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Chapter 4

Cardinal spline analysis

The B-splines originally introduced by Curry & Schoenberg in 1947.
In this chapter we define B-splines of order 1 & mym > 2 and we study
derivations of expressions of B-splines . In the last part Cardinal Splines

analysis & properties of

N

@B-spline are expressed.
4.1  Def”: The first order B-Spline,denote by N;(x) is defined as the

characteristic function of the interval [0,1] j.e.

N] (X) = Xj0,1} =} lfOS x <1 }

=0 0 otherwise
Def” : For m>2 the m" order B-spline Ny(x) is recursively defined by
N(3)= [ Nip1(x) * Ni ()= oof® Nip 1 (x-t)N ()t ----emmmv I
Thus we have,

Nia(%)= o Nt (x-)N1(£)dt= of* Nip 1(x-t)dt —=mmmmemmeeeeeee i

4.2 Derivation of expression for B-splines.

We will derive explicit expressions for the first few B-Splines below,

1. Expressions for Ny(x)

We have, By the defination III



Nz(X): o_" lNl(X-t)dtz x_l)‘x Nl(t)dt 1
Casel) -0 <x<0 =D o <t<x<0
Ni(t)=0
Nz(x) =0
Case2) 0<x<1 . -1<t<x<1
Na(x) = 1 Ny(t)dt + of* Ny(t) dt
:0+0Ix1.dt=tlxozx il
Case3) 1<x<2 = x-I<t<1<x<L2
Nao(x)= xaf' Ni(t)dt
- x.},"l dt :t llx.l = Z‘X
Cased) 2<x<w [ 1<t<x< o
No(x)=0 as Ni(t)=0 for a<t <o 1\Y%

Thus, We have

No(x)=x, if 0<x<1 }

=2-x ,1f 1<x <2

=0 otherwise

36
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2) Expression for N3(x)

We have by definition

Na(x)= of No(x-t)dt = x1J* No(t)dt , 0<t<2 1

Casel) {-oc<x<0} then

Na(xX) = o I&Z(t) dt=0 i

Case2). {0<x<1} = -1<t<x thus

N(x) = of* No(t)dt = of* 1. dt =£2/2 [Fg=1/2 x* ~-erememen 1

Case3} {1 <x<2} = x1<t<1<x<2
Ni(x) = xuft Na(t)dt + 1f* Ny(t)dt

= it dt+ X (2t) dt

= (72 + Q- £2) [N

=15 - Yo(x*-2x+1) + 2x-2-X/2 + 4

= X*43x-3/2 —mmem- v

Cased) {2<x <3} = x-1<t<x<3
Na(x) = x1f? No(O)dt + of* No(t) dt
= ? (2-0)dt + 0 Na(t)=0 for t>=2
=(2t-t*/2) P

=(4-2)-2(x-1)+(x-1)*/2
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=2-2x+2+1/2(x*-2x+1)

=x%/2-3x+9/2 Y/

Case 5) {x>3} =D t>x-1>2 =D No()=0 = N3(x)=0

\

VI

Thus we have

Niy(x) =1x> , 0<x<1
=x*M3x-3/2, 1<x< 2 e VIl

=1/2x"-3x+9/2 |, 2<x<3

=0 , otherwise
ie. Ns(x)=0 if x<0
Ny(x) #0 if "x<x<3

Ns(x)=0 if x>3

3) Expression for Na(x)

We have by definition

Nu(x) = of Nax-t) dt = 1/ Na(t)dt I

Casel) {-0<x<0} = {-0<t<0}=> N3{t)=0
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Ns(x)=0 if -0<x<0 I

Case2) {0<x<1} —p x-1<0<t<x<l

Na(x) = of* (H/2)dt = (£¥/6) [o=x16 I

Case3) {1<x22} = 0<x-1<t<x<2
Nu(x) = o1f! Na(t)dt + 1/ Na(t)dt
=af! (2)dt + J* (2 + 3t -3/2) dt
=tY/6 ery + {13 +3 772 = 3/2t} [

