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Chapter -1

APPROXIMATION AND INTERPOLATION 

1.1 Introduction

The subject of Approximation theory has been studied from last 130 

years . It plays very important role in application to many branches of applied 

sciences and engineering.

Approximation theory means representing an arbitrary functions in 

terms of other function which is simpler and nicer than the given. S.g. 

expansion of function is a power series , representation of the function in 

terms of polynomials . such a representation always gives us a simple way of 

obtaining information about the function which would be otherwise 

intractable. So instead of writing a difficult program to evaluate-the function 

directly and getting an approximate answer in the end , we can use good 

polynomial approximation to the function obtain an even more accurate 

answer . Now question arises, what is good class of nicer and simpler 

functions?

Here we use metric space X of functions to be approximated , a subset 

VOX of approximates , and the metric d on X to find how good the 

approximation is.one typical example of approximation theory:- Is V dense in 

X? i.e. can we approximate elements of X arbitrarily closely by those of V? if 

V not dense , how close will be x e X from V? If there exist vc e V which is 

closed to x what special properties will have v0 •
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i.e. How we can find explicitly a good , if not exist, the best approximation to 

x from V? These questions develops a theory of approximations.

Examples of approximation problems

Suppose we want approximate the following curve (T) by a

straight line
&

I

A function to be approximated 

Fig®

data to be approximated 

Fig 2

To approximate a curve in fig .1 by straight line means we require a 

straight line fit to the data in fig. 2

We will find that lines B and C are better than line A . This example 

shows that there are three main ingredients of an approximation and are ,

1 A function ( some data ) that is to be approximated . 

Let it ‘ f ‘ ( given curve )
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2 A set of approximations (in above examples a set of straight lines)

3 A means of selecting an approximation from ^ •

Approximation problems of this type are

1) Estimatinng the solution of a differential equ. by a function of a certain 

simple form that depends on adjustable parameters.frieasure of goodness of 

the approximation is a scalar quantity that is derived from the residual that 

occurs when the approximating function is substituted into the diff. 

equation.

2) The choice of components in electrical circuits. The function f may be the 

required response from the circuit and the rangre of available components 

gives a set

1.2 Approximation in a metric space

One of the property of Metric space is that it has a distance function .

Let P be a metric space d(x,y) is a real valued function , defined for all

pairs of points (x,y) in p having property.

1) if x * y d(x,y) is positive, d(x,y) = d(y, x) *

2) if x = y the d (x,y)=0 *

3) d(x,y) < d( x,z) + d( z ,y) must satisfied by x, y, z, e. P <= the triangle 

inequality.
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Let there exist metric space which contains f and ^ ( set of 

approximations)

Then a<, e ^ is a better approximation than &\ if the inequality

d(a«, f) < d( a, f) is satisfied,

Defn:- We define a * e $.to be a best approximation if the condition

d( a*,f) < d( a,f) holds Vae^

Theorem 1:- be a compact se t in a metric space P , then , for every f in 

an element a* e ^ such that,

d (a* ,f) < d( a, f) holds for all a e ^ 

i.e. if is a copact set then^, best approximation for f.

1.3 Approximation in a Normed Linear Space

The Norm is a real valued function If x |f i.e. defined for x e p ( where P is 

Normed Linear Space ) having properties , 

d (x, y) = 11 x -y 11 

which have following properties
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d (x, y) = 11 x —y 11.

11 x + y II < 11 x ! | + 11 y 11 put z = 0 in triangle in equation

homogeneity

iUxii= iuii iixii condition V x ep for all scalars X

Result:- If ^ is a finite - dimensional linear space in a normed linear space j3 

then for every f e p there exists an element of that is a best approximation 

from (J\ to f.

