

Ŋ

•

Chapter -4

Cardinal spline analysis

The B-splines originally introduced by Curry & Schoenberg in 1947.

In this chapter we define B-splines of order 1 & $m,m \ge 2$ and we study derivations of expressions of B-splines . In the last part Cardinal Splines analysis & properties of

B-spline are expressed.

4.1 **Def**^a: The first order B-Spline, denote by $N_1(x)$ is defined as the characteristic function of the interval [0,1] i.e.

 $N_1 (x) = x_{[0,1]} = 1$ if $0 \le x \le 1$ =0 0 otherwise ------ I

Defⁿ : For $m \ge 2$, the mth order B-spline N_m(x) is recursively defined by

 $N_m(x) = \int N_{m-1}(x) * N_1(x) = \int_{-\infty}^{\infty} N_{m-1}(x-t)N_1(t)dt$ ------II

Thus we have,

 $N_m(x) = \int_{\infty}^{\infty} N_{m-1}(x-t)N_1(t)dt = 0^{\int_{0}^{1} N_{m-1}(x-t)dt}$ ------III

4.2 Derivation of expression for B-splines.

We will derive explicit expressions for the first few B-Splines below,

1. Expressions for $N_2(x)$

We have, By the defination III

$$N_2(x) = {}_0 \int^1 N_1(x-t) dt = {}_{x-1} \int^x N_1(t) dt -----I$$

Case 1)
$$-\infty \le x \le 0$$
 \implies $-\infty \le t \le x \le 0$
N₁(t) = 0
N₂(x) = 0

Case2)
$$0 \le x \le 1$$
 $\implies -1 \le t \le x \le 1$
 $N_2(x) = -1^0 N_1(t) dt + 0^{fx} N_1(t) dt$
 $= 0 + 0^{fx} 1 dt = t |_0^x = x$ ------II

Case3)
$$1 \le x \le 2$$
 $\implies x - 1 \le t \le 1 \le x \le 2$
 $N_2(x) = {}_{x-1} \int_{-\infty}^{1} N_1(t) dt$
 $= {}_{x-1} \int_{-\infty}^{1} dt = t |_{x-1}^{1} = 2 - x$ ------III

Case4)
$$2 \le x < \infty$$
 $\implies 1 \le t \le x \le \infty$
N₂(x)=0 as N₁(t)=0 for $a \le t < \infty$ -----IV

•

Thus, We have

N₂(x)=x, if
$$0 \le x \le 1$$

=2-x, if $1 \le x \le 2$
=0 otherwise

٠.

ł

We have by definition

 $N_3(x) = {_0j^1N_2(x-t)dt} = {_{x-1}j^x N_2(t)dt}, 0 \le t \le 2$ -----I

.

.

Case1)
$$\{-\infty \le x \le 0\}$$
 then
N₃(x) = $\int_{-\infty}^{x} N_2(t) dt = 0$ -----II

Case2) {
$$0 \le x \le 1$$
} \Longrightarrow $-1 \le t \le x$ thus
N₃(x) = $_0 \int^x N_2(t) dt = _0 \int^x t dt = t^2/2 |_0^x = 1/2 x^2$ ------III

Case 3)
$$\{1 \le x \le 2\}$$
 $\implies x-1 \le t \le 1 \le x \le 2$
 $N_3(x) = {}_{x-1}\int^1 N_2(t)dt + {}_1\int^x N_2(t)dt$
 $= {}_{x-1}\int^1 t dt + {}_1\int^x (2t) dt$
 $= (t^2/2)|^1{}_{x-1} + (2t - t^2/2) |^x{}_1$
 $= {}_{2} - {}_{2}(x^2 - 2x + 1) + 2x - 2 - x^2/2 + {}_{2}$
 $= {}_{-x^2} + 3x - 3/2$ ------IV

Case4)
$$\{2 \le x \le 3\}$$
 \implies $x-1 \le t \le x \le 3$
 $N_3(x) = {}_{x-1} \int^2 N_2(t) dt + {}_2 \int^x N_2(t) dt$
 $= {}_{x-1} \int^2 (2-t) dt + 0$ $N_2(t) = 0$ for $t \ge 2$
 $= (2t-t^2/2) |_{x-1}^2$
 $= (4-2)-2(x-1)+(x-1)^2/2$

$$=2-2x+2+1/2(x^{2}-2x+1)$$
$$=x^{2}/2-3x+9/2$$
-----V

Case 5) $\{x \ge 3\}$ $\implies t \ge x-1 \ge 2$ $\implies N_2(t) = 0$ $\implies N_3(x) = 0$

