
Chapter



55

Chapter -4

Cardinal spline analysis

The B-splines originally introduced by Curry & Schoenberg in 1947.

In this chapter we define B-splines of order 1 & m,m > 2 and we study 

derivations of expressions of B-splines . In the last part Cardinal Splines 

analysis & properties of,

^-spline are expressed.

4.1 Def1: The first order B-Spline,denote by Ni(x) is defined as the 

characteristic function of the interval [0,1] j.e.

Ni (x) = X|o,i) =1 if0<x<l ~

=0 0 otherwise —* --------- 1

Def : For m>2,the mlh order B-spline Nm(x) is recursively defined by

Nm(x)= J Nm.,(x) * N, (x)= J° Nm-i(x-t)Ni(t)dt------------II

Thus we have,

Nm(x)= -wf” Nm_i(x-t)N i (t)dt= J1 Nm.!(x-t)dt----------------- HI

4.2 Derivation of expression for B-splines.

We will derive explicit expressions for the first few B-Splines below, 

1. Expressions for Nofx!

We have, By the defination III
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N2(x)= 0PNi(x-t)dt= x. Jx N!(t)dt----------------------------------- 1
*

Case I) -co<x<0 -oo<t<x<0

Ni(t) = 0 

N2(x) = 0

Case2) 0 < X< 1 !=> -1 <t<X< 1

N2(x) - -il° N](t)dt + olx Ni(t) dt

— 0 + of* 1 .dt — t |xq — x n

Case3) 1 < x < 2 x-

N2(x)= ,J' N,(t)dt

x-il dt t | x-i 2-x m

Case4) 2<x<oo l<t<x<oo

N2(x)=0 asN^t^O for a<t<oo----------------------IV

Thus, We have

N2(x)=x , if 0 < x < 1 

=2-x , if l<x < 2 ■V

=0 otherwise



2) Expression for Nifx)

We have by definition

N3(x)= oJ']N2(x-t)dt = x.,f N2(t)dt, 0 < t < 2 --------------------- 1

Casel) {-oc < x < 0} then

N3(x) = .JxN2(t)dt = 0-------------------------------------n

Case2)_ {0<x<l} -1 <t<x thus

N3(x) - 0f N2(t)dt - of t. dt =t2/2 |x o=l/2 x2----------- HI

Case 3) {1 < x < 2 } £=> x-1 < t < 1 < x < 2

N3(x) = x.J1N2(t)dt + ifN2(t)dt 

= x.,ft dt + Jx (2t) dt 

= (t2/2)|1x.1 + (2t-t2/2) lx,

= '/2 - '/2(x2-2x+l) + 2x-2-x2/2 + V2

= -x2+3x-3/2---- --------------------------------------------------- IV

Case4) (2<x < 3} x-l<t<x<3

N3(x) = x.,f N2(t)dt + 2f N2(t) dt

- X.J2 (2-t)dt + 0 N2(t)=:0 for t>=2

=(2t-t2/2) Px-i 

=(4-2)-2(x-1 )+(x-1 )2/2
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=2-2x+2+1 /2(x2-2x+ 1)

=x2/2-3x+9/2 ■V

CaseS) {x>3} f=>t>x-l>2 c=^> N2(t) = 0 N3(x)= 0

VI

Thus we have

N3(x) = V2 x2 , 0 < x < 1

= -x2+3x-3/2 , 1 < x < 2

=T/2x2-3x+9/2 , 2 <x < 3 

= 0 , otherwise

VII

if x < 0 

if x < x < 3 

if x > 3

3) Expression for N4(x)

i.e. N3(x) = 0 

N3(x)^0 

N3(x) = 0

We have by definition

N4(x) = of1 N3(x-t) dt - X-Jx N3(t)dt I

Case 1) {-oo < x < 0} { -oo < t < 0 } c=r> N3(t) = 0
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N4 (x)=0 if -oo <x < o ------------------------------------ n