Proof:- Let <^o C cj\ containing elements of A which satisfies condition

II all <2 II fll ----------------------------- 1

9^o is compact since is a closed and bounced subset of a finite 

dimensional space 

$ *{<|>}[ zero is an element of

so by theorem 1 there is a best approximation from to f. 

let it be a<)* by definition

II a-f|| > II ao*-f 11 holds V” a e Ao 

again if the element ‘a’ is in eft and <^o then because condition 1 is not obtained

we have the bound
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a-f|| >11 a fll

>11 fll

II a-fll > II ao*-fll for V a e $
which proves that, ao* is a best approximation.

1.4 The Ln - Spaces ( Norms)

In most approximation problems we consider , f, e, C[a, b],( set of 

continuous real valued functions defined on the interval [a,b] of the real line 

sometimes we consider ^ , f, e, Rm ( set of real m component vectors). t [a, 

b], Rm are linear .

Lp - norms P= 1,2,----------- qo for finite P. The Lp - norm in C[a, b] is

defined to have the value

II f||p=[Jb|f(x)|pdx]1/p 

in Rm Lp - norm has the value

1< p < 00

m
1< p < oo

t=1
where {y,; 1-1,2,................n) are the components of f and

I I fl I 00= Max I f (x) I

a < x < b

and

II flL=Mj yi|

< l < m

The 2 - norm , or a weighted 2-norm of the form
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II fl I a =[aibw(x)|f(x)|2dx]1/2 

where ‘w’ is a fixed positive function

1- Norm is least used and useful for fitting to discrete data in the case 

when there are some gross errors in the data due to blunders.

2- Norm is used for data fitting when the errors in the data have 

normal distribution . In Linear space the calculation of best 

approximation in the 2-norm reduces to a system of linear 

equations gives highly efficient algorithms so in 2-Norm best 

approximation calculation is straight forward to solve . oo - norm 

provides the foundation of much of appro, theory for computer 

calculations in complicated mathematical functions , 

approximations having small errors we use oo - norm.

oo - norm is called the uniform on minimax norm and 2-norm is 

sometimes called

the least squares or Euclidean norm

1.5 Uniqueness of best Approximation 

Def1. :- Ball of radius r, center at -f is defined to be the set 

N(f,r)= { g; 11 g - f 11 <r , g e P }

Def”. :- Convex set

The seff of a linear space is convex if, for all sG and si in^, the

points
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(0 so+ (1-0) Si; 0 < 0 < 1) are also in~f.

T) - Strictly convex set

The set f of a linear space is convex if for all s0 and si in f (s0 

^Si )the points {0 so + (1- 0 ) si ; 0 < 0 < 1} are interior points of f. So 

boundary of a strictly convex set will not contain segment of straight line .

We use these ideas for the Uniqueness of the best approximation .

Theorem Let p be a normed linear space then for any f e P and for any r, 

+> 0 the ball

N (f, r) = { x : 11 x - f 11 < r , x e p } is convex.

Proofxfc , x(e N(f, r) then

Ii0xo+(l-0)xi-f|| < II0 xo-0 f II +|| (1-0 )Xl-(1-0 ) f If

= I 0 I I I x^-fl | + I 1- 0 I 11 XI — f11 

= r{|0|+|l-0|} xo, xi, e Nfr

- r 0 < 0 < 1

which is convexity condition .
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Theorem Let ^ be a convex set in a normed Linear space (3 and let f be any 

point of P

such that there exists a best approximation from ^ to f. Then the set of 

best approximation is convex.

Proof: - Let h* = error of the best approximation 

h* = min i I a — f 11

The set of best approximation is the intersection of ^ and the ball N(f,

h‘)

Hence theorem . since intersection of two convex sets is convex .

Theorem Let ^ be a compact and strictly convex set in a normed Linear 

space p.

Then for all f e P there is just one best approximation from $ to f.

Theorem Let $ be a convex set in a normed Linear space P whose norm is 

strictly convex .Then for all f e P there is at most one best

approximation from to f.
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1.6 Interpolation

The general problem of interpolation consist of representing a function 

with the aid of given Values which this function takes for definite 

values of the independent variable.