Thus we have

$$N_3(x) = \frac{1}{2} x^2$$
, $0 \le x \le 1$
 $= -x^2 + 3x - 3/2$, $1 \le x \le 2$
 $= 1/2x^2 - 3x + 9/2$, $2 \le x \le 3$
 $= 0$, otherwise

i.e.
$$N_3(x) = 0$$
 if $x < 0$
 $N_3(x) \neq 0$ if $x \le x \le 3$
 $N_3(x) = 0$ if $x > 3$

3) Expression for $N_4(x)$

We have by definition

 $N_4(x) = {}_0 \int^1 N_3(x-t) dt = {}_{x-1} \int^x N_3(t) dt ----I$

Case 1) $\{-\infty \le x \le 0\}$ \Longrightarrow $\{-\infty \le t \le 0\}$ \Longrightarrow $N_3(t) = 0$

N₄ (x)=0 if
$$-\infty < x \le 0$$
 ------II

Case2)
$$\{0 \le x \le 1\}$$
 \implies x-1 < 0 $\le t \le x \le 1$
N₄(x) = $_0 \int^x (t^2/2) dt$ = $(t^3/6) \mid^x_{o} = x^3/6$ -----III

Case4) {
$$2 \le x \le 3$$
} \Longrightarrow $1 \le x-1 \le t \le x \le 3$
N₄(x) = $_{x-1}J^2$ N₃(t)dt + $_2J^x$ N₃(t)dt
= $_{x-1}J^2$ (-t²+3t-3/2)dt + $_2J^x$ (t²/2 - 3t +9/2)dt
=(-t³/3 + 3t²/2 - 3/2t)|²_{x-1} + (t³/6-3t²/2 +9/2t)|^x₂
=(-8/3+6⁻³)-{(x-1)³/3 + 3(x-1)²/2 - 3/2(x-1)} + x³/6-
3x²/2+9x/2 - (4/3-6+9)
=1/3-{-1/3(x³-3x²+3x-1)+3/2(x²-2x+1)-3/2x+3/2} + x³/6-
3x²/2+9x/2-13/3
= x³/2-4x²+10x-22/3 ------V
= x³/2-4x²+10x-22/3

Case5) {
$$3 \le x \le 4$$
} $\implies 2 \le x - 1 \le t \le x \le 4$
 $N_4(x) = {}_{x-1} \int^3 N_3(xt) dt + {}_3 \int^x N_3(t) dt$
 $= {}_{x-1} \int^3 (t^2/2 - 3t + 9/2) dt$

*

$$N_{4}(t) = {}_{x-1}\int^{3} (t^{2}/2 - 3t + 9/2)dt$$

=(t^{3}/6-3t^{2}/2+9t/2)|³_{x-1}
=(9/2-27/2+27/2)-{1/6(x-1)^{3}-3/2(x-1)^{2}+9/2(x-1)}
=9/2-{1/6(x^{3}-3x^{2}+3x-1)-3/2(x^{2}-2x+1)+9/2x-9/2}
=9/2-{x^{3}/6-1/2x^{2}+1/2x-1/6-3x^{2}/2+3x-3/2+9x/2-9/2}
=-x^{3}/6+2x^{2}-8x+32/3 ------VI

Case6) $\{4 \le x < \infty\} \implies 3 \le x-1 < t < \infty \implies N_3(t)=0$

$$N_4(x) = {}_{x-1} \int^x N_3(t) dt \le {}_3 \int^\infty N_3(t) dt = 0$$

 $N_4(x) = 0$ if $x \ge 4$

Thus we have,

$$N_{4}(x) = x^{3}/6 \quad \text{if} \quad 0 \le x \le 1$$

= -1/2x^{3}+2x^{2}-2x+2/3 \quad \text{if} \quad 1 \le x \le 2
= 1/2x^{3}-4x^{2}+10x-22/3 \quad \text{if} \quad 2 \le x \le 3
= -1/6x^{3}+2x^{2}-8x+32/3 \quad \text{if} \quad 3 \le x \le 4
= 0 otherwise

4.3 Cardinal Spline Analysis :-

Cardinal splines are probably the simplest functions with small supports that are most efficient for both software and hardware implementation. These are used in basic Wavelets and approximations.