=1/6-1/6(x>-3x"+3x-1) + (=x*/3 + 3 x*/2-3/2x) + 1/3

=-1/2x> + 25 - 2x + 2/3 ' v

Cased) {2<x<3} = I<x1<t<x<3
Nu(x) = xaf? Na(t)dt + of* Ni(t)dt
= 1 (£4431-3/2)dt + of* (172 - 3t +9/2)dt
=(-13/3 + 3642 = 312t)xr + (£/6-3642 +9/20)%,
=(-8/3+6 2)-{(x-1)’/3 + 3(x-1)*/2 -3/2(x-1)} + x°/6-
3% /2+9%/2 — (4/3-6+9)
=1/3-{-1/3(x>-3x>+3x- 1 +3/2(x*-2x+1)-3/2x+3/2} +x°/6-

3x2/24+9%/2-13/3

= x*/2-4x*+10x-22/3 \Y

= x°/2-4x*+10x-22/3



60

Case5) {3<x<4} = 2<x-1<t<x<4
Na(x) = xf® Na(xt)dt + 3f* Na(t)dt

= 1 (42 -3t +9/2) dt

Na(t) = (%2 - 3t +9/2)dt
=(t/6-3t%/2+9t/2)*x1
=(9/2-27/2+27/2)-{ 1/6(x-1)*-3/2(x-1)*+9/2(x-1)}
=9/2-{ 1/6(x*-3x*+3x-1)-3/2(x*-2x-+1)+9/2x-9/2}
=9/2-{x*/6-1/2x*+1/2x-1/6-3%*/2+3x-3/2+9x/2-9/2}

=x/612x2-8x+32/3 VI

Case6) {4<x<ow} E 3<x-1<t<o = N3)=0

Na(x) = x1f* Na(t)dt < 3f* Na(f)dt =0

Nix)=0 if x>4

Thus we have,

Nax) =x/6 if 0<x<1
=1/2342x%-2x42/3  if  1<=x<=2
=1/2x-4x*+10x-22/3 if 2<=x<=3 —--VII
=1/6x’+2x*-8x+32/3 if 3<=x<=4

=0 otherwise
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4.3 Cardinal Spline Analysis :-

Cardinal splines are probably the simplest functions with small supports that
are most efficient for both software and hardware implementation. These are

used in basic Wavelets and approximations.

We use following notations :

pm - Denotes the collection of all algebraic polynomials of degree at most
n
C"(R) :- Collection of all functions f such that £f',... f are continuous
everywhere onR.
Def" :- For each +ve integer m, the space s, of cardinal splinespf order m and
with Knot sequence z is the collection of all functions f e ¢™ such that the
restrictions of fto any interval [k,k+1),kezarein Py je f|wxiy€ Pty k
€2z
S1 : The space of piecewise constant functions.

The basis for S; can be { Nj(x-k): k € z} where N is the characteristics
function of [0,1)

je. Nix)=1 if0<x<l }

=0 otherwise I

Si(m>2) : To get the basis for Sy, first consider S, consisting of

restrictions of f € Sy, to the interval



[-N,N],where N is a +ve integer. Thus, S, is a subspace of functions of fe
S such that the restrictions of f to
(-00,-N+1) and [N-1, o) of f are polynomial in 7.1

To characterize the space Sy . let fe S, be arbitrary function. Let

Pm,j=f |gje1) € Ty

Forj=-N, -N+1,...... 'N-1 then since fe C™? , we have

k) &

{ Puj— Pm’j.]J =0 k=0,1,2,....,m-2; m>2
The jumps C; of %1 at the knot sequence Z are then given by
Cj =P m,j @D (_H'O) - ij*l(m-l) (j-O)

=lim [f® (j+e) -£™ (- €) }

c=>0+ II

The adjacent polynomial pieces of f are related by

Ppj (x) = Pmja(x) + C/(m-1)! (x-5)™" 1§

Let X . =max (0,x)

X+m»1 — (X+)m-1, mZ 2 IV
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Thus we have

fx)= fineny(®) + 2V C(m-1E (x-5).™"! v

=N+

Eq" (V) is true for all f e Sy,n with constants Cj given by Eq" (I)