Case2) {0<x<l} x-l<0<t<x<l

N4(x) = of* (t2/2)dt - (t3/6) |Xo= x3/6-------------------------- ffl

Case3) {l<x<2} 0<x-l<t<x<2

N4(x) = x.J1N3(t)dt + JxN3(t)dt

=x-JJ (t2/2)dt + ,|x (-t2 + 3t -3/2) dt 

=t3/6| Vi> + {-t3/3 + 3 t2/2 - 3/2t} |x,

=1/6-1 /6(x3-3x2+3x-1) + (-x3/3 + 3 x2/2-3/2x) + 1/3 

= -l/2x3 + 2x2 - 2x + 2/3------------------------------------ IV

Case4) {2<x<3} t=> l<x-l<t<x<3

N4(x) = x-J2 N3(t)dt + 2fx N3(t)dt

= x-if (-t2+3t-3/2)dt + Jx (t2/2 - 3t +9/2)dt

=(-t3/3 + 3t2/2 - 3/2t)|2x-i + (t3/6-3t2/2 +9/2t)|x2

=(-8/3+6 _3)-{(x-l)3/3 + 3(x-l)2/2 -3/2(x-l)} + x3/6- 
3x2/2+9x/2 - (4/3-6+9)

=1/3- {-1/3 (x3-3x2+3x-1 )+3/2(x2-2x+1 )-3/2x+3/2 } +x3/6- 

3x2/2+9x/2-13/3

= x3/2-4x2+l Ox-22/3 ------------------------------------------V

= x3/2-4x2+l Ox-22/3



60

CaseS)

Case6)

{3 < x < 4} ■=> 2< x-1 <t < x < 4 :

N4(x) = x-iP N3(xt)dt + 3P N3(t)dt 

= x-if (t2/2 - 3t +9/2) dt

N4(t) = x.J3(t2/2-3t +9/2)dt 

=(t3/6-3t2/2+9t/2)px-i

=(9/2-27/2+27/2)- {1 /6(x-1 )3-3/2(x-1 )2+9/2(x-1)}

=9/2- {1 /6(x3-3x2+3x- 1 )-3/2(x2-2x+ 1 )+9/2x-9/2}

=9/2- { x3/6- 1 /2x2+ 1 /2x-1 /6-3x2/2+3x-3/2+9x/2-9/2} 

=-x3/6+2x2-8x+32/3------------------------------------------VI

{4 < x < oo } c=> 3 < x-1 < t < co c=C> N3(t)= 0

N4(x) = x.JxN3(t)dt <3f N3(t)dt=0 

N4(x) = 0 if x > 4

Thus we have,

N4(x) =x3/6 if 0 <x < 1

= -1/2x3+2x2-2x+2/3 if l<=x<=2

=l/2x3-4x2+l Ox-22/3 if 2<=x<=3

=-1 / 6xJ+2x~-8x+3 2/3 if 3<=x<=4

—VII

= 0 otherwise
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4.3 Cardinal Spline Analysis

Cardinal splines are probably the simplest functions with small supports that 

are most efficient for both software and hardware implementation. These are 

used in basic Wavelets and approximations.

We use following notations :

p„, Denotes the collection of all algebraic polynomials of degree at most 

n.

C"(R)Collection of all functions f such that f,f\...,f*n) are continuous 

everywhere on R.

Def For each +ve integer m, the space sm of cardinal splines of order m and 

with Knot sequence z is the collection of all functions f e cm'2 such that the 

restrictions of f to any interval [k,k-H),k e z are in Pm_i j.e. f | |k,kn> e Pm.i, k 

e z

SI : The space of piecewise constant functions.

The basis for Si can be { Ni(x-k): kez} where Ni is the characteristics 

function of [0,1)

- 0 otherwise I

Sm(m>2) : To get the basis for Sm first consider S„-,jN consisting of

restrictions of f e Sm to the interval
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[-N,N], where N is a +ve integer. Thus, Sm,N is a subspace of functions of f e 

Sm such that the restrictions of f to 

(-oo,-N+l) and [N-l, co) of f are polynomial in

To characterize the space Sm,N .let f e S,^n be arbitral function. Let 

I£joj+1) € ftm-1

For j= -N, -N+l,....... ,N-1 then since f e Cm'2 , we have

GO (k)

Pmj - Pmj-i (j) = 0 1X..... ,n>2 ; m>2

The jumps Cj of f*m_1) at the knot sequence Z are then given by

Cj -Pny (m',} (j+0) - Pny-l0^ (j-0)

e->0+ II

The adjacent polynomial pieces of f are related by

Pmj (x) = Pny-1 (X) + Cj/(m-l)! (x-j),"1-1 in

Let x + = max (0,x)

