

Chapter-0

Notations

$\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}=$ The set consisting of the elements $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
$R=$ the set of real numbers
$=$ equal
$\Sigma \quad$ Summation
$[\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathrm{R}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$ a closed Int.
$(\mathrm{a}, \mathrm{b})=\{\mathrm{x} \in \mathrm{R}: \mathrm{a}<\mathrm{x}<\mathrm{b}\}$, an open inter.
$1 \mathrm{i}=\mathrm{a}$ Language's polynomial
$\tau,\left(\tau_{\mathrm{i}}\right),\left(\tau_{\mathrm{i}}\right)^{\mathrm{n}}$
$\left(\tau_{\mathrm{i}}\right)_{\mathrm{n}}^{\mathrm{n}=1}$ or $\left[\tau_{1}, \tau_{2} \cdots--\cdots \tau_{\mathrm{n}}\right.$ are various ways of describing the same n -vector
$\Delta \tau_{i}=\tau_{i+1}-\tau_{i} \quad$ The forward difference
$9 \tau_{i}=\tau_{i}-\tau_{i-1} \quad$ The backward difference
$\Pi \tau_{i}=\tau_{r} \quad \tau_{r+1} \cdots \cdots \tau_{s} \quad$ if $r \leq s$
$\mathrm{F}=\mathrm{r}$
$=1 \quad r>s$
$\delta_{i j}=1 \quad i=j \quad$ the Kronecker delta
$=0 \quad i \neq j$
$\mathcal{C}[\mathrm{a}, \mathrm{b}]=\{\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}: \mathrm{f}$ Continuous $\}$
$\mathcal{Z}^{[n]}[\mathrm{a}, \mathrm{b}]=\{\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R} \quad: \quad \mathrm{f}$ is n times continuously differentiable
$\left[\begin{array}{lll}\tau_{i} & \ldots & \tau_{J}\end{array}\right] f$: divided difference of order

$$
j-i \text { of ' } f \text { ' at the pts } \tau i \ldots \ldots . \tau j
$$

$\$ 2=$ linear space of all continuous broken line $\left[\begin{array}{lll}\tau_{1} & \ldots & \tau_{2}\end{array}\right]$ i..e. (splines of order 2)
$\|f\|=\max \{|f(x)|: a \leq x \leq b\}$, the uniform norm of $f \in C[a, b]$
$[\|f+g\| \leq\|f\|+\|g\| \quad, \quad\|\propto f\|=|\propto|\|f\|$
For $f, g \in C[a, b]$ and $\propto \in R$
$\mathrm{L}_{\mathrm{k}}=$ Least - squares approximation by splines or order K.
$P_{n}=$ set of q all polynomials of degree at most n.
$(x)_{+}=\max \{x, 0\}$, the truncation function.

Supp $f=\{x=\operatorname{dom} f: f(x) \neq 0\}$, the suopport of f.