*. ;

We use following notations :

 $\mathbf{p}_{\mathbf{m}}$:- Denotes the collection of all algebraic polynomials of degree at most n.

 $C^{n}(R)$:- Collection of all functions f such that f, $f^{1}, \ldots, f^{(n)}$ are continuous everywhere on R.

Defⁿ :- For each +ve integer m, the space s_m of cardinal splines of order m and with Knot sequence z is the collection of all functions $f \in c^{m-2}$ such that the restrictions of f to any interval $[k,k+1), k \in z$ are in P_{m-1} j.e. $f|_{[k,k+1)} \in P_{m-1}$, k $\in z$

S1 : The space of piecewise constant functions.

The basis for S_1 can be { $N_1(x-k)$: $k \in z$ } where N_1 is the characteristics function of [0,1)

j.e. $N_1(x) = 1$ if $0 \le x < 1$ = 0 otherwise ------I

 $S_m(m{\geq}2): \mbox{ To get the basis for } S_m \mbox{ first consider } S_{m,N} \mbox{ consisting of}$ restrictions of f ε S_m to the interval

[-N,N],where N is a +ve integer. Thus, $S_{m,N}$ is a subspace of functions of f ε S_m such that the restrictions of f to

(- ∞ ,-N+1) and [N-1, ∞) of f are polynomial in π_{m-1} .

To characterize the space $S_{m,N}$. let f ε $S_{m,N}$ be arbitrary function. Let Pm,j=f $|_{[j,j+1)}$ ε π_{m-1}

For j = -N, -N+1,...., N-1 then since $f \in C^{m-2}$, we have

(k) (k)

$$\begin{bmatrix} P_{m,j} - P_{m,j-1} \end{bmatrix}$$
 (j) = 0 k=0,1,2,...,m-2; m≥2

The jumps C_j of $f^{(m-1)}$ at the knot sequence Z are then given by

$$\begin{split} C_{j} = P_{m,j}^{(m-1)} (j+0) - P_{m,j-1}^{(m-1)} (j-0) \\ = \lim_{\varepsilon \to 0^{+}} \left\{ f^{(m-1)} (j+\varepsilon) - f^{(m-1)} (j-\varepsilon) \right\} \\ \varepsilon \to 0^{+} \end{split}$$

The adjacent polynomial pieces of f are related by

Let $x_{+} = \max(0,x)$ $x_{+}^{m-1} = (x_{+})^{m-1}, m \ge 2$ ------IV Thus we have

$$f(x) = f_{1-N,-N+1}(x) + \Sigma^{N-1} C_j/(m-1)! (x-j)_+^{m-1} - \cdots - V$$
$$j = -N+1$$

Eqⁿ(V) is true for all $f \in S_{m,N}$ with constants Cj given by Eqⁿ (II)

.Therefore ,the collection

$$\{1, x, \dots, x^{m-1}, (x+N-1)^{m-1}, \dots, (x-N+1)^{m-1}\}$$
------VI

of m+2N-1 functions is a basis for $S_{m,N}$.

The basis (VI) consist of monomials and truncated powers. We can

۶. - با

replace monomials by truncated powers as

 $(x+N+m-1)_{+}^{m-1},...,(x-N+1)_{+}^{m-1}$ ------VII

Eqn (VII) can be rewritten as

 $T = \{(x-k)_{+}^{m-1}, k = -N-m+1, ..., N-1\}$

Which are generated by integer translates of a single function x+m-1,

as a basis of Sm.n

Basis (VIII) are more attractive than (VI). For

- 1. Each function (x-j)+ m-1 vanishes to the left of j
- they are generated by a single function x+m-1 which is independent of N
- 3. $\operatorname{Sin} S_m = U^{\infty} S_{m,N} \implies \Gamma = \{ (x-k)_+^{m-1} : k \in \mathbb{Z} \}$ ------IX N=1

Is a basis for S_m .

