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CHAPTER -1
“0-IDEALS IN 0- DISTRIBUTIVE LATTICES”

1.1. Introduction:-

Throughout this chapter we will be concerned with a
bounded O-distributive lattice L. The concept of 0-ideals in
bounded distributive lattices is introduced by Cornish [5]. In the
same way O-ideals in O-distributive lattices are defined. In this
chapters help is taken of the results of the Cornish [4] and
Jayram [7] to obtain the properties of O0- ideals in 0-distributive
lattices. Several examples of 0-ideals in 0- distributive lattices are
also provided.

At the outset we prove the result, which is crucial in defining
0-ideal in L.

Theorem:-1.2 0 (F) is an ideal for any filter F in L,
where O(F)={x e L/ x A f=0, for some f € F}
Proof- As 0 A f=0, foreach fe F
We get, 0 € 0 (F) and hence 0 (F) = ¢, also we have if x,y € O(F)
then we get,
x A f, =0, for some {, e F.
and xAaf, =0, forsomef, eF.
Hence x A (f, Af,)=0and y A (f; A f,)=0
Where f, A f, e F [Result 0.2.2]
Therefore by 0- distributivity of L,
xvy)ad, af,)=0



Therefore x v y € 0 (F), by definition of 0 (F), lastly consider x <y,
x € L and y € O(F).

As y € O(F).

It implies that y A f = 0, for some f e F.

Asx =<y,

weget, xAf <yaf

Therefore, x A f =0, for some f e F.

It implies that, x € O(F). .

This proves that, O(F) is an ideal fo‘é{any filter F in L.

Now the next result describes an ideal O(F) in another form.
Theorem 1.3. For any filter F in L.

0(F) = n {P /P is minimal prime ideal such that PnF=¢ }.
Proof- suppose x € 0 (F).

Then x Ay = 0, for some yeF.

We have 0 € P, where P is minimal prime ideal such that P " F= ¢.

AsyeF,wegety ¢ p.

By prime ness of P, it follows that, x € P.

Thus, we have,

O(F) = n { P/ P is minimal prime ideal such that P nF= ¢}.

For the reverse inclusion, suppose that,

X € n {P /P is minimal prime ideal such that P~ F = ¢}.

and assume if possible that x ¢ O(F).
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Claim. [f v [x)] is a proper filter.

Proof- Assume that F v [x)=L. Then 0 € L implies 0 € F v [x).
Hence f A x=0, for some f ¢ F.
But then x e 0 (F), which contradicts the choice of x.
Hence 0 ¢ F v [x).
It means that F v [x) is a proper filter.

‘Since every proper filter is contained in a maximal filter [see 0.2.1},
there exists a maximal filter say M in L such that F v [x) c M.
ThusasxeM, wegetx ¢ L\ M,
where L \ M is a minimal prime ideal disjoint with F [see 0.2.4]
This contradicts the choice of x .

Hence x € 0 (F). It follows that,
N {P/P is minimal prime ideal such that P nF=¢} < 0 (F),
combining both the inclusions, for any filter F in L, we get,

0 (F)= n {P/P is minimal prime ideal such that P n F=¢}.

The definition of an 0-ideal in bounded 0-distributive lattice is as

Follows.
Definition 1.4.
Let ] be an ideal of a lattice L. .Then J is called an 0-ideal if J=0(F),

for some filter F, where 0 (F) = {x e L./ x A f =0, for some f e F}
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Example 1.5
Let L={0,a,b,c,d, e, f, g, 1}.
Consider the 0-distributive bounded lattice <L, A, v >,

whose diagrammatic representation is as shown in figure 1

\<\//

Figure 1

J= {0.,a, c} is an ideal in L.

