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Chapter - 2

Piecewise Approximation 

2.1 Limitation of Polynomial Approximation

The Polynomial interpolation is very sensitive to the choice of 

interpolation points . The polynomial interpolation at approximately chosen 

points (e.g.the chebyshev points ) produces an approximation which , for all 

practical purposes , differs very little from the best possible approximant by 

polynomials of the same order . so we illustrate the essential limitation of the 

Polynomial approximation . If the function to be approximated is badly 

behaved anywhere in the interval qf approximation . This global dependence on 

local properties can be avoided by using piecewise polynomial approximants. 

Uniform Spacing of data can have bad Consequences 

e.g. Runge,s Example

insider the polynomial Pn of order n which 

agrees with the function y(x) = 1 / d ( 1+ 25 x2) at the following n uniformly 

spaced points in [-1,1]

ij = (i — 1 )h-1 i = 1,2,.....................n where h=2/n-l

The function g being without apparent defect ( g is analytic in a 

neighbourhood of the interval of approximation [-1,1]

Maximum error 11 en 11= max I g (x) - Pn (x) I
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To increase toward zero as n increases . if we estimate the maximum error 11 en 

11 by the maximum value obtained when evaluating the absolute value o g- Pn

at 20^>ints in each of (n-1) interval (x m, x,) i — 1,2,......................n

We find that as a function of n , 11 en II decreases to Zero like B n“ 

for some constant p and some (negative ) -ve constant a.

If II ei, II ~B na, the

Ik II
~ (n / m )a and we can estimate the decay exponent 

11 em 11 a from two

error 11 en 11 and 11 em 11 by

log Ik II - log 11 em 11

an~ -------------------------------

log (n / m)

if we calculate decay exponent
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N Max. error Decay exponent

2 0.9615 100 0.00

4 0.7070+00 -0.44

6 0.4327+00 -1.21

8 0.2474+00 -1.94

10 0.2994100 0.86

12 0.5567+00 3.40

14 0.1069+01 4.23

16 0.2099+01 5.05

18 0.4214+01 5.92

20 0.8573+01 6.74

we find that, contrary to expectations , the interpolation error for this 

example actually increase with n . In fact , our estimates for the decay 

exponent become eventually positive and growing so that 11 Cn 11 grows with n 

at an ever increasing rate.

Chebvshev Points

The Chebyshev points for the interval [a, b] are obtained by 

subdividing the semicircle over it into n equal arcs and then projecting the 

midpoint of each arc onto the interval.
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Chebyshev points are good

Theorem If xt , i2, .................. x„ arc chosen as the zero of the

chebshev polynomials of degree ‘n’ for the interval [a,b] 

i.e. tj = xCj= [ a+b - (a-b) cos {2j-l)rt /2n]/2

then with j = 1,2,................ n,

X°n the corresponding Lebesgue function 

we have

I UCn I I < 2 / K ( ln n) +4 

Range’s Example wit hChebvshev points 

If we solve Runge’s example using chebyshev points & we calculate decay 

exponent which are as follows

N Max. error Decay exponent

2 0.9259+00 0.00

4 0.7503+00 -0.30

6 0.5559+00 -0.74

8 0.3917+00 -1.22

10 0.2692+00 -1.68

12 0.1828+00 -2.12



14 0.1234+00 -2.55

16 0.8311-01 -2.96

18 0.5591-01 -3.37

20 0.3759-01 -3.77

This is quite satisfactory.
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2.2 Piecewise Linear Approximation

!■

Though Piecewise Linear Approximation are not having the practical 

significance of cubic Spline or higher order approximation but it shows most 

of the essential features of piecewise polynomial approximation in a simple 

and easily understandable setting .

Broken Line Interpolation / Piecewise Linear Approximation

We consider Broken line interpolation to g at points Xi...... x,-,

with interval [ a, b] divided as,

a= xi <...... <x„ = b by I2 g

The interpolant is given by,

I2 g (x) = g (Xi) + (x - Xi) [Xi, Xi+1 ]g ---------- ---------------------- i

On X; < x < x;+i i = 1,

............................n-1

but

g(x) = gOi) + (x - Xi) [Xi, xi+1 ]g + (x - Xi ) (x - Xi+1 ) [Xi , Xi+1 , x]g

------------ 11

For X; < x < xh 1 eqn. ii - i gives 

g(x) - 12 g (X) = (X - Xi ) (X - Xj+i ) [ Xj , Xi+i , x]g 

then error estimated is,

I g(x) -12 g (x) I < (<3xj_)I 2 max
2_
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' T- <" £ <" T- • 1
M — ^ -« 1

where eHi = Xjn-Xi

g has two continuous derivatives with 1x1= max* A xi

II g-I2g II < L I x 1211 g”ll
8

making c Xi small for all i we can minimize this error bound as small as we 

like . here we can increase the no. of parameters needed to describe the 

approximation function I2 g = f without increasing complexity of f locally. 