Suppose y = f(x ) be a function which takes values yi, y2 , y3

,......., y„ for values xi, X2, x3 ,....... , xn of the independent variable x,

and further suppose that (() (x) represents an arbitrary function

constructed in a way such that it takes the values of f(x ) for the values

of. xi, x2, X3,...... , x„ Then f(x ) is replaced by <J> (x ) over a given

interval. The process constitutes interpolation and the function <j>(x) is 

a formula of interposition or smoothing function.

The function^(x) can take a variety of forms. When <{> (x) is a 

polynomial, the process of

H' Representing f(x ) by 4>(x) is called parabolic or polynomial 

interpolation. When <j)(x) is a finite

-trigonometric series, the process is known as trigonometric interpolation . 

Similarly <j)(x) may be a

Series of exponential functions . Legendre polynomials , Bessel functions 

etc. In practical problems we always choose <(>(x) to be the simplest 

function which represents the given functions over the given interval.



14

Let y; = f(xj) where i =0,1,....... ,nTn many cases we have to find y

= f(x ) such that y, = f(xj) from the given table . This is little difficult 

because there are infinity of functions y = <t>(x) such that y, = 4>(xi). Hence 

from the given table we cannot find a unique <J>(x) such that y = 4>(x) 

satisfies the set of values given in the table above. Of the sep[. . of 

functions { 4>(x) }, there is a unique nfe degree polynomial Pn(x) 

such that yi = Pn (xi) where i = 0, 1, 2,.............,n

The function <j) (x) is called interpolating function or smoothing function.

The polynomial function Pn(x) may be taken as an interpolating

polynomial where

yi = f^Xi) = Pn (xi) , i = 0,1,2,....... n
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Out of other approximating function types the polynomial 

interpolation is mostly preferred because of 1] They are simple form 

of functions which can be easily manipulated.

2] Computations for definite values of the argument integration 

and different of such functions are easy.

3] Polynomials are free from singularities where as rational functions 

or other types do have

^singularities.

The basis of finding such Pn(x) polynomial is the fact that 

there is exactly only polynomial Pn(x) of degree ‘n’ such that the

values of Pn(x) at x0, xi, x2,....... ,x„ coincide With the given functional

values yo, yi , y2 ,....... , yn.Here Pn(x) is called polynomial approximation

of f(x)

Polynomial approximation serves as a basiaf for numerical 

integration and the solution of differential equation. The interpolating 

polynomial can be used for extrapolation^ [ if the function value is required 

at outside of the interval given [xo, xn]. } •

When a suitable approximating function has to be obtained the 

two aspects that require 

Consideration are

1} Whether or not the given data points x* are equidistant.

2] Whether the interpolation is needed towards the beginning ,

middle or end of the tabic.
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These aspects determine the choice of suitable functions 

e.g. If the argument intervals are equidistant, the Newtons forward 

backward interpolation formula can be used forward formula is used 

to find interpolation near the beginning and backward for near the end 

near the centre of a different table, central difference formulae are 

preferable.

If the argument values are unequal one of the following 

formula can be used Lagrange formula^ Newtons divided diff . 

formula Aitkenis form , Hermite , Spline which are useful for 

equidistant interval also.
/
L- ••

Out of these we shall discuss first |agrange‘s formula and 

Newton’s divided diff formula.

1.7 Lagrange form.

Let T'=/7i ]nb=\ be a segment of n distinct points i.e. 7'= [Tl, 72,....... 7h]

Then li (x) j~^ /x_ 7t)

j'l. qi-qj ---------------------------------------------------------------------------1

is the ilh Lagreange polynonial for ‘7 

Where notation ,

; ^Ti^q'r, Tr+1............. Ts if r < s
l*r ~ i i5 v>s
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it is a polynomial of order n and vanishes at all 2fs except format 

which it takes the value 1. We write this Lagrange’s polynomial with 

the aid of the Knonecker delta as,

\\{Tj)=hij = 0

= li=j

Hence for an arbitrary given function ‘ g ‘

P- .1 gO^li
t'l

is an element of Pn and satisfies,

P(xi)-g(xi), i = 1.2,.......n

So we find that the Lagrange polynomials make it possible to 

write down at once a polynomial interpolant to given gatx^and this is 

the only interpolant in Pn to g at x i.e. if q e Pn is also a polynomial 

for xi then g(x^) = q (x^) V all i, then f= p-qis also a polynomial of order

n and vanishes at the n distinct points xl, x2,-----xn.