X+111*1 = (x+)m‘1, m> 2 - IV
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Thus we have

ftx)= fj-N.-N+i)(x) + X N* Cj/(m-l)! (x-j),'11'1----------------------V

j=-N+1

Eqn (V) is true for all f e S„i,n with constants Cj given by Eqn (II) 

.Therefore ,the collection

{1 ,x,... ,xm"1,(x+N-l)+m'1,... ,(x-N+l)+m-'}-------------------------VI

of m+2N-l functions is a basis for Sm,N •

The basis (VI) consist of monomials and truncated powers. We can 

replace monomials by truncated powers as

(x+N+m-1 )+m‘1,... ,(x-N+1 )+m'1--------------------------------- VII

Eqn (VII) can be rewritten as

T={(x-k)+m'\k= -N-m+l,...,N-l}--------------------------------- VIII

Which are generated by integer translates of a single function x+m-1, 

as a basis ofSnxn

Basis (VIII) are more attractive than (VI). For

1. Each function (x-j)+ m-1 vanishes to the left of j

2. they are generated by a single function x+m-1 which is 

independent of N

3. Sin Sm= IP Sm.N c=> E ={(x-k)+m"] : k eZ}--------------IX

N-l

Is a basis for Sm .
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However, we must careful when we deal with infinite dimensional 

spaces. Since we are interested

in L2(R),We want cardinal splines that are in L2( R).Unfortunately not a single 

function in F is in L (R) as each

(x-k)+ra'1 grows to infinity as x > oo.we therefore have to create functions in 

L2( R) from those in Fn ,which can be denoted by controlling their growth. 

Since only linear combinations are allowed. We can use difference for this 

purpose Thus let

A f(x) = f(x)-ff>l)

A" f(x) = An‘!(A f(x»-----------------------------------------------X

When f(x) is a polynomial of degree m-1 or less 

We have,

Am f = 0 , f e 7tm-i--------------------------------------------------- XI

Def" : Let mi=Nj be the characteristrics function of [0,1) and for m>=2 let

Mm(x) = 1 /(m-1)! Am x+m''----------------------------------------------------- Xn

Then we have

m r m
Mm (x) =I/(m-l)! ^ (~l)k k (x-k)+m"1 -----------------------------------Xffl

K=0 J
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j.e. Mm(x) is a linear combination of functions in F 

Now Mm(x) = 0 for x<0 and Mm(x)=0 for x>=m .therefore supp Mm C [0,m] 

In fact supp Mm=[0,m]

Since Mm has compact support, Mm(x) e L2 (R)

We now show that B = (Mm(x-k): k e Z) is a basis for Sm

For, consider Sm,N. the dimension of Sm,N is m+2N-l.using the support

properly {j.e. supp Mm(x)=[0,m])

We sec that each function in the collection

(Mm(x-k): k - -N-m+1,... N-l}------------------------------------------------ XIV

is non-trivia! on the interval [-N,N],also Mm(x-k) vanishes identically on [- 

N,N] for k < -N-m+1 or k>N-l. since the set in (XIV) is linearly independent 

they form a basis for S„,,n thus we have an alternative set of basis for Sm,„.if we 

take the union of basis in (XIV) for N=l,2,... we get B as the basis for Sm .the 

advantage of B over F is that we can now talk about a spline series.

00

F(x)= I CkMm(x-k)-------------------------------------------------------------- XV
K--oo

Without worrying too much about convergence.

Indeed for each fixed X e R since Mm has compact support, all except a finite 

number of terms in (XV) are zero.

We are interested only in those cardinal spline that belong to L2(R)

,namely Sm fl L2(R)
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Let VmoDenote its closure in L2(R)

j.e. Sm fl L2 (R) = Vmo Since Mra has compact Support, we see that B c Vmo In 

fact B is a Riesz basis of Vmo

The cardinal Spline we have considered so far have the Knot sequence Z.if we 

consider the Knot sequence 2'-' Z,then the corresponding space of spline 

functions is S’m denoted by S Jm.Since for j] <)2 we have z'jlZ c Z"j2Z , we 

have Sjlm c Sj2m thus we have a doubly infinite nested sequence c S~'m c S°m c 

S’m c .. .of cardinal spline spaces where S°m = Sm. Analogous to the def1 of 

Vmo, we let Vmj denote the L2(R)- closure of SJm fl L2(R).hence we have a 

nested sequence

XVI

of closed cardinal spline subspaces of L2(R) Then we have

j ez

XVII

n vmj = {0}

j ez

Also ifB is a Riesz basis of Vrao, then for any j e z the collection 

{2j/2Mm(2jx-k):kez}------------------------------------------------------- XVIII
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is also Riesz basis of Vmj with the same Riesz bounds.