However, we must careful when we deal with infinite dimensional spaces. Since we are interested in $L^2(R)$, We want cardinal splines that are in $L^2(R)$. Unfortunately not a single function in Γ is in $L^2(R)$ as each $(x-k)_+^{m-1}$ grows to infinity as $x \ge \infty$. we therefore have to create functions in $L^2(R)$ from those in Γ_N , which can be denoted by controlling their growth. Since only linear combinations are allowed. We can use difference for this

purpose Thus let

$$\Delta f(x) = f(x) - f(x-1)$$

$$\Delta^{n} f(x) = \Delta^{n-1}(\Delta f(x)) - ----X$$

When f(x) is a polynomial of degree m-1 or less

We have,

 $\Delta^{m} f = 0$, $f \in \pi_{m-1}$ ------XI

Defⁿ : Let $m_1=N_1$ be the characteristrics function of [0,1) and for m>=2 let $M_m(x) = 1/(m-1)! \Delta^m x_+^{m-1}$ ------XII

Then we have

$$M_{m}(x) = 1/(m-1)! \sum_{K=0}^{m} (-1)^{k} \begin{bmatrix} m \\ k \end{bmatrix} (x-k)_{+}^{m-1}$$
 ------XIII

j.e. $M_m(x)$ is a linear combination of functions in Γ

Now $M_m(x) = 0$ for x<0 and $M_m(x)=0$ for x>=m .therefore supp $M_m C[0,m]$ In fact supp $M_m=[0,m]$ Since M_m has compact support, $M_m(x) \in L^2(R)$ We now show that $B = \{M_m(x-k) : k \in Z\}$ is a basis for S_m For, consider $S_{m,N}$. the dimension of $S_{m,N}$ is m+2N-1.using the support properly (j.e. supp $M_m(x)=[0,m]$) We see that each function in the collection $\{M_m(x-k) : k = -N-m+1, ..., N-1\}$ ------XIV

ţ

is non-trivial on the interval [-N,N].also $M_m(x-k)$ vanishes identically on [-N,N] for k < -N-m+1 or k>N-1. since the set in (XIV) is linearly independent they form a basis for $S_{m,N}$ thus we have an alternative set of basis for $S_{m,n}$.if we take the union of basis in (XIV) for N=1,2,... we get B as the basis for S_m .the advantage of B over Γ is that we can now talk about a spline series.

$$F(x) = \sum_{K=-\infty}^{\infty} C_k M_m(x-k) - ----XV$$

Without worrying too much about convergence.

Indeed for each fixed X $\in \mathbb{R}$ since M_m has compact support, all except a finite number of terms in (XV) are zero.

We are interested only in those cardinal spline that belong to $L^2(R)$, namely $S_m \cap L^2(R)$

Let V_0^m Denote its closure in $L^2(R)$

j.e. $S_m \cap L^2(R) = V_0^m$ Since M_m has compact Support, we see that B c V_0^m In fact B is a Riesz basis of V_0^m

The cardinal Spline we have considered so far have the Knot sequence Z.if we consider the Knot sequence $2^{-j}Z$, then the corresponding space of spline functions is S^{j}_{m} denoted by S^{j}_{m} . Since for $j_{1} < j_{2}$ we have $z^{-j1}Z \ c \ Z^{-j2}Z$, we have $S^{j1}_{m} \ c \ S^{j2}_{m}$ thus we have a doubly infinite nested sequence $c \ S^{-1}_{m} \ c \ S^{0}_{m} \ c \ S^{1}_{m} \ c \ ... \ of cardinal spline spaces where <math>S^{0}_{m} = S_{m}$. Analogous to the defⁿ of V^{m}_{0} , we let V^{m}_{j} denote the $L^{2}(R)$ - closure of $S^{j}_{m} \ \cap L^{2}(R)$.hence we have a nested sequence

of closed cardinal spline subspaces of L2(R) Then we have

$$clos L^{2}(R) \begin{bmatrix} U V^{m}_{j} \end{bmatrix} = L^{2}(R)$$

$$j \in z$$

$$V^{m}_{j} = \{0\}$$

$$j \in z$$

$$XVII$$

Also if B is a Riesz basis of V_0^m , then for any j εz the collection $\{ 2^{j/2} M_m(2^j x \cdot k) : k \varepsilon z \}$ ------XVIII is also Riesz basis of $V^m j$ with the same Riesz bounds.

