}-T x_{0}\right) \leqslant \frac{\left(a_{1}+a_{2}+a_{4}\right)}{\left(1-a_{3}-a_{4}\right)} \quad \rho^{2}\left(x_{n}-x_{0}\right) \tag{3.2.2}
\end{equation*}
$$

But from the Definition(1.4.12) of T,

$$
a_{1}+a_{2}+a_{3}+2 a_{4}<1
$$

or

$$
a_{1}+a_{2}+a_{4}<1-a_{3}-a_{4}
$$

or

$$
\frac{\left(a_{1}+a_{2}+a_{4}\right)}{\left(1-a_{3}-a_{4}\right)}<1
$$

Hence the above inequality (3.2.2) reduces to

$$
\rho^{2}\left(T x_{n}-T x_{0}\right)<\rho^{2}\left(x_{n}-x_{0}\right)
$$

or

$$
\rho\left(x_{n}-x_{0}\right)>\rho\left(T x_{n}-T x_{0}\right)
$$

Taking the limit inf. of both sides as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \inf \rho\left(x_{n}-x_{0}\right) & >\lim _{n \rightarrow \infty} \inf \rho\left(T x_{n}-T x_{0}\right) \\
& =\lim \inf \rho\left(x_{n}-y_{0}-T x_{0}\right)
\end{aligned}
$$

Hence by applying Theorem (1.6.5), it follows that (I-T) is demiclosed and the proof is complete.

Remark (3.2.3) :
As immediate corollaries to our result (3.2.1) we have the Theorem (1.6.6) of Hicks and Huffman [14], Theorem (1.5.9) of Z.Opial[32]. 3.3
. :
A result concerning the construction of fixed points for generalized nonexpansive mappings (1.4.13) :

According to the definition (1.4.13), T is called generalized nonexpansive mapping if

$$
\begin{align*}
\rho^{2}(T x-T y) \leqslant & a_{1} \rho^{2}(x-y)+a_{2} \rho^{2}(T y-x)+a_{3} \rho^{2}(T x-y)+ \\
& +a_{4} \rho^{2}[(I-T) x-(I-T) y] \tag{3.3.1}
\end{align*}
$$

For all $x, y \in C$ and $a_{i} \geqslant 0, i=1,2,3,4$ with $a_{1}+a_{2}+a_{3}+2 a_{4} \leqslant 1$. The above inequality (3.3.1) can be written as follows :

$$
\begin{align*}
\rho^{2}(T x-T y) \leqslant & a_{1} \rho^{2}(x-y)+a_{2} \rho^{2}(T y-x)+a_{3} \rho^{2}(T x-y)+ \\
& +a_{4} \rho^{2}(T x-x)+a_{4} \rho^{2}(T y-y) \tag{3.3.2}
\end{align*}
$$

The prerequisites for our result are Theorem (1.6.1) of Hicks and Huffman [14] and (3.3.2)

Theorem (3.3.3) Let C be a closed, bounded, convex and weakly sequentially compact subse: of a Hausdorff generalized Hilbert space X. Suppose $\left\{T_{j}\right\}$ be a sequence of generalized nonexpansive selfmappings of C with

$$
\begin{equation*}
\rho\left(T_{j} X-T x\right) \rightarrow 0 \text { as } j \rightarrow \infty \quad \text { for all } x \in C \tag{3.3.4}
\end{equation*}
$$

where T is a generalized nonexpansive selfmapping of X. Then T has atleast one fixed point.

