SEMIGROUPS AND IDEALS



Introduction :

In this chapter, in first section preliminary
definitions of semigroup and its different ideals are given

with illustrations. Also some results about ideals are given .

In second section, we have defined semigroup with

idemptoent ideals and its different properties are discussed.

In third section, Normal semigroups are defined

and some of its properties are discussed.

In fourth section, we have defined B-pure Bi-ideal
E-3
and some properties of B - pure semigroup have been

discussed.

Section 1 : Semigroup, Ideals and Green's relations

Definition 2.1.1 :Semigroup : A non empty subset S together

with binary operation . is called semigroup iff . is
associative.
i.e. a.(b.c) = (a.b).c v a,b,c e S. )
E.G. i) (N,x) where N is set of natural numbers.
ii) consider (24, *4s xl}) i.e. ring of residue

classes modulo 4, Now if we define binary
operation @ on elements of Z as

a®b=a+4b-ax4b

Then (Z ® ) is a semigroup.
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e.g. 9 0 1 2 3

2 2 1 0 3

3 3 1 3 1

(24,0 ) is a commutative semigroup.

Definition 2.1.2 :Subsemigroup : S be a semigroup. By
a subsemigroup of S , we mean a nonempty subset A of
S such that Azg A

ie. Vx,y A, xy €A

E.g
i) (Set of all even natural numbers, x) is a

subsemigroup of (N , x )

ii) (22, ® ) 1is subsemigroup of (24, Q)

Definition 2.1.3 : Left Ideal : A nonempty subset A of
a semigroup S is called left ideal of S iff SA C A,
i.e. vx € S5, y £EA we have Xy €& A,

E.g.
i) Set of all even natural numbers is left ideal

of semigroup (N , x)
ii) Let S =.11,2,3,4}
Define binary operation * on S as follows

a*b=> vab €5
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So we get composition table as follows

1 2 3 4

1 1 2 3 4

Obviously (S,*) is semigroup.

For if we consider any three elements

a,b,c € S then

(a*b) * € =b * € = ¢ and
a*(b*¥¢)=a*c= ¢C

So (a * b) *€ =a* (b *c)

So * is associative

If we consider subset S' of S given by S' =1{ 2,3}

Then S' is Left ideal of S

vac S, be S' we have a * b = be §'

i.e. S' is left ideal.

Definition 2.1.4 Right Ideal : Non empty subset A of a
semigroup S is called right ideal of S if AS C A

i.e. Vxe A, ye S we have xy € A.

i) Set 2N is Right ideal of semigroup (N, x)
ii) Let S = { 1,2,3,4}

Define binary operation * on S by a * b = a ya,b e S
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i.e. we get composition table as follows

3 3 3 3 3

4 4 4 4 4

Consider any three elements a,b,c, € S

Then (a2 * b) * C =a *C = a and S
(@ *(b*C)=2a*b=a I G

So * is associative.

i.e. (S, *) is a semigroup.
Consider subset S' = {2,3} of semigroup S.
Then aeS and b€S' , b *a=be S

So S*' is right ideal.

Remarks :
1) For a comutative semigroup every left ideal is Right

ideal also.

2} 2nd example given in 2.1.4 is an example of right ideal

which is not left ideal.

Definition 2.1.5 Ideal : By Ideal, we mean subset of

semigroup S which is both left and Right ideal of S.
)
Obviously every ideal is/subsenigroup.

E.qg. 1) Set 2N is an ideal of semigroup (N,x)

2) Z, is ideal of semigroup (Zh' 0 )



Definition 2.1.6 Simple  Semigroup : A semigroup S is
called simple if it contains no proper ideal.
E.qg. Consider semigroup given in example 2 of 2.1.4.
It can be easily seen that the set
S ={ 1,2,3,4} is only left ideal as well as right
ideal of S. S0 S itself is only ideal.

Hence it is an example of simple semigroup.

Definition 2.1.7 Bi~ideal : Subsemigroup A of 5 is called
bi-ideal of S iff ASAC A,
i.e.¥ x and z € A, y€ S we have Xxyz ¢ A.
E.g. Subsemigroup (2N, x) is bi-ideal of semigroup(N,x)
Definition 2.1.8 Interior Ideal:
1) Subsemigroup of a semigroup S is called as
an Interior ideal of S iff SAS C A,

2) By 1I(x), we denote the principal interior

ideal of semigroup S, generated by xe¢ S
i.e. I(x) ={x, xz} UsS xS
E.g Subsemigroup  (2N,x) is an interior ideal of
semigroup (N,x)
Remark :
Any ideal of semigroup S is an interior ideal of S
For let A be any ideal of semigroup S
i.e. SA CA and ASC A

Then trivially SASC AS C A
i.e. SAS CA.
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Definition 2.1.9 Regular Semigroup : Semigroup S is called

regular if for each element a of S, 3 an element x € S

S.t . a =axa .
E.g. Semigroup (S,¥) in example 2 of 2.1.3 is a regular
semigroup.