Theorem > If xl, x2,—xn are distinct points and g(xi) —— g(xn) 

are given data .Then there exists exactly one polynomial p e Pn for

which P(xi) = g (xi), i = 1,2,.......n .This polynomial can be written in

lagrange form
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li (x) = II (x- Tj) for all i 
j=l Ti-Tj

L j=i
The Sagrange form is certainly quite elegant .But compared to 

other ways of writing and evaluating the interpolating polynomial , it is

far from the most efficient.
1

The jlagrange interpolation formula provides some algebraic 

relations.One of this is “The interpolation process is a projection 

(Operator In particular for 0<i>n let f be a function

f(x) = x1 a < x < b
*

By Jagrange formula.

n

2 x'k Ik (x) = x! a < x < b-------------3

k=0

The value i=0 gives,

n
2 !k(x)= 1 a<x <b *

k=0
Which is useful for checking the numbers (lk(x), k=0,l,....n} 

when the jagrange interpolation method is applied 

Using 1 in 3 we get,

n

2 x‘kn7tj=o (X- xj) — x1 

k=0 k^j (xk- xj) a < x < b
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n r

E x'kn7rj=0 (X- xj) -x1 

k=0 k^j (xk- xj) a < x < b

By considering the coeflf. of x" we get identity.

n

E x‘k = 8i„ i =0,1,-'— ----- -n

k=0 " 7i (xk- xj)

j=o

j^k

The error in polynomial interpolation, e = error =error function of an 

approximation.

e(x) = f(x) - p(x) a < x < b

where p e P„ for which p (x;) = f(xj) i = 0,1,---------- n

If we change f by adding to it an element of Pn then the interpolation 

process automatically adds the same element to p , which leaves e 

unchanged.

Theorem For any set of distinct interpolation points { x, ; i— 0,1,-------

n}in [a, b] and for any f € t(n+,)[a, b], let p be the element of Pn 

that satifies the eqn. f (xi) = p(xj) \- 0,1,-------n

Then for any x in [a, b] the error has the value,
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1 n
e(x) = , 7i (x-xj) f(n+,)(£)

(n+1)! H
Where E, is a point of [a, b] that depends on x.

1.8 Newton’s Divided Differences

Def The kUl divided difference of a function g at the points x,......... Xj+k

is the leading coefficient ( i.e. the coefficient of xk ) of the polynomial

of order k +1 which agrees with g at the points Xj,. . . . . . . . . .xn-k.

It is denoted by ,

[xi,........ T1+k]g

Formula When function values are given at non-equidistant points. 

The Lagrangion interpolation scheme is not computationally 

economical.Here divided differences offer better possibilities.

Let [x;, yj , i = o(l)n be the given points and ys = y(xO = f [xj] 

, i = o(l)n where f(x) is the function being approximated by the 

polynomial y(x) since (x-xj) is zero for x = Xj by writing the nth 

degree polynomial y(x) as sums of the products of such factors consider 

the following formula for y( x).

y(x) = a0 + ai(x-xo) + a2(x-x0) (x-xi)+-----+ a„(x-x0) (x-xi)—(x-x„.i)------- 1

y(x) has the property that all the term after ao - term are zero 

for x = Xo, all the terms after the oq - term are zero for x = xi and so on . 