Therefore the collection

(1%, x™ (% HN-1)" L x-N+D™ ) VI

of m+2N-1 functions is a basis for S, n.
The basis (VI) consist of monomials and truncated powers.We can
replace monomials by truncated powers as

(x+N+m-1)." L (x-N+1),™! VI

Eqn (VII) can be rewritten as

T={(x-k).™" k= -N-m+1,...,N-1} VHI
Which are generated by integer translates of a single function x+m-1,
as a basis of Sm.n
Basis (VIII) are more attractive than (VI). For
1. Each function (x-})+ m-1 vanishes to the left of j
2. they are generated by a single function x+m-1 which is
independent of N
3. SinSp=U" Sun == I'={(x-k)"" :keZ} —ammemm X
N=1

Is a basis for Sy, .



However, we must careful when we deal with infinite dimensional

spaces. Since we are interested
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in L%(R),We want cardinal splines that are in L*( R).Unfortunately not a single

function in I is in L(R) as each

(x-k):™" grows to infinity as x > co.we therefore have to create functions in
L%(R) from those in I'x ,which can be denoted by controlling their growth.
Since only linear combinations are allowed. We can use difference for this

purpose Thus let

v

f(x) — f(x-1)

A™H(A f(x)) X

i

A f{x)

]

A" f(x)

When f(x) is a polynomial of degree m-1 or less
We have,

Amfzo,feﬂm_i XI

Def" : Let m;=N;, be the characteristrics function of [0,1) and for m>=2 let

Mu(x) = 1/(m-1)! A™ x,™" X1

Then we have

m
M (%) =1m-1 Y (-1 )k[ :} (x-k),™"! X1
K=0
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j.€. Min(x) is a linear combination of functions in I’

Now My, (x) = 0 for x<0 and Muy(x)=0 for x>=m .therefore supp My, C [0,m]
In fact supp M,,=[0,m]}

Since M, has compact support, M(x) € L* (R)

We now show that B = {M,,(x-k) : k € Z} is a basis for Sy,

For, consider Sy,,n. the dimension of S, is m+2N-1.using the support
properly (j.e. supp Myu(x)=[0,m])

We sce that cach function in the collection

{Mu(x-k) - k =-N-m+1,.. N-1} X1V

is non-trivial on the interval [-N,N].also M,,(x-k) vanishes identically on [-
N,N} for k <-N-m+1 or k>N-1. since the set in (XIV) is linearly independent
they form a basis for Sy, n thus we have an alternative set of basis for S, ,,.if we
take the union of basis in (XIV) for N=1,2,... we get B as the basis for S,, .the
advantage of B over I is that we can now talk about a spline series.

[¢ ¢]

F(x)= ¥ CiMmn(x-k) XV

=00

Without worrying too much about convergence.
Indeed for each fixed X € R since M,;, has compact support, all except a finite
number of terms in (XV) are zero.

We are interested only in those cardinal spline that belong to L*(R)

,namely Sp, N L*(R)
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Let V™ Denote its closure in LA(R)
j.e. Sm NL*(R) = V™, Since My, has compact Support, we see that B ¢ V™ In

fact B is a Riesz basis of V"

The cardinal Spline we have considered so far have the Knot sequence Z.if we
consider the Knot sequence 27 Z.then the corresponding space of spline
functions is §'n denoted by S %, Since for j; < j, we have z'Z ¢ Z*Z , we
have §' ¢ $%, thus we have a doubly infinite nested sequence ¢ S ¢ 8% ¢
S'm ¢ ...of cardinal spliné spaces where %, = S,.. Analogous to the def® of

V™, we let V" denote the L%(R)- closure of $', N L}(R).hence we have a

nested sequence

...CVm-1C Vm()CleC‘szC..‘ JxVI

of closed cardinal spline subspaces of L2(R) Then we have

clos LZ(R)[ U vy T L%R)

jez

XVII
N v = {0}

jez

Also if B is a Riesz basis of V™, then for any j € z the collection

{ 22 Mpu(2x-k) - k e 2} XVII
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is also Riesz basis of V™" with the same Riesz bounds.