For 1 = 1 % 1 % 1, 2 =2 % 2 % 2.3 = 3 * 3 % 3 and

4 4 F 4 ¥ 4

Remarks : NN ufé"
: . feit )
1) Every ideal of S is subsemigroup

obviously
For if A is an ideal of S
then ASC A and SA C A

2
In perticular AACA i.e. A CA

2) Every subsemigroup of S need not be ideal.
We prove this by giving an example of a
subsemigroup which is not ideal.
Let S =1{1,2,3,4,5}
Define binary operation * on elements of S by
a *L=b V¥ a,be S
Then (S,* ) is semigroup.
(S',*) is subsemigroup of S where s'={ 1,2,3}
But S' is not ideal of (S, *):

as 3e58' 4e S But 3*4:4;[5"
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3) Every ideal of S is bi-ideal.
Let A be any ideal of S.
i.e. ASC A and SA C A,
Now ASCA = ASAC AAC A.

So A is bi-ideal. )

T‘;‘}L‘if MR \g‘,’__’
4) Every bi-ideal of S is not an ideal of S.

Consider (S,* ) and (S',*) as defined in (2).

(S', * ) is subsemigroup of (S, *)-
It is also bi-ideal.
As x,z€ S' and y€ S
x ¥y *z=2ze 8

But as proved iIn (2) S' is not ideal

S' is only left ideal but not right ideal.
Proposition 1 :
For a subset A of regular semigroup S, the

conditions are equivalent.

1) A is an ideal of S
2) A is an interior ideal of S.
Proof :

(1) = (2) Let A be an ideal of S.
= A is subsemigroup of S
Also SAC A and AS C A.
> SAS C ASCA.

So A is an interior ideal of S.
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(2)

> (1) Let A be an interior ideal of S i.e. SASC A.

To prove that A is an ideal of S.
i.e. to prove that if a €A and s€S
The as€ A and S& € A,
Now.. ae A --';_'ae S
As S is regular semigroup So3 xe S s.t. a =a x a

Now as = a x a s = (ax) ag € SAS MAﬁ% {as axe S}

ga = Gaxa = Sa(xa )€ SAS{ as x a s} Sy

So as € A and saEAw-V' a€A and s 5

i.e. SACA and ASCA.

So A 4is an ideal of S.

Hence proved.

Definition 2.1.10 : Intra-reqular Semigroup : A semigroup S

is called intra-regular if for each element a € S, 3 elements

x and y in S, s.t.a=xa2y
E.g Semigroup (S, %) in examble 2 of 2.,1.3 is
intra-regular semigroup. @etetkres
For 1 = 1% 12 * 1 3 =3 * 32* 3 SR LR L L
2 =2 % 2% Y PEPRER IR

Definition 2.1.11 : Semi-prime Subset :

‘ 2
Subset A of a semigroup S is called semiprime if a ¢ A,

ac S 9 a €A,

E.g.

Subset 2N of a semigroup (. N , x) is semiprime.
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Definition 2.1.12 :

Left regular Semigroup : A semigromup S is called left regular
if for each element a€ S, 3 an element x€ S s.t. a = x a2

E.g. Semigroup (S,*) in example 2 of 2.1.3 is left regular
semigroup.

asT=1*12,2=2*22 ,3-_-3f’°‘32 ,4:4*42

Right regular semigroup is defined dually. -
.Proposition 2 :

For a subset A of an intra regular semigroup S following
conditions are equivalent.

1) A is an ideal of S

2) A is an interior ideal of S
Proof : Let (1) hold.

i.e. A is an ideal of S

So SACA and ASCA

Now SAC A 3 SASCASCA

So SASC A

i.e. A is an interior ideal.
Conversly, Let (2) hold

i.e. A is an interior ideal of S

Let a€ A and S €85
L,
as a€ A =>a €S and § is intra-regular { /}

3 x,y€¢ S s.t. a = x azy

Consider o
as = x a’ y S = (xa) a(y S )¢ SAS ¢ Alas xa , and yaES}

s

M5
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So as€ A

Similarly s5a&A

So SACA and ASC A
i.e. A is ideal of S.

Greens Equivalence relations :

Two elements of a semigroup S are said to be L
equivalent if they generate same principal left ideal of S. R-
equivalence is defined dually.