4.4 Cardinal B-splines and their properties :-

The mth order B-spline Nm(x) is defined by $N_m(x) = (N_{m-1} * N_1)(x) = {}_0^{1} \int_{-1}^{1} N_{m-1}(x-t)dt, m \ge 2$ -------XIX Where N₁ (x) is the characteristics function of the interval [0,1). Also if we set $M_1=N_1$, then we get $M_m(x)=N_m(x)$; m>=2 we will now prove some of the properties of $M_m(x)=N_m(x)$.

Th^m: The mth order cardinal B-Spline $N_m(x)(=M_m(x))$ satisfies the following properties,

1. for every $f \in c$,

$$\int_{-\infty}^{\infty} f(x) \operatorname{Nm}(x) dx = \int_{-\infty}^{1} \int_{-\infty}^{1} f(x_1 + x_2 + \dots + x_m) dx_1 dx_2 \dots dx_m - \dots - XX$$

2. for every $g \in c^m$

 $\int_{-\infty} \int_{-\infty}^{\infty} g^{m}(x) N_{m}(x) dx = \sum_{k=0}^{m} (-1)^{m \cdot k} \begin{bmatrix} m \\ k \end{bmatrix} g(k) - ----XXI$

- 3. $N_m(x)=M_m(x)$ for all $x \in R$
- 4. Supp N_m=[0,m]
- 5. $N_m(x) \ge 0$ for $0 \le x \le m$

6.
$$\sum_{k=-\infty}^{\infty} N_m(x-k) = 1 \text{ for all } x$$

7.
$$N_m(x) = (\Delta N_{m-1})(x) = N_{m-1}(x) - N_{m-1}(x-1)$$

٩.

÷

9. N_m is symmetric w.r.t. the center of its support

j.e.
$$N_m(m/2+x) = N_m(m/2-x)$$
, $x \in R$

Proof:

1. for m = 1, we have

$$\int_{-\infty}^{\infty} f(x) N_1(x) \, dx = \int_{-\infty}^{1} f(x) \, dx = \int_{-\infty}^{1} f(x_1) \, dx_1$$

so that (XX) is true for m=1 Assuming it to be true for m-1, we have

$$\int_{-\infty}^{\infty} f(x) N_m(x) dx = \int_{-\infty}^{\infty} f(x) \left[\int_{-\infty}^{1} N_{m-1}(x-t) dt \right] dx$$

$$=_{0}\int^{1} \left\{ \int_{-\infty}\int^{\infty} f(x) N_{m-1}(x-t) dx \right\} dt$$

$$=_{0}\int^{1} \{ \sum_{x \neq 0}^{\infty} f(y+t) N_{m-1}(y) dy \} dt$$

$$= \int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} f(x_{1}+x_{2}+\dots+x_{m-1}+t) dx_{1} dx_{2} \dots dx_{m-1} dt$$

•

$$=_{0}\int_{0}^{1}\dots\int_{0}^{1}f(x_{1}+x_{2}+\dots+x_{m})dx_{1}dx_{2}\dots dx_{m}$$

2. we have

$$\int_{-\infty} \int_{-\infty}^{\infty} g^{m}(x) N_{m}(x) dx = 0 \int_{-\infty}^{1} \int_{-\infty}^{1} g^{m}(x_{1} + x_{2} + \ldots + x_{m}) dx_{1} \ldots dx_{m} \quad \text{by } 1$$

By direct integration, we get

$$\int_{0}^{1} \dots \int_{0}^{1} g^{m}(x_{1} + \dots + x_{m}) dx_{1} \dots dx_{m} = \sum_{k=0}^{m} (-1)^{m - k} [k^{m}]g(k)$$

3. fix $x \in R$ let $g(x) = (-1)^m / (m-1)! (x-t)_+^{m-1}$

Differentiating m times, we get

$$g^{m}(t) = \delta(x-t)$$

$$N_{m}(x) = \int_{-\infty}^{\infty} g^{m}(x) N_{m}(x) dx = M_{m}(x)$$

4. Supp $N_m = [0,m]$

The assertion is clearly true for m=1 by defⁿ

Assuming Supp $N_{m-1} = [0,m-1]$

Then we have,

$$N_{m}(x) = \int_{-\infty}^{\infty} N_{m-1}(x-t) N_{1}(t) dt = \int_{0}^{1} N_{m-1}(x-t) dt$$