4.4  Cardinal B-splines and their properties :-

The mth order B-spline-"Nm(x) is defined by

Nun(%) =Nt * N1 = of! Noper (x-t)dt,m>2 X

Where N (x) is the characteristics function of the interval [0,1).Also if we set
M;=N, , then we get My(x)=Npn(x) ;m>=2 we will now prove some of the

properties of M, (x)=N,.(x).

Th™: The m" order cardinal B-Spline Nu(x)(=Mu(x)) satisfies the following

properties,

1. foreveryfec,

P fx) Nm(x)dx = of* ...of' fixitxot. . Fxm)dxidx; ... dxy XX

2. foreverygec™

m
of” g7 Nm(x)dx = ¥ (—U‘"*[ﬁ a(k) XX1
k=0
3. Nm()=Mu(x) forallxeR
4. Supp N,,~=[0,m]
5.

Nim(x) >0 for0<x<m



6.

3> Nm(x-k)=1forall x
k=-00

Nm()‘:) = (ANm—l)(x) :Nm-l(x) "‘N.m-l(x’ l)

Nm(x) =x/m-1 Ny,.1 (0) + m-x/m-1 N, 1(x-1) XX11
N, is symmetric w.r.t. the center of its support
j.e. Np(m/2+x) = Nyu(m/2-x), xeR
Proof :
1. form=1, we have
TN (x) dx = of f(x) dx ™ of 'f(x1)dx;

so that ( XX) is true for m=1 Assuming it to be true for m-1 | we

have

wol” FONm(x)dx = of* %) [of Nig-1(x-t)dt] dx
=of" {cel” BX)Np 1 (x-t)dx } it
=of" (. fy+)Nma(y) dy}dt

ZOP OP .. .o.p f(X1+X2+. . .+Xm.1+t)dX1dX2‘ dxmrdt

68
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=o' o xRt X)X dXs. . A%

2. we have
" ONW(x)dx = 0f' o g™ (%ot Axp)dX . dx, by |

By direct integration, we get

1

' m ;
Aot @t Fxm)dxr. . dxe= T (1) [knj g(k)
k=0

3. fix x € R let g(x) =(-1)"/(m-1)! (x-t) ™"

Differentiating m times , we get
g'(t) =4 (x-1)
Nin(X)= <of g7(%) Nin(X)dx=Mm(X)
4. Supp Ni\w=[0,m]
The assertion is clearly true for m=1 by def"

Assuming Supp N1 = [0,m-1]

Then we have ,
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Nin(%) = eaf® N1 (x-t)N1 (£)dt =0 N1 (x-t)dlt

Since supp Ny1(x) = [0,m-1],Nyya(x-t) # 0 for 0 <=x-t <=m-1

> Letx-t=y -dt=dy

Nio(x) = - o' Now1(9)dy = xa/* N1 (y)dy

j.e. x-1 SySX E::> Nm—l(Y) #O

x-1 S)’f m-1 <x = Nm-l(Y) #0

thus when y=m-1 x canbe m

or Np(x)#0 for0<x<m

. Np(x)>0 for0<x<m

we have Ni(x) >0 for0<x<1

Assuming Np,(x) >0 for 0 <x <m-1

From IV above we sec that



Nu(x) >0 for 0<x<m

6. Y Nm(x-k)=1 forall x

k=-o0
Proof:- We have for m=1

5 MK =1 VA X

=00
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As there is exactly one interval [k, k+1] such that Ny(x-k)_— 1 ifx €

[k, k+1} and N;(x-k)=0 for any fixed k.
to be true for m-1 , we have

3 N (x-t-K) = 1

k==-00

S Na(ck) = 8 of Noa etk

e o) {2200

= 0_[1 Z Nm.l(x-t-k)dt= ()_"I 1dt=

k=-0

7. N'a(x) = (ANp1)(x) =Nm.1(x) — Npi(x-1)
Nax) = Of' N'pi(x-t)dt = (x-1)|'o

Ni1(X) “Ni1(x-1) = (AN (%)

Assuming the result

1 forallx



8 Nu(x) = x/m-1 Ny.i(x) + m-x/m-1 Nya(x-1)

from I we have

Na() “Ma() = 5 (DH(m-1)! €7y (k)™
K=0

Now we have x,™!=x x,™?

