

N.

٢

Chapter - 0

Notations

 $\{x,y,z,\ldots\}$ = The set consisting of the elements x,y,z.

R=the set of real numbers

= equal

 Σ Summation

 $[a,b] = \{x \in R : a \le x \le b\}$ a closed Int.

 $(a, b) = \{ x \in R : a < x < b \}$, an open inter.

li = a Language's polynomial.

 τ , (τ_i) , $(\tau_i)^n$

 $(\tau_i)^n_{i \leq 1}$ or $[\tau_1, \tau_2 - \tau_n]$ are various ways of describing the same n-vector

 $\Delta \tau_i = \tau_{i+1} - \tau_i$ The forward difference

s $\prod \tau_{i} = \tau_{r} \quad \tau_{r+1} - \tau_{s} \quad \text{if} \quad r \leq s$ i = r $= 1 \qquad r > s$ $\delta_{ij} = 1 \qquad i = j \quad \text{the Kronecker delta}$ $= 0 \qquad i \neq j$

$$\begin{split} \mathbb{C}[a, b] &= \{ f: [a, b] \rightarrow R : f \quad \text{Continuous} \} \\ \mathbb{C}^{[n]}[a, b] &= \{ f: [a, b] \rightarrow R \quad : \quad f \text{ is n times continuously differentiable} \\ [\tau_i \dots \tau_J] f : \text{ divided difference of order} \\ &\qquad j-i \quad \text{of `f` at the pts } \tau i \dots \tau j \end{split}$$

\$2 = linear space of all continuous broken line $[\tau_1 \dots \tau_2]$ i.e. (splines of order 2)

 $\|f\| = \max\{|f(x)| : a \le x \le b \}, \text{ the uniform norm of } f \in C[a, b]$ $[\|f+g\| \le \|f\| + \|g\|, \|\infty f\| = |\infty| \|f\|$ For f, $g \in C[a, b]$ and $\infty \in R$ $L_k = \text{Least-squares approximation by splines or order K}.$

 P_n = set of q all polynomials of degree at most n.

 $(x)_{+}=max\{x,0\}$, the truncation function.

Supp $f=\{x \in \text{dom } f: f(x) \neq 0\}$, the support of f.

Ņ

٩.,