F={b,d,f e, g 1} isafilter in L.

oF) = {xeL/XAf=0,forsomef§F}
= {0,a, c} |

As ] is an o-ideal,

0(F) =]
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In the following Example 1.6, we establish that every ideal need
not an 0-ideal

Example 1.6
Consider the 0-distributive bounded lattice <L,A,v>,

“whose diagrammatic representation is as shown in figure 2

A
©
C
2\
4
Figure 2

Then] = {O, a, b} is an ideal in L also F={c, 1} is a filter in L.
As 0 (F) ={0} =],

] is not an 0-ideal.
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Thus using the definition of an o-ideal, characterization of o-ideal in
o-distributive lattice is given as follows. . ]
Theorem 1.7.
For each x € L, (x]* is an 0-ideal.
Proof — Claim ( x ] *=0([ x)).
Here firstly we know that (x]* is an 0-ideal.
As L is 0-distributive, we have,
i) Let y € (x]*.
Then y A x=0,as xe [ x ) we get, y e 0([ x)).
Thus (x ] *< 0([ x)).
ii) Let y € O([ x )).
It implies that y A t=0, for some te [ x).
We know that, as te[x),t = x.
Thusyat=0andt = ximplyo=y At Zyax.
Therefore, x A y=0.
It follows that y e (x]*.
Therefore, 0([ x)) c (x ]*.
From i) and ii) O([ x )) = (x %,

it shows that (x]* is an 0-ideal foe each x € L.

For a Prime ideal P in L,

we define P ={xeL/x Ay=0, for some yeL\P}

An interesting property of P is proved in the following theorem.
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Theorem. 1.8 For each prime ideal P, P is an 0-ideal,

where P ={xeL/xAy=0, forsome yeL\P}

Proof- claim 1 P is an ideal in L.
Proof-i)AsOeL, 0Ay=0 for y gP
It implies that P« ¢
ii) Letx, y e P .
weget xAt, =0, forsomet, ¢ P
yAt, =0, forsomet, ¢ P
Now the definition of primeidealt,At, ¢ P
Asx A (t,at, )=0
and y A (t;At, )=0, fort,At, e L\P.
By 0-distributive of L,
Weget (xvy)a(tat,) =0, fort,at, e L\P.

It means thatx vye P

jii) Lletx <y,xeLandye P
Hence we write,

y At =0, for some t e L\P
Sincex <y

Wegst, xAat<ynat.
Therefore, x At = 0, forteL\P.
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It shows that x e P. Thus from i), ii) and iii),

we get P is an ideal in L.

As P is prime ideal then L\P is a filter. [Gratzer [6]]
We have,

P= {xeL/xAy=0, for somey ¢ P}
= {xeL/x Ay=0, for somey eL\P}
= 0 (L\P).

As L\P is a filter,

P =0 (L\P), we get P is an O-ideal for each prime ideal P.

It is well known that intersection of an ideal in L is an ideal in L but also
intersection of any two 0-ideals is an 0-ideal.
This follows from Theorem 1.9.
Theorem 1.9 The intersection of any two 0-ideals in L is an 0-ideal.
Proof Let ], and ], be two 0-ideals. Since there are two filter F, F,
such that J, =0(F,) and J, =0(F,). Obviously J, "], is an ideal in L.
To prove J,N], is a 0-ideal. It is enough to show that
OF)nO(F,) =0 (F,nF,) [By Result [0.2.3]
Let x € O(F,) ~ 0 (F,)
Then xAf, =0, forsomef eF
x A f, =0, for somef,eF
"Thus x A (F, vF,)=0.
Alsoasf eF, f <f vf, weget fv{, eF,
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and as f,eF, f,<f vf, we get f vf, eF, ByResult [0.2.2]
f,vf, eF,nF,

Thus x A (f; v £,)=0, for some f, v, € F, " F,
Hence 0 (F,) n 0 (F,) c O(F, nF,).

Also let y € O(F, nF,).

Then it means that y A f =0, for some f e F, N F,
Hence y Af =0, forsomefeF, andfeF,
Therefore, we have, y e O(F,) and y e O(F,)
Therefore, y ¢ O(F,) » O(F,).

Thus 0 (F, nF,) < O(F,) n O(F,).

Hence 0 (F, nF, ) = O(F,) n O(F,).

This shows that it is an 0-ideal.

Remark 1.10
By generalizing this theorem we say that intersection of any

number of 0-ideals in L is an 0-ideal. As ~, 0(F.) =0 (n,. F.).

Using the definition of Moore Family, we get, (Definition 0.1.25)

Remark 1.11
The set of all 0-ideals forms a Moore family.

