<u>CHAPTER – 1</u> **0-IDEALS** IN **0-DISTRIBUTIVE LATTICES**

<u>CHAPTER – 1</u>

<u>"0-IDEALS IN 0- DISTRIBUTIVE LATTICES"</u>

1.1. Introduction:-

Throughout this chapter we will be concerned with a bounded 0-distributive lattice L. The concept of 0-ideals in bounded distributive lattices is introduced by Cornish [5]. In the same way 0-ideals in 0-distributive lattices are defined. In this chapters help is taken of the results of the Cornish [4] and Jayram [7] to obtain the properties of 0- ideals in 0-distributive lattices. Several examples of 0-ideals in 0- distributive lattices are also provided.

At the outset we prove the result, which is crucial in defining 0-ideal in L.

Theorem:-1.2 0 (F) is an ideal for any filter F in L,

where $0(F) = \{x \in L \mid x \land f = 0, \text{ for some } f \in F\}$

Proof- As $0 \land f=0$, for each $f \in F$

We get, $0 \in 0$ (F) and hence 0 (F) $\neq \phi$, also we have if x, y $\in 0$ (F) then we get,

$$\begin{split} & x \wedge f_1 = 0, \text{ for some } f_1 \in F. \\ & \text{ and } x \wedge f_2 = 0, \text{ for some } f_2 \in F. \\ & \text{ Hence } x \wedge (f_1 \wedge f_2) = 0 \text{ and } y \wedge (f_1 \wedge f_2) = 0 \\ & \text{ Where } f_1 \wedge f_2 \in F \\ & \text{ Therefore by 0- distributivity of L,} \\ & (x \vee y) \wedge (f_1 \wedge f_2) = 0 \end{split}$$

Therefore $x \lor y \in 0$ (F), by definition of 0 (F), lastly consider $x \le y$, $x \in L$ and $y \in 0(F)$. As $y \in 0(F)$. It implies that $y \land f = 0$, for some $f \in F$. As $x \le y$, we get, $x \land f \le y \land f$. Therefore, $x \land f = 0$, for some $f \in F$. It implies that, $x \in 0(F)$. This proves that, 0(F) is an ideal foe any filter F in L.

Now the next result describes an ideal O(F) in another form.

Theorem 1.3. For any filter F in L.

 $0(F) = \bigcap \{P \mid P \text{ is minimal prime ideal such that } P \cap F = \phi \}.$

Proof- suppose $x \in 0$ (F).

Then $x \wedge y = 0$, for some $y \in F$.

We have $0 \in P$, where P is minimal prime ideal such that $P \cap F = \phi$.

As $y \in F$, we get $y \notin p$.

By prime ness of P, it follows that, $x \in P$.

Thus, we have,

 $0(F) \subseteq \cap \{ P / P \text{ is minimal prime ideal such that } P \cap F = \phi \}.$

For the reverse inclusion, suppose that,

X $\epsilon \cap \{P \mid P \text{ is minimal prime ideal such that } P \cap F = \phi\}.$

and assume if possible that $x \notin O(F)$.

Claim. $[f \lor [x]]$ is a proper filter.

Proof- Assume that $F \lor [x] = L$. Then $0 \in L$ implies $0 \in F \lor [x]$.

Hence $f \land x=0$, for some $f \in F$.

But then $x \in 0$ (F), which contradicts the choice of x.

Hence $0 \notin F \lor [x]$.

It means that $F \lor [x]$ is a proper filter.

Since every proper filter is contained in a maximal filter [see 0.2.1],

there exists a maximal filter say M in L such that $F \lor [x] \subseteq M$.

Thus as $x \in M$, we get $x \notin L \setminus M$,

where $L \setminus M$ is a minimal prime ideal disjoint with F [see 0.2.4] This contradicts the choice of x .

Hence $x \in 0$ (F). It follows that,

 $\cap \{P/P \text{ is minimal prime ideal such that } P \cap F = \phi\} \subseteq O(F),$

combining both the inclusions, for any filter F in L, we get,

0 (F) = \cap {P/P is minimal prime ideal such that $P \cap F = \phi$ }.

The definition of an 0-ideal in bounded 0-distributive lattice is as Follows.

Definition 1.4.

Let J be an ideal of a lattice L. Then J is called an 0-ideal if J=0(F), for some filter F, where $0(F) = \{x \in L / x \land f = 0, \text{ for some } f \in F\}$ Example 1.5

Let $L = \{0, a, b, c, d, e, f, g, 1\}$.