Proof : For $0<j<1$, let

$$
T_{j}(x)=j T(x)+(1-j) V_{o}
$$

where V_{0} is a fixed point of C. Then the existence of a fixed point u_{j} for the generalized nonexpansive mapping T_{j} can easily be proved by following the proof of Theorem (1.6.2) of Hicks and Huffman [14]. Since C is weakly sequentially compact, the sequence $\left\{u_{j}\right\}$ has a subsequence $\left\{u_{j_{k}}\right\}$ such that $\left\{u_{j_{k}}\right\}$ converges weakly to a point u_{o} in C, i.e. $u_{j_{k}} \rightarrow u_{o}$ weakly as $k \rightarrow \infty$. Hence from (3.3.4) it follows that

$$
\begin{aligned}
& \quad \rho\left(T v_{k}-T_{k} v_{k}\right)=\rho\left(T v_{k}-v_{k}\right) \rightarrow 0 \text { as } k \rightarrow \infty, \\
& \text { where } \quad v_{k}=u_{k}
\end{aligned}
$$

Now , T is generalized nonexpansive mapping, from (3.3.2)we have

$$
\begin{align*}
\rho^{2}\left(T v_{k}-T u_{0}\right) \leqslant & a_{1} \rho^{2}\left(v_{k}-u_{0}\right)+a_{2} \rho^{2}\left(T u_{0}-v_{k}\right)+ \\
& +a_{3} \rho^{2}\left(T v_{k}-u_{0}\right)+a_{4} \rho\left(T v_{k}-v_{k}\right)+a_{4} \rho\left(T u_{0}-u_{0}\right) \tag{3.3.5}
\end{align*}
$$

Also

$$
\begin{align*}
\rho_{\mathrm{k}}^{2}\left(\mathrm{v}_{\mathrm{k}}-T u_{0}\right) & \left.=\rho^{2}\left(T v_{k}-T u_{0}\right)-\left(T v_{k}-v_{k}\right)\right) \\
& \leqslant \rho^{2}\left(T v_{k}-T u_{0}\right)+\rho^{2}\left(T v_{k}-v_{k}\right) \tag{3.3.6}
\end{align*}
$$

substituting (3.3.5) in (3.3.6), we obtain

$$
\begin{aligned}
& \stackrel{2}{\rho}\left(v_{k}-T u_{0}\right) \leqslant \stackrel{2}{\rho}\left(T v_{k}-v_{k}\right)+a_{1}{ }_{\rho}^{2}\left(v_{k}-u_{0}\right)+a_{2} \rho^{2}\left(T u_{o}-v_{k}\right)+ \\
& +a_{3} \rho_{\rho}^{2}\left(T v_{k}-u_{0}\right)+a_{4} \rho^{2}\left(T v_{k}-v_{k}\right)+a_{4} \rho^{2}\left(T u_{0}-u_{0}\right) \\
& =\rho_{\rho}^{2}\left(T v_{k}-v_{k}\right)+a_{1} \rho_{\rho}^{2}\left(v_{k}-u_{0}\right)+a_{2}{\underset{\rho}{\rho}}_{2}\left(T u_{0}-v_{k}\right)+ \\
& +a_{3} \stackrel{2}{\rho}\left(\left(v_{k}-u_{o}\right)-\left(v_{k}-T v_{k}\right)\right)+a_{4} \stackrel{2}{f}\left(T v_{k}-v_{k}\right)+ \\
& \left.+a_{4} \rho^{2}\left(v_{k}-u_{0}\right)-\left(v_{k}-T u_{0}\right)\right) \\
& \leqslant \rho_{\rho}^{2}\left(T v_{k}-v_{k}\right)+a_{1} \rho_{\rho}^{2}\left(v_{k}-u_{0}\right)+a_{2} \stackrel{2}{\rho}^{\left(T u_{o}-v_{k}\right)+} \\
& +\mathrm{a}_{3} \rho^{2}\left(\mathrm{v}_{\mathrm{k}}-\mathrm{u}_{\mathrm{o}}\right)+\mathrm{a}_{3} \rho^{2}\left(\mathrm{v}_{\mathrm{k}}-\mathrm{T} \mathrm{v}_{\mathrm{k}}\right)+\mathrm{a}_{4} \rho^{2}\left(\mathrm{Tv} \mathrm{v}_{\mathrm{k}}-\mathrm{v}_{\mathrm{k}}\right)+ \\
& +a_{4} \stackrel{2}{\rho}\left(v_{k}-u_{o}\right)+a_{4} \stackrel{2}{\rho}\left(v_{k}-T u_{o}\right),
\end{aligned}
$$