Since f is always straight line.

2.3 Broken line Interpolation is nearly optimal

Let $2 = linear space of all continuous broken lines on [xj , xn ] with breaks at 

x2 , x„.i (which are splines of order 2 . This concept is introduced later)

We consider that,

i2f=f V f$2---------------------------------(1)

On each interval [ x;, x;u ], 12 f agrees with the straight line which interpolates

f at Xj & Xi+i but if f € $2

The f itself is a straight line on [ Xj, Xj+i ]

Therefore I2(f) = f on [ X; , Xin ] uniqueness property of polynomial 

interpolation.
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We observe that,

II I2g II = max I l2(g)(Ti)l

i

= max | g(ti) I < 11 g 11

therefore

11 I2 g 11 < 11 g 11 V g e t [ a, b]------------------------(2)

combining (1) and (2) appropriately we get,

11 g-i2g II =11 (g - f) -12 (g-f)! I < 11 (g - f) 11 +11 (g - f) 11 v f g

$2

Here we minimize the right side of the inequality over all f e $2 so we get the 

second inequality in

dist (g, $2) < 11 g-l2g 11 < 2 dist (g, $2)--------------- -------------- (3)

this shows that we get the possible approximation to g by broken lines.

2.4 Least squares approximation bv broken lines or L? Approximation

bv broken lines.

For this we need a convenient basis for $2 

Let To, x i; xn+i = xn and set 

(X = Xi-i )

Hi(x)= -----------

Xi - Xj-1 Xj-1 < X < Xi
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Ti-1 - X

---------- I;. < X < It. 1

These basis functions for $2 have been called hat functions or Chapeau 

functions

Hi s $2 all i

Hi(xi) = 6ij = l i = j

V i, j
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= 0 i*j

n
This shows that I g ( Xi) H; e $2 

U1

which agrees with g at ii, 12...... in

by (3) [I2 f — f ]

I2g is the only element of $2.

Which gives,

n

I2(g) = I g (tj) H; the Lagrange form 

M

for broken line interpolant. It also implies that (Hi )n is a basis for $2
1

every line on [xi, x„ ] with breaks at x2.......x„-i can written in exactly one way

as a linear combination of the Hfs

The ordinates of given f e $2 considering the basis (Hi )n consists simply of its

1

values f (tj)--------------- f (xn) at the breakpoints i.e.

n

f = Z f (xi) Hj V f g $2----------------(6)

i=l
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L2 g be Least - squares approximation to g in $2 

i.e.

J, g (x) - L2 g(x)|2 dx = min 11 g (x) - f(x)|2 dx

f e $2

and L2 g e $2 . we determine L2 g using the normal eqns. i.e. we find a 

minimum of

n

11 g (x) - Z otj H; (x) 12 dx by setting its first partial derivative with 

respect j=l

to oci, a.2,................. a,, to zero , this gives the Linear system

n

L I [Hj (x) Hj(x) dx ] ctjA = J Hi (x) g(x) dx i =1,2,..................... n

j=l

for the coefficient (aiA)n of L2 broken line approximation to g
1

n

L2g = L otj AHj The intervals involved are easily evaluated we

get

H
more explicitly the Linear system ,

( d_Xi -1) aAi -1 + (li+i - Xi-i) a;A + (Qjt\) aA; (1 = [3;
^ —!T ' 9" ■

■CO

13978
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= IH; (x) g(x) dx
i = 1,2,.......... n

The coefficient Matrix is tridiagonal and strictly diagonally dominant . so the 

system has exactly one solution which can be obtain by Gauss Elimination 

Method .

Theorem The L2 approximation L2 g to g e C[a, b] i.e. to a continuous 

function g on [a, b] by elements of $2 satisfies 11 L2 g 11 < 3 11 g! I .

Hence, since L2 is additive and L2 f = f for all f e $2,

We have , I g - L2 g I [ < 4 11 g, $2 | j .