4.4 Cardinal B-splines and their properties

The mth order B-spline'Nm(x) is defined by

Nm(x) =(Nm.] * N,)(x) = of Nm.i(x-t)dt,m>2 XIX

Where Nj (x) is the characteristics function of the interval [0,1). Also if we set 

Mi=Ni, then we get Mm(x)=Nm(x) ;m>=2 we will now prove some of the 

properties of Mm(x)=Nm(x).

Thm: The mlh order cardinal B-Spline Nm(x)(=Mm(x)) satisfies the following 

properties,

1. for every fee,

-oof0 f(x) Nm(x)dx = of1 ... of f(x1+x2+... +xm)dxidx2... dxm —XX

2. for every g e cm

XX3
k=0

3. Nm(x)=:Mra(x) for all x e R

4. Supp NL=[0,m]

5. Nm(x)>0 for0<x<m
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6. T Nm(x-k) = 1 for all x 
k=-co

7. Nm(x) = (ANm-i)(x) =Nm.,(x) -Nm-I(x-1)

8. Nm(x)=x/m-l Nm.i (x) + m-x/m-1 Nm_i(x-1) ------------------- XXII

9. Nm is symmetric w.r.t. the center of its support 

j.e. Nm(m/2+x) = Nm(m/2-x), x e R

Proof:

I. for m - 1, we have

-«j°°f(x)Ni(x) dx = of f(x) dx“ 0J!f(xi)dx)

so that ( XX) is true for m=l Assuming it to be true for m-1 , we

have

Jw f(x)Nm(x)dx = „J'X f(x) [J1Nm.i(x-t)dt] dx 

=oJ5 {-Jn f(x)Nm_i(x-t)dx}dt

=«r ! f(y+t)Nm.i(y) dyldt

=oJJ J1. - .of f(xi+x2+... +xm.i+t)dxidx2... dxnl.idt
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=oP... of flxi +x2+... +xm)dx,dx2... dxm

2. we have

,f gn,(x)N,I1(x)dx = of... Jlgm(xi+x2+.. +xm)dxi.. ,dxm by 1

By direct integration, we get

3. fix x e R let g(x) -(-1 )m/(m-1)! (x-t) +"1'1 

Differentiating m times , we get

gra(t) = 5 (x-t)

Nm(x)= gm(x) Nm(x)dx=Mm(x)

4. Supp Nra=[0,m]

The assertion is clearly true for m=l by def1 

Assuming Supp Nm.i = [0,m-l]

Then we have,
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Nm(x) = -,J“ Nm. i (x-t)N i (t)dt -J'N^iCx-Odt

Since supp Nm.i(x) = [0,m-l],Nra_i(x-t) ^ 0 for 0 <= x-t <= m-1

Let x-t - y -dt=dy

Nm(x) = - J*’1 Nm-,(y)dy - x-]JxNm.1(y)dy

j.e. x-1 <y <x n=> Nm.i(y) ^0

x-1 < y < m-1 < x (=> Nm.i(y) ^ 0

thus when y=m-l x can be m 

or Nm(x) -^0 for 0 < x < m

5. Nm(x) >0 for 0 < x < m

we have Ni(x) >0 for 0 < x < 1

Assuming Nm-i(x) >0 for 0 < x < m-1

From IV above we see that
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Nm(x) >0 for 0 < x < m

oO

6. X Nm(x-k)= 1 for all x 
k—co

Proof: We have for m-1

00

1 Ni(x-k) = 1 V x 
k~-oo

As there is exactly one interval [k, k+1 ] such that N|(x-k)H 1 if x e 

[k, k+1] and Ni(x-k}=0 for any fixed k. Assuming the result

to be true for m-1 , we have

00

I Nm-i(x-t-k) - 1 
k=-oo

Pm(x-k) = I oJ1 Nm.1(x-t-k)dt 
k=-co k~-co

= of1 y N„,.i(x-t-k)dt = of Idt = 1 for all x 
k=-co

7. N1m(x)= (ANm-i)(x) =Nm.i(x) - Nm-i(X-l) 

N]m(x)= Oj’ N’m.](x-t)dt = (x-t) |\>

Nm.i(x) -Nm_i(x-1) - (ANm.i)(x)
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8. Nm(x) = x/m-1 Nm.i(x) + m-x/m-1 N„,.i(x-1)