Consider the 0-distributive bounded lattice <L, $\land,\lor>$,

whose diagrammatic representation is as shown in figure 1

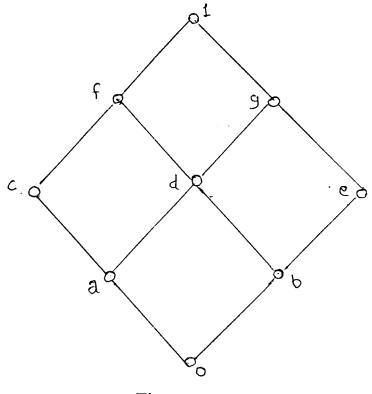


Figure 1

 $J= \{0,a, c\} \text{ is an ideal in L.}$ $F=\{b, d, f, e, g, 1\} \text{ is a filter in L.}$ $0 (F) = \{x \in L / x \land f = 0, \text{ for some } f \in F\}$ $= \{0,a, c\}$ As J is an o-ideal, 0 (F) = J In the following Example 1.6, we establish that every ideal need not an 0-ideal

Example 1.6

Consider the 0-distributive bounded lattice $\$ <L, \land, \lor > ,

whose diagrammatic representation is as shown in figure 2

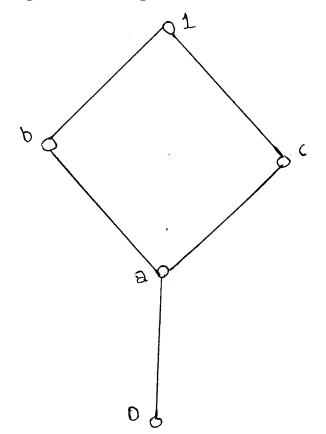


Figure 2

Then $J = \{0, a, b\}$ is an ideal in L also $F = \{c, 1\}$ is a filter in L. As $0 (F) = \{0\} \neq J$, J is not an 0-ideal.

Thus using the definition of an o-ideal, characterization of o-ideal in o-distributive lattice is given as follows. Theorem 1.7. For each $x \in L$, $(x]^*$ is an 0-ideal. Proof - Claim (x) *=0([x)).Here firstly we know that $(x)^*$ is an 0-ideal. As L is 0-distributive, we have, i) Let $y \in (x]^*$. Then $y \land x=0$, as $x \in [x]$ we get, $y \in O([x])$. Thus $(x] \stackrel{*}{\subseteq} 0([x])$. ii) Let $y \in O([x])$. It implies that $y \wedge t=0$, for some $t \in [x]$. We know that, as $t \in [x]$, $t \ge x$. Thus $y \land t=0$ and $t \ge x$ imply $o= y \land t \ge y \land x$. Therefore, $x \wedge y=0$. It follows that $y \in (x]^*$. Therefore, $O([x]) \subseteq (x]^*$. From i) and ii) $O([x]) = (x]^*$, it shows that $(x]^*$ is an 0-ideal foe each $x \in L$.

For a Prime ideal P in L,

we define $\overline{P} = \{x \in L / x \land y=0, \text{ for some } y \in L \setminus P\}$

An interesting property of $\overline{\underline{P}}$ is proved in the following theorem.

Theorem. 1.8 For each prime ideal P, \overline{P} is an 0-ideal,

where
$$P = \{x \in L / x \land y = 0, \text{ for some } y \in L \setminus P\}$$

Proof- claim 1 \overline{P} is an ideal in L.

Proof- i) As $0 \in L$, $0 \land y = 0$ for $y \notin P$ It implies that $\overline{P} \neq \phi$ ii) Let x, $y \in \overline{P}$. we get $x \wedge t_1 = 0$, for some $t_1 \notin P$ $y \wedge t_2 = 0$, for some $t_2 \notin P$ Now the definition of prime ideal $t_1 \wedge t_2 \notin P$ As $x \wedge (t_1 \wedge t_2) = 0$ and $y \wedge (t_1 \wedge t_2) = 0$, for $t_1 \wedge t_2 \in L \setminus P$. By 0-distributive of L, We get $(x \lor y) \land (t_1 \land t_2) = 0$, for $t_1 \land t_2 \in L \setminus P$. It means that $\mathbf{x} \lor \mathbf{y} \in \mathbf{P}$ iii) Let $x \leq y, x \in L$ and $y \in \overline{P}$ Hence we write, $y \wedge t = 0$, for some $t \in L \setminus P$ Since $x \le y$ We get, $x \wedge t \leq y \wedge t$. Therefore, $x \wedge t = 0$, for $t \in L \setminus P$.