y(x) is the interpolating polynomial for the actual function f(x)
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y(x0) = a0

y(ti) = ao + otj(xj-xo)

y(x2) = ao + aj(x2-xo) + a2(x2-Xo) (x2-xi)

y(xn) = ao + a1(x„-x0)+..... + a„(xn-x0).......... (x„-x„-i)--------- 2

The system of linear equation is easy to solve because the

coefficient matrix is triangular. The coefficients ao, ai,----- , a„ can now be

calculated recursively i.e. ak is computed in terms of oto , ai a2,-----an

which are already obtained. Here we introduce new notation i.e. divided 

differences notation . from 1 of 2 

ao = y(x0) = y[x0] is zero order divided 

Solving 2 eqn. of 2

y^O-y^o) y[xi]-y[x0]

ai= ------------------ = -------------------  = y[xi-x0]

Xi-Xo Xi-Xo

The third eqn of 2 gives
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y(x2)-y(x0) - [T2-T0 ] y[ti,xo ]

0-2 =

[X2-X0] [X2-X1]

This on rearrangement gives

y('ci)-y^o)

y[x2] - y[x0] = y[x2] - y[xi] + [xrx0 ]

X1-X0

y(t2)-y(xi) - [x2-xi] y[xi x0]

a2 =

[x2-Xo] [x2-xi ]

y[x2xi ]- y[xi xo ]

[x2-x0]

y[x2xi ]-y[xi,x0]

a2 = y[x2,xi,x0]

[X2-X0]

is a 2nd order divided diff. By Mathematical Induction .The kth order divided 

diff. is ,
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ak = y[xk,xk-i..................................to]

y[Tk,Tn..................................Ti ] - y[Tk-l,Tk.2.

[xk"Xo ]

Which provides a convenient algorithm for computing the 

coefficient from the vector values of x*, and the vector value of yi, from eqn. 1

by putting ai.«2.................. ak

Newton’s divided diff, formula can be written as,

y(x) = {y(xo)+ (x-io) y [xo,xi ]+ (x-x0) (x-xi) * y[xo, xi, x2 ] +-------- + (x-x0)

(x-Ti) (x-x2)-------------- (x-Xn-0 y[Xo,Xi ,..............Xn]}
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1.9 Divided diff. table.

Let y be function having argument values xo, x\ ,x2. x3, X4 and

y(x) having y(x0) ,y(xi),y(x2),y(x3),y(x4) respectively

X y(x) is‘

divided

diff.

2nd divided

diff.

3rd divided

diff.

4dl divided diff.

Xo y(^o)

y[xi,x0]

Xl yCd) yEx2.x1.xo]

yfexi] y[x3,x2,xi. Xo]

X2 y(x2) y[x3.X2,xi,] y[X4,X3, X2,Xi. Xo]

y[x3x2] y[x4x3,x2,xi]

x3 yfa) y[x4 ,x3, x2]

y[x4x3]

X4 y( x4)

Where, y[xi]-y[x0]
y[T,,To] = -----------------

Xl -Xo

'/ [X2,xi ] - y [xi.xo]

y[x2,xi, xo] - x2-xo and so on...
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1.10 Properties of Divided diff.

i) If pi e Pi agrees with g at Xi.......... Xi for i = k and k+1 then,

Pk+i(x) - Pk (x) + (x-Ti)----- '--(x-Xk)(Ti-------- Xk4 i)g

We know that Pk+i - Pk is a polynomial of order k+1 which vanishes at

xi...... xk and has [ Xi............ xk+i ]g as its leading coefficient therefore must be

of the form Pk+i(x)- Pk(x) = C [ x-xi].............. [x-xk ]

With C= (xj-------- xk+i)g

This property shows that divided differences can be used to build up the 

interpolating polynomial by adding the interpolation points one at a time. So 

we obtain,

Pn(x) = Pi(n) + P2 (x) - Pi(x) +P3(x) -P2(x) +---------+Pu(x)-Pn-l(x)

= [Xl]g+(x-Xi )[ XI, X2]g +(x-Xi ) (x-X2 ),

[Xi. X2. X3 ]g +............+(x-x,)---------(x-Xn-l) [Xi, x2,.......... , xn ]g

This is the Newton Form, 

n

Pn(x) = S (x-Xi).................(x-Xm) [ti, x2,..........., xn ]g

i=l

for the polynomial Pn of order n which agrees with g at

11.......