Nm(x) = Mm(x) =] /(m-] )! A x+m-1
= 1/(m-1)§ { X AmX+m-2 +mAm‘1(X_1)+m‘2}

= 1/(m-1)! {(m-2)! xA{1/(m-2)! A™(x-1),"}+m(m-

2)1(1/m-2)! A (x-1):"2))
= 1/(m-1){xAMp.1(x)+mM.1 (x-1)}

=x/m-1 M.1(X) + m-x/m-1 My, 1(x-1)

G. Nm(x) is symmetric w.r.t. the center of its support j.e.

N mv/2+x)=Np(m/2-x) A x €R

Proof: we prove this result by induction

Form=1 we have

I Ni(172+x)=1 if 0<1/2+x <1 = -1/2<x<1/2

=0 otherwise
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2. NI(I/Z-X) =1 1f 0<1/2-x <1 = -12<x<1/2

=( otherwise

From I & II we see that the symmetry property is true for
m=1
Now consider

Nn‘-l(m/2+x) = Nn].l {m" 1/2+(X+1/2)}

=Ny {m-1/2-(x+1/2)}

:Nn].] (nl/z*x‘ 1 ) I

Nn}.l(m’lz‘x} = Nn]-}(m"l/z - X +1/2)
=N (m-1/2)-(x-1/2))
“Nie1(m-1/2+(x-1/2))

=Np.1(m/2+x-1) I

Now,
Np{m/2+x) = (m/2+x)/(m-1) N, (m/2+x) + m-(n/2+x)/(m-1)Nyy,. 1(m/2+x-1)
=m-(m/2-x)/m-1. Ny.1(m/2-x)-1)Hm/2-x/m-1)Ny,.1(m/2-x)

= n](m/z'x)
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Our next problem is to show that the cardinal B-spline basis

B={N,.(x-k) : ke Z} 1

Is a Riesz basis for V" in the sense that there exist constants A& B
with 0<A <=B <

Such that for any sequence {ci} € 1(z) we have

All{eiPi2 <)l Y aNm(x-k)|%12@) < BJ| (e} |12 —-------- I

k=-00
Condition 11 1s equivalent to a frequency domain condition
“ A

A< T INg(e+2nk)|’<Bae. i
=00

We will work with frequency domain condition to ontain A&B

Replacing ® by 2x in II we have

£y A
A< Y INa(2x+2 k)P <Bae.
k=-00

A
Since Niw(x)is an m-fold convolution of Ni(x) =1 and

since Ny(0)=(1-¢“/2®), we have
A
INw(@)]? = |1-6?%2 @ " =sin*"(w/2)/( o/2)™"

theretfore,



Vil
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o A : 73

S INm(2x+2 k)P = 3 sin®(x+ nk)/(x+ mk)™”

k=- k=-0

=5in"(x) ¥ 1/(x+ k)™ -omemmmmmmmmmnee 1Y

k=-00

Now for complex analysis ,we have

Cot(x) =lim ¥ 1/x+ 7k v
v n’> w0 k_:’n :

Differentiating V w.r.t. (2m-1) times we get

Y Ukt nk)™ = -1/(2m-1)! & Vdx*" (COtK) —mmeemnnnnnnne- VI

k=-c0
Thus we get
o A

Y INW(2x+2 7)) = ~sin®()/(2m-1) d™ ™ (cot x) -

k=-o0

Expression V11 is the general expression for the sum on R H.S.

For the Solution of Approximation problem we can use function

from these Spline Approximation Spaces . As the Spaces are constructed for

any x in R, we can approximate any given function ‘f” defined on R by

means of a member from S,, as m — o the approximation function £,

converges to f.