It shows that $x \in \overline{P}$. Thus from i), ii) and iii),

we get \overline{P} is an ideal in L.

As P is prime ideal then L\P is a filter. [Gratzer [6]] We have,

$$P = \{x \in L / x \land y=0, \text{ for some } y \notin P\}$$
$$= \{x \in L / x \land y=0, \text{ for some } y \in L \setminus P\}$$
$$= 0 (L \setminus P).$$
As L\P is a filter,

 $\overline{P} = 0$ (L\P), we get \overline{P} is an 0-ideal for each prime ideal P.

It is well known that intersection of an ideal in L is an ideal in L but also intersection of any two 0-ideals is an 0-ideal.

This follows from Theorem 1.9.

Theorem 1.9 The intersection of any two 0-ideals in L is an 0-ideal.

Proof Let J, and J_2 be two 0-ideals. Since there are two filter F_1 , F_2 such that $J_1 = 0(F_1)$ and $J_2 = 0(F_2)$. Obviously $J_1 \cap J_2$ is an ideal in L. To prove $J_1 \cap J_2$ is a 0-ideal. It is enough to show that $0(F_1) \cap 0$ $(F_2) = 0$ $(F_1 \cap F_2)$ [By Result [0.2.3] Let $x \in 0(F_1) \cap 0$ (F_2) Then $x \wedge f_1 = 0$, for some $f_1 \in F$ $x \wedge f_2 = 0$, for some $f_2 \in F$ Thus $x \wedge (F_1 \vee F_2) = 0$. Also as $f_1 \in F_1$, $f_1 \leq f_1 \vee f_2$ we get $f_1 \vee f_2 \in F_1$. and as $f_2 \in F_2$, $f_2 \leq f_1 \vee f_2$, we get $f_1 \vee f_2 \in F_2$. By Result [0.2.2] $f_1 \vee f_2 \in F_1 \cap F_2$ Thus $x \wedge (f_1 \vee f_2) = 0$, for some $f_1 \vee f_2 \in F_1 \cap F_2$ Hence $0 (F_1) \cap 0 (F_2) \subseteq 0(F_1 \cap F_2)$. Also let $y \in 0(F_1 \cap F_2)$. Then it means that $y \wedge f = 0$, for some $f \in F_1 \cap F_2$ Hence $y \wedge f = 0$, for some $f \in F_1$ and $f \in F_2$ Therefore, we have, $y \in 0(F_1)$ and $y \in 0(F_2)$ Therefore, $y \in 0(F_1) \cap 0(F_2)$. Thus $0 (F_1 \cap F_2) \subseteq 0(F_1) \cap 0(F_2)$. Hence $0 (F_1 \cap F_2) = 0(F_1) \cap 0(F_2)$. This shows that it is an 0-ideal.

Remark 1.10

By generalizing this theorem we say that intersection of any number of 0-ideals in L is an 0-ideal. As $\cap_{\alpha} 0$ (F_{α}) = 0 (\cap_{α} F_{α}).

Using the definition of Moore Family, we get, (Definition 0.1.25) Remark 1.11

The set of all 0-ideals forms a Moore family.

Proof Let $K = \{I/I \text{ is a 0-ideal}\}.$

As L=0 ([1)), we get L $\in K$

 $I_{\alpha} \in K \text{ imply } \cap_{\alpha} \in K$

Necessary and sufficient condition for a nondense ideal I to be prime given in Theorem 1.14 will be obtained from following Theorems viz. Theorem 1.12 and Theorem 1.13.

Theorem 1.12

If I is prime ideal in L then I satisfies the condition, for any $x \in L$, $x \notin I$ implies $I^* \cap \{x\}^* = \{0\}$.

Proof-claim. If $x \notin I$ then $\{x\}^* \subseteq I$

Here $x \notin I$ Let $y \in \{x\}^*$ then we get $y \land x=0 \in I$ As I is prime $x \in I$ or $y \in I$ But give that $x \notin I$ hence $y \in I$ Thus $\{x\}^* \subseteq I$ Consider $y \in I^* \cap \{x\}^*$ Then we get $y \in I^*$ and $y \in \{x\}^*$ By the above claim if $x \notin I, \{x\}^* \subseteq I$ Therefore, $y \in I$ Now $y \in I^*$ implies that $y \land i = 0$, for every $i \in I$ Take particularly i = y, it means that $y \land y = 0$ Hence y=0Thus $I^* \cap \{x\}^* = \{0\}$.