Proof Let K ={I/I is a 0-ideal}.
As L=0 ([1)), wegetLe K
I, €K implyn,e K
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Necessary and sufficient condition for a nondense ideal I to be
prime given in Theorem 1.14 will be obtained from following
Theorems viz. Theorem 1.12 and Theorem 1.13.
Theorem 1.12
If I is prime ideal in L then I satisfies the condition, for any x e L,
x ¢ I implies I* m {x}* = {0}.
Proof- claim. If x ¢ I then {x}* cI
Herex ¢ |
Letye {x}* then wegety Ax=0¢l
As lisprime xel oryel
But give that x ¢ I
hence yel
Thus {x}* c1
‘Consider y e I* m {x}*
Thenwe get yel* and v € {x}*
By the above claim if x ¢ I, {x}* <1
Therefore, y el
Now y € I* implies that v Ai =0, foreveryiel
Take particularly i =y, it meansthaty Ay =0
Hence y=0
Thus I* A {x}* = {0}.

Using the definition of non- dense ideal converse of the

Theorem 1.12 is true for non-dense ideals.
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Theorem 1.13
If non-dense ideal I of L satisfies the condition:

x ¢ [ implies I* N {x}*={0}, for any x € L, then I in prime ideal.
Proof — claim 1- I is nondense and satisfies the condition for any x e L,

x ¢ I implies I* m {x}*={0} then I = I**,

Proof — we know that I ¢ I** always .

LetxeI** suchthatx ¢ 1.

Then by the given condition, we get, I* N {x}*={0}

As 1is nondense we get, I* = {0}

Hence, there exist y € I* such that y # 0.

Thus y eI*, I* n {x}*={0}Therefore, y ¢ {x}*

Henceyanx=0

But y e I* and x e [**, hence x Ay =0.

Which is a contradicition.

Thus x eI, proving that I** c I

Therefore , I = I**

Here now only to prove that I is prime ideal,

consider a A b € I and a ¢l, for any two elements a and b of L. By

the given condition I* na}*={0},

also forany ceI*,c A (aAnb)=0impliesc AbeI* n {a}*.

Hence cAb = 0.

Consequently, b € [** =1 (by claim 1)

It shows that I is prime ideal.

19



With the definition of nondense ideal, (Definition 0.1.26)
we write the result as follows
Theorem 1.14 If I is a nondense prime ideal then I is minimal prime

ideal.

Proof- We know that I is nondense prime ideal.
Hence I* ;e {0}
Therefore there exists y € I* such that y = 0. As I is prime,
[By the Result [0.2.5]],

There exists a minimal prime ideal M such that M c I.

Suppose M c1
Thus there exists x e I such that x ¢ M.
Therefore , for xelandy e I*.
Therefore we get x Ay e M, x ¢ M. Hence y e M.
We know that M c L.
Thus yvel, which is a contradiction.
This shows that there exists no minimal prime ideal M

properly contained in I. It means that I is minimal prime ideal.

By definition of an 0-ideal developed by Theorem 1.3 we give
the result as below.
Theorem 1.15 Every minimal prime ideal is an 0-ideal.
Proof Let M be a minimal prime ideal,
hence L\M is maximal filter. By Result (0.2.4)
Let F = L\M claim that O(F) =M. By theorem 1.3, we get
0 (F)= N {M/M is minimal prime ideal such that M N F=¢d}

i.e. MNF =¢. It implies that M n (L\M) = ¢.
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Thus 0(F) =M. Hence by definition,
M is an 0-ideal.

Relation between 0-ideal and nondense prime ideal is
deséribed in followng Theorem.
Theorem 1.16 If a prime ideal P is nondense then P is an o-ideal .
Proof Here to show that P =0(F), for some filter F.
Take F = L\P.
Claim P= O(L\P)
Let x € P. As P is nondense P* # {0} implies that there exist y € P*
such that y = 0. As x e P and y € P*.
Therefore x Ay =0 then weget x Ay =0 fory ¢ P.
Hence x Ay =0, for y e L\P. This shows that x € 0(L\P).
Therefore P < O(L\P).
Letx e 0 (L\P) then x Ay =0, for y e L\P.
It means that x Ay =0, fory ¢ P. Hence x e P..
Therefore O(L\P) c P. It follows that P=0 (L\P), here L\P is a filter.
Hence P is an 0-ideal.
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