Since supp
$$N_{m-1}(x) = [0, m-1], N_{m-1}(x-t) \neq 0$$
 for $0 \le x-t \le m-1$

$$Let x-t = y \quad -dt = dy$$

1.

$$N_{m}(x) = -x^{\int^{x-1} N_{m-1}(y) dy} = x^{-1} \int^{x} N_{m-1}(y) dy$$

j.e.
$$x-1 \le y \le x$$
 $\implies N_{m-1}(y) \ne 0$

$$x-1 \le y \le m-1 \le x \qquad \Longrightarrow \qquad N_{m-1}(y) \ne 0$$

•

thus when y=m-1 x can be m

or
$$N_m(x) \neq 0$$
 for $0 \le x \le m$

5. $N_m(x) \ge 0$ for $0 \le x \le m$

.

we have $N_1(x) \ge 0$ for $0 \le x \le 1$

Assuming $N_{m-1}(x) \ge 0$ for $0 \le x \le m-1$

From IV above we see that

$$N_m(x) \ge 0$$
 for $0 \le x \le m$

6. $\sum_{k=-\infty}^{\infty} N_m(x-k) = 1$ for all x

<u>Proof:</u> We have for m=1

$$\sum_{k=-\infty}^{\infty} N_1(x-k) = 1 \qquad \forall x$$

As there is exactly one interval [k, k+1] such that $N_1(x-k) \equiv 1$ if $x \in [k, k+1]$ and $N_1(x-k)=0$ for any fixed k. Assuming the result to be true for m-1, we have

3

$$\sum_{k=-\infty}^{\infty} N_{m-1}(x-t-k) = 1$$

$$\sum_{k=-\infty}^{\infty} N_m(x-k) = \sum_{k=-\infty}^{\infty} {_0 \int^1 N_{m-1}(x-t-k)dt}$$
$$= {_0 \int^1 \sum_{k=-\infty}^{\infty} N_{m-1}(x-t-k)dt} = {_0 \int^1 1dt} = 1 \quad \text{for all } x$$

7.
$$N_{m}^{1}(x) = (\Delta N_{m-1})(x) = N_{m-1}(x) - N_{m-1}(x-1)$$

 $N_{m}^{1}(x) = 0 \int^{1} N_{m-1}^{1}(x-t) dt = (x-t) |_{0}^{1}$
 $= N_{m-1}(x) - N_{m-1}(x-1) = (\Delta N_{m-1})(x)$

8.
$$N_m(x) = x/m-1 N_{m-1}(x) + m-x/m-1 N_{m-1}(x-1)$$

from III we have

$$N_{m}(x) = M_{m}(x) = \sum_{k=0}^{m} (-1)^{k} / (m-1)! C_{k}^{m} (x-k)^{m-1}$$

Now we have $x_{+}^{m-1} = x_{-}x_{+}^{m-2}$

$$N_{m}(x) = M_{m}(x) = 1/(m-1)! \Delta^{m} x_{+}^{m-1}$$

$$= 1/(m-1)! \{ x \Delta^{m} x_{+}^{m-2} + m\Delta^{m-1} (x-1)_{+}^{m-2} \}$$

$$= 1/(m-1)! \{ (m-2)! x \Delta \{ 1/(m-2)! \Delta^{m-1} (x-1)_{+}^{m-2} \} + m(m-2)! (1/m-2)! \Delta^{m-1} (x-1)_{+}^{m-2} \}$$

$$= 1/(m-1) \{ x \Delta M_{m-1}(x) + mM_{m-1}(x-1) \}$$

=
$$x/m-1 M_{m-1}(x) + m-x/m-1 M_{m-1}(x-1)$$

9. $N_m(x)$ is symmetric w.r.t. the center of its support j.e.

$$N_m(m/2+x)=N_m(m/2-x)$$
 $\forall x \in R$

<u>Proof:</u> we prove this result by induction

For m=1 we have

1.
$$N_1(1/2+x) = 1$$
 if $0 \le 1/2+x \le 1$ $\implies -1/2 \le x \le 1/2$

= 0 otherwise

.