Using the definition of non- dense ideal converse of the Theorem 1.12 is true for non-dense ideals.

Theorem 1.13

If non-dense ideal I of L satisfies the condition: $x \notin I$ implies $I^* \cap \{x\}^* = \{0\}$, for any $x \in L$, then I in prime ideal. Proof – claim 1- I is nondense and satisfies the condition for any $x \in L$, $x \notin I$ implies $I^* \cap \{x\}^* = \{0\}$ then $I = I^{**}$. Proof – we know that $I \subseteq I^{**}$ always. Let $x \in I^{**}$ such that $x \notin I$. Then by the given condition, we get, $I^* \cap \{x\}^* = \{0\}$ As I is nondense we get, $I^* \neq \{0\}$ Hence, there exist $y \in I^*$ such that $y \neq 0$. Thus $y \in I^*$, $I^* \cap \{x\}^* = \{0\}$ Therefore, $y \notin \{x\}^*$ Hence $y \land x \neq 0$ But $y \in I^*$ and $x \in I^{**}$, hence $x \wedge y = 0$. Which is a contradicition. Thus $x \in I$, proving that $I^{**} \subseteq I$ Therefore , $I = I^{**}$ Here now only to prove that I is prime ideal, consider $a \land b \in I$ and $a \notin I$, for any two elements a and b of L. By the given condition $I^* \cap a$ $\{0\}$, also for any $c \in I^*$, $c \land (a \land b) = 0$ implies $c \land b \in I^* \cap \{a\}^*$. Hence $c \wedge b = 0$. Consequently, b $\epsilon I^{**} = I$ (by claim 1) It shows that I is prime ideal.

With the definition of nondense ideal, (Definition 0.1.26) we write the result as follows

Theorem 1.14 If I is a nondense prime ideal then I is minimal prime ideal.

Proof- We know that I is nondense prime ideal.

Hence $I^* \neq \{0\}$

Therefore there exists $y \in I^*$ such that $y \neq 0$. As I is prime,

[By the Result [0.2.5]],

There exists a minimal prime ideal M such that $M \subseteq I$.

Suppose $M \subset I$

Thus there exists $x \in I$ such that $x \notin M$.

Therefore , for $x \in I$ and $y \in I^*$.

Therefore we get $x \land y \in M$, $x \notin M$. Hence $y \in M$.

We know that $M \subseteq I$.

Thus $y \in I$, which is a contradiction.

This shows that there exists no minimal prime ideal M properly contained in I. It means that I is minimal prime ideal.

By definition of an 0-ideal developed by Theorem 1.3 we give the result as below.

Theorem 1.15 Every minimal prime ideal is an 0-ideal.

Proof Let M be a minimal prime ideal,

hence L\M is maximal filter. By Result (0.2.4)

Let $F = L \setminus M$ claim that O(F) = M. By theorem 1.3, we get

0 (F)= $\cap \{M/M \text{ is minimal prime ideal such that } M \cap F = \phi \}$

i.e. $M \cap F = \phi$. It implies that $M \cap (L \setminus M) = \phi$.

Thus O(F) = M. Hence by definition, M is an 0-ideal.

Relation between 0-ideal and nondense prime ideal is described in followng Theorem.

Theorem 1.16 If a prime ideal P is nondense then P is an o-ideal. Proof Here to show that P = O(F), for some filter F.

Take $F = L \setminus P$. Claim $P = 0(L \setminus P)$ Let $x \in P$. As P is nondense $P^* \neq \{0\}$ implies that there exist $y \in P^*$ such that $y \neq 0$. As $x \in P$ and $y \in P^*$. Therefore $x \land y = 0$ then we get $x \land y = 0$ for $y \notin P$. Hence $x \land y = 0$, for $y \in L \setminus P$. This shows that $x \in 0(L \setminus P)$. Therefore $P \subseteq 0(L \setminus P)$. Let $x \in 0$ (L\P) then $x \land y = 0$, for $y \in L \setminus P$. It means that $x \land y = 0$, for $y \notin P$. Hence $x \in P$. Therefore $0(L \setminus P) \subseteq P$. It follows that P = 0 (L\P), here L\P is a filter. Hence P is an 0-ideal.