from III we have

m
Nm(x)=Mm(x)= Z (_1 )k/(m-I)! G(x-k)l",-i 

K=0

Now we have x+m'' = x.x+m'2

Nm(x) = Mm(x)=l/(rn-l)! Amx+m-1

= l/(m-l)! { xA"im'2 +mAm''(x-l )+m'2}

= l/(m-l)! {(m-2)! xA{l/(m-2)! Am'1(x-l)+ra‘2}+m(m- 

2)!(l/m-2)! Am"1(x-l)+m'2)}

= 1 /(m-1) {x AMm. i (x)+mMm. j(x-l)}

= x/m-1 Mm-i(x) + m-x/m-1 Mm-i(x-l)

9. Nm(x) is symmetric w.r.t. the center of its support j.e. 

Nm(m/2+x)=rNm(rn/2-x) x e R

Proof: we prove this result by induction 

Formal we have

1. Nj(l/2+x) =1 if 0 < 1/2+x <1 c=> -1/2 < x < 1/2

= 0 otherwise
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2. Ni(l/2-x) =1 if 0< 1/2-x <1 «=> -1/2 < x < 1/2

=0 otherwise

From I & II we see that the symmetry property is true for

m=l

Now consider

Nm-i(m/2+x) = Nm-i{m-l/2+(x+l/2)}

“Nm.i {m-1 /2-(x+1/2)}

=N1Vl.i(m/2-x-l)----------------------------1

Nm-i(m/2-x) = Nm_i(m-l/2 - x +1/2) 

=Nin.i(m-l/2)-(x-l/2)) 

=Nm.1(rn-l/2+(x-l/2»

=Nm.,(m/2+x-l)----------------------------II

Now,

Nm(m/2+x) = (m/2+x)/(m-l) .Nm.i(rn/2+x) + m-(m/2+x)/(m-l)Nm. i(m/2+x-l)

=m-(m/2-x)/m-l. Nm-i(m/2-x)-l)+(m/2-x/m-l)Nm.i(rn/2-x)

=Nm(m/2-x)
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Our next problem is to show that the cardinal B-spline basis

B={Nm(x-k): k e Z}---------------------------4

Is a Riesz basis for Vmo in the sense that there exist constants A& B 

with 0<A <tB < co

Such that for any sequence {Ck} e l2(z) we have

«>

A!!{Ck}||2i2<|| y ckNm(x-k)|!2L2(R)<B!| {ck'}|!2,2 ---------H
k=-oo

Condition II is equivalent to a frequency domain condition

</j A

A < V j Nm(©+2 7ck)J2 < B a.e.--------------------- III
k=-oo

We will work with frequency domain condition to ontain A&B 

Replacing co by 2x in III we have

oo A

A< v | Nm(2x+2 7tk)!2 < B a.e. 
k=-oo

Since Nm(x)is an m-fold convolution of N i(x) =1 and 

since Ni(co)=(l-e’2 '72©), we have

A

|Nm(co)|2 = 11 -e'210/2 co f2m -sin2m(co/2)/( co/2)2,n

therefore,
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./> A */>

Y |Nm(2x+2 7ik)|2 = Y sin2m(x+ 7rk)/(x+ 7rk)2m 
krr-so k=-oo

co

=sin2m(x) T l/(x+ 7tk)2m------------------IV
k=-oo

Now for complex analysis ,we have

n

Cot(x) = lim Y ^x+ ^k---------------------------------------- V
' n> k—n

Differentiating V w.r.t. (2m-1) times we get
GO

2 l/(x+ 7tk)2m = -1 /(2m-1)! d2l"‘1/dx2m'1 (cotx)---------------- VI
k=-co

Thus we get
co A

X |Nm(2x+2 7ik)|2 = -sin2n,(x)/(2m-l)! d^/dx2'"’1 (cot x) —
VII

k=-K>

Expression VII is the genera! expression for the sum on R.H.S.

For the Solution of Approximation problem we can use function 

from these Spline Approximation Spaces . As the Spaces are constructed for 

any x in R, we can approximate any given function ‘f defined on R by 

means of a member from Sm as m —> <x> the approximation function fm 

converges to f.