Equivalently

$$
\left(1-a_{2}-a_{4}\right) \rho^{2}\left(v_{k}-T u_{0}\right) \leqslant\left(1+a_{3}+a_{4}\right) \quad \rho\left(T v_{k}-v_{k}\right)+\left(a_{1}+a_{3}+a_{4}\right) \rho^{2}\left(v_{k}-u_{0}\right)
$$

or

$$
\rho^{2}\left(v_{k}-T u_{0}\right) \leqslant \frac{\left(1+a_{3}+a_{4}\right)}{\left(1-a_{2}-a_{4}\right)} \quad \rho^{2}\left(T v_{k}-v_{k}\right)+\frac{\left(a_{1}+a_{3}+a_{4}\right)}{\left(1-a_{2}-a_{4}\right)} \rho^{2}\left(v_{k}-u_{0}\right)
$$

But from definition (1.4.13), it follows that

$$
a_{1}+a_{2}+a_{3}+2 a_{4} \leqslant 1
$$

or

$$
\frac{\left(a_{1}+a_{3}+a_{4}\right)}{\left(1-a_{2}-a_{4}\right)} \leqslant 1
$$

Hence (3.3.7) takes the form

$$
\begin{equation*}
\rho^{2}\left(v_{k}-T u_{0}\right)-\rho^{2}\left(v_{k}-u_{0}\right) \leqslant \frac{\left(1+a_{3}+a_{4}\right)}{\left(1-a_{2}-a_{4}\right)} \rho^{2}\left(T v_{k}-v_{k}\right) \tag{3.3.8}
\end{equation*}
$$

Now, suppose that $u_{0} \neq T u_{0}$. Then there exists a $\varepsilon \Delta$ such that

$$
\rho_{0}\left(u_{0}-T u_{0}\right)>0 .
$$

By theorem (1.6.1), we have

$$
\lim _{k}\left[\rho_{\alpha}^{2}\left(v_{k}-T u_{0}\right)-\rho_{\alpha}^{2}\left(v_{k}-u_{0}\right)\right]=\rho_{\alpha}^{2}\left(T u_{0}-u_{0}\right)>0
$$

Hence there exists j such that $\mathrm{k} \geqslant \mathrm{j}$ implies

$$
\rho_{a}^{2}\left(v_{k}-T u_{o}\right)-\rho_{a}^{2}\left(v_{k}-u_{o}\right)=0
$$

or

$$
\left[\rho_{a}\left(v_{k}-T u_{o}\right)-\rho_{\alpha}\left(v_{k}-u_{0}\right)\right] \cdot\left[\rho_{G}\left(v_{k}-T u_{o}\right)+\rho_{\alpha}\left(v_{k}-u_{o}\right)\right]=0
$$

Thus, for $k \geqslant j$, from (3.3.8) we obtain

$$
\begin{gathered}
0<\rho_{\alpha}^{2}\left(v_{k}-T u_{o}\right)-\rho_{\alpha}^{2}\left(v_{k}-u_{o}\right) \leqslant \frac{\left(1+a_{3}+a_{4}\right)}{\left(1-a_{2}-a_{4}\right)} \rho^{2}\left(T_{k}-v_{k}\right) \\
\rightarrow 0 \text { as } k \rightarrow \infty .
\end{gathered}
$$

Hence

$$
0<\lim _{k}\left[\rho_{a}^{2}\left(v_{k}-T u_{o}\right)-\rho_{a}^{2}\left(v_{k}-u_{o}\right)=\rho_{a}^{2}\left(T u_{o}-u_{o}\right) \leqslant 0\right.
$$

Which is a contradiction. Hence we must have $T u_{0}=u_{0}$ and the assertion of the theoremis. proved.

Remark (3.3.9): Several results may be seen to follow as immediate corollaries to theorem (3.3.3). Some of them are as follows : Theorem (1.6.2) of Hicks and Huffman [14], Theorem (1.5.1) of Browder and Petryshyn. [8], Theorem (1.6.3) of Mukherjee and T.Som [27-28].