The join of equivalence relation L. and R is denoted by D and

P Ay
1.
their intersection by H. These equivalence relations were first u)({ e

introduced and studied by Green (1951). These equivalence
relations are called Green's relations.

By aL b we mean S' a = S'b

where S' =5 if 1€ S where 1 is identity elt
=su. {1} if 14 s

By aR b we mean aS' = bS!

By La we mean set of all elements of S which are L equivalent,
to .. We define a J b (a,b in S ) to mean S'aS'=5'bS' i.e.
a and b are J. equivalent iff they generate same two sided
principal ideal.

Remarks :

1) S is regular if a€ a S a

S is left regular if ac€ Sa2
S is Right regular if ag azs

S is intra rregular if ac¢ SaZS
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2) In terms of Green's equivalence relations
S is left regular iff a L a2

S is Right regular iff a R a2

S is intra regular iff a J a2

2

FRRA

For if S is left regular then for‘é\l alxl elements ac 5,/ xe S s.t. x=xa e

’ 2
Nowa=xa2anda2=a.a =a L a -~

Conversly a L a2 = a&L(aZ)
i.e. ae {az} U Sa’

If a = a2 then a = a.a

and if atsSa2 y 3 Xe S s.t. a = xa

=. S is left regular.

Propositionm 3 :

A semigroup S is left [Right,Intra-~] regular iff every
Left (Right,two sided) ideal of S is semiprime.
Proof : Let S be intra regular and let A be any ideal of S.

"rLet‘ae A,g:vaze Sh “: ~ ‘
thena; ae:.Sa2 S C SAS C A AT
So every two sided ideal of S is semiprime.
Conversly, assume that every ideal of S is semiprime.

Let ac S Then aze J(az)

But J(az) i.e. principal ideal generated by a%s S is
semiprime. |

So a eJ(az)

Hence a Ja2



and so by remarks above S is Intraregular. The proof
of equivalence of Left (Right) . regularity of S with
semiprimality of all Left (Right) ideals of S is similar.

Proposition 4 :

The following statements concerning a semigroup S are

equivalent.

1) S is union of simple semigroups

2) S is intra regular.

3) Every ideal of S is semiprime.

4) The principal ideals of S constitute a semilattice Y
under intersection. In fact J(a) n J(b) = J(ab) for

every a and b in S.
Furthermore, S is union of semilattice Y of simple
semigroups Sy . (¥ €£Y) each S being a J class of Sy
Proof :
Assume (1) holds
Llet a € S, Then a and az both belong to same simpleg (C}"
T
subsemigroup T of S
So age TaZ T QSa2 S
So S is intraregular.
i.e. (1) =3 (2)
(2) = (3) is clear from proposition (3) evidently (4)=> (1)
The proof will be complete when we show (4) follows from

(2) and (3) and this we do in several steps.



i)

ii)

iii)

iv)

SaS is principal ideal J(a) generated by a
For at€ Sa2 $ CsSas

J(ab) = J(ba) for every a,be S

For (aba)’ = a (ba) b eSbaS = J (ba)
And from (3) we infer that ab ¢ J(ba)
Hence J(ab) C J(ba)

and Equality follows by symmetry.
J(ab) = J(a) n J(b ) ¥ a,b €S
clearly J(ab) C J(a) n J(b)

conversly
Let € € J(a) n J(b)

Say c=uav = xby with u,v,x,ye S

Then ¢ = xbyuav € J(byua)C J(abyu) by (ii)

By (3), this = ¢ €J(abyu)C J(ab)

Hénce J (@) nJ (b) = J(ab) and equality follows

By(iii) the set Y of principal ideals of S is a

semilattice under intersection.

and mapping a —> J(a) is homomorphism, of S upon Y

The inverse image of the element J(a) of Y is the set
Ja of generators of J(a),

i.e J class of to which a belongs.

In particular, Ja is subsemigroup of S and S is
semilattice Y of mutually disjoint semigroupsJa

Proof of (4) will complete when we show that each

Ja is simple
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But principal factor J(a)/I(a)=Ja U{ 0} is either

O-simple or null semigroup.
From this and the fact that J(a) is closed under

multiplication, it is clear that J(a) must be simple.
.Proposition 5 :

A semigroup S is a group iff it is left and Right
simple.
Proof :

H.Weber defined a group as a semigroup G such that
for any given elements a and b of G, 3 unique elements x and
y in G s.t, ax = b and ya = b.

Hunigton showed that it is not necessary to postulate

unigqueness of x and y, that this followed as consequence.

If semigroup S is left and right simple
A x and y in S s.t. ¥ a,b,€S

ax = b and ya = b

So S is group.

Conversly

As S is group , . it has identity element

So aS = S