[here (x-xj) (x-x2)..............(x-Xj)=l if i > j]

ii) [xi........... . Xi ik ]g is a systematic function of its arguments xi,....... , Xuk
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i.e. it depends only on the number xi,.......... xh*. and not on the order

on which they occur in the argument list since Inter. Poly. Depends 

only on the points of Interpolation.

iii) [xi,.......... "ti+k]g is linear in g I.e. if f = ag +{3h for some functions g &

h and some numbers a & P then,

[xi,.........., Xi+kjf = a [xi, .........., Xnkjg+Pli,,........... x.ikjhas follows

from the Uniqueness of the interpolating polynomial .

iv) Leibnitz’s Formula,

If f = gh i.e. f(x) = g(x) h(x) V x

Then,

i+k

[Xi,......... , Tj+ijf ■= S [Xi,..........., x,]g[x1(.......... . xiikjh

r=i

v) If g is a polynomial of degree < k then [xi,.......... , Xi+k]g is constant as a

fiinction of [xi.......... . Xi+k]g=0 V gePt

Def1:- Repeated interpolation at a point is called oscillatory interpolation.

Def let x = (Pi)n

1 be a seq. Of points not necessarily 

distinct . we say that the function P agrees with the function g at x. Provided 

that for every point x which occur in times in the seq. Xi.................. x„ p & g

agree m fold at x i.e.
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P(i-i) CO = g (,'l) (t) for i=l ,.................m

vi) [xl........... , Tjikjg is a continuous function of its k+1 arguments in case g

e C(k)i.e. g has k continuous derivatives .

vii) If g e C(k) i.e. g has k continuous derivatives then there exists a point £,

in the smallest interval containing X;,........... , x;+k so that,

g00 ©
[tj,.............., 'Ciik]g= -----------------------

k!

viii) For computations it is important to note that,

g(k) (O

[XL........... , Xi+klg^ ------------------- if Xi.............. xi+k g e C(k)

k!

[x,............ , X,-i. X,; i...................  xi+k]g - [Xi,........... , Xs.i. X*+1,............... Xi.k]g

xs Xr

if xs & x, are any two distinct points in the seq, Xj( , Xi+k.
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1.11 Algorithm for Lagrange’s & Newton’s Formula 

“ c” Program for Lagrange’s form

Lagrange (int*x[], int*y[], int n, int t)

{ int i product , float sum 

sum = 0

for ( i = 0 , i<n, i++ )

}
Product = y [i]

For ( j =0, j<n, j i + )

{

product = product * (t - x[i]) / [x(i)=x(j)]

}

Sum = sum + product

}

}

return (sum);
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c” Program for Newton’s Interpolation Formula

newint (int * x[ ] int * y[] , int n , 

int * x, 

int * y, 

int * ea,

{
int fdd [n] [n]; 

for (i = 0; i < n ; i + + ) 

fdd [ i ] [ 0 ] = y [i]; 

for (i=°;J<n;j ++) 

for (i = 0 ; i < n - j ; i + +)

fdd [ i ] [ j ] = fdd [ i + 1] [ j-1] - fdd [i] [ j -1 ] / [x(i+j)-x(i)j 

x term = 1;

y int [ 0] = fdd [0] [0]

for [ood=l;ood<n;ood ++]

i
)

x term = x term * (xj - x [0Od- ij) 

y int 2 = y int [ood -1 ] + fdd [0] [ood] * x term ;
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Ea [ ood - 1 ] = y int 2 - y int [ ood -1 ] 

y int [ood] = y int 2 ;