2.
$$N_1(1/2-x) = 1$$
 if $0 \le 1/2 - x \le 1$ $\implies -1/2 \le x \le 1/2$

=0 otherwise

From I & II we see that the symmetry property is true for

•

m=1

Now consider

۴.

ï,

 $N_{m-1}(m/2+x) = N_{m-1}\{m-1/2+(x+1/2)\}$

$$=N_{m-1}\{m-1/2-(x+1/2)\}$$

 $=N_{m-1}(m/2-x-1)$ -----I

$$N_{m-1}(m/2-x) = N_{m-1}(m-1/2 - x + 1/2)$$

= N_{m-1}(m-1/2)-(x-1/2))
= N_{m-1}(m-1/2+(x-1/2))
= N_{m-1}(m/2+x-1) ------II

Now,

$$N_{m}(m/2+x) = (m/2+x)/(m-1) . N_{m-1}(m/2+x) + m - (m/2+x)/(m-1)N_{m-1}(m/2+x-1)$$
$$= m - (m/2-x)/m - 1 . N_{m-1}(m/2-x) - 1) + (m/2-x/m - 1)N_{m-1}(m/2-x)$$
$$= N_{m}(m/2-x)$$

Our next problem is to show that the cardinal B-spline basis

 $B = \{N_m(x-k) : k \in Z\} -----I$

Is a Riesz basis for V_0^m in the sense that there exist constants A& B

with $0 \le A \le B \le \infty$

Such that for any sequence $\{c_k\} \in l^2(z)$ we have

$$A \|\{c_k\}\|_{l}^{2} \leq \| \sum_{k=-\infty}^{\infty} c_k N_m(x-k)\|_{L}^{2} 2_{(R)} \leq B \| \{c_k\}\|_{l}^{2} 2 - \dots - \Pi$$

Condition II is equivalent to a frequency domain condition

$$A \le \sum_{k=-\infty}^{\infty} |N_{m}^{\lambda}(\omega+2\pi k)|^{2} \le B \text{ a.e.} ----III$$

We will work with frequency domain condition to ontain A&B

Replacing ω by 2x in III we have

$$A \leq \sum_{k=-\infty}^{\infty} |N_m(2x+2\pi k)|^2 \leq B \text{ a.e.}$$

Since $N_m(x)$ is an m-fold convolution of $N_1(x) = 1$ and

since $N_1(\omega) = (1 - e^{-2\omega}/2\omega)$, we have

$$|N_{m}(\omega)|^{2} = |1-e^{-2\omega}/2\omega|^{2m} = \sin^{2m}(\omega/2)/(\omega/2)^{2m}$$

therefore,

٨

$$\sum_{k=-\infty}^{\infty} |Nm(2x+2\pi k)|^2 = \sum_{k=-\infty}^{\infty} \sin^{2m}(x+\pi k)/(x+\pi k)^{2m}$$
$$= \sin^{2m}(x) \sum_{k=-\infty}^{\infty} 1/(x+\pi k)^{2m} - \dots - IV$$

Now for complex analysis ,we have

$$\operatorname{Cot}(\mathbf{x}) = \lim_{n \to \infty} \sum_{k=-n}^{n} \frac{1}{x} + \pi k - \dots - V$$

Differentiating V w.r.t. (2m-1) times we get

$$\sum_{k=-\infty}^{\infty} \frac{1}{(x + \pi k)^{2m}} = -\frac{1}{(2m-1)!} d^{2m-1}/dx^{2m-1} (\cot x) -----VI$$

Thus we get

VII

$$\sum_{k=-\infty}^{\infty} \frac{(N_m(2x+2\pi k))^2 = -\sin^{2m}(x)/(2m-1)! \ d^{2m-1}/dx^{2m-1} (\cot x) - --\frac{1}{2m-1}}{k^{2m-1}}$$

Expression VII is the general expression for the sum on R.H.S.

For the Solution of Approximation problem we can use function from these Spline Approximation Spaces . As the Spaces are constructed for any x in R, we can approximate any given function 'f' defined on R by means of a member from S_m as $m \to \infty$ the approximation function f_m converges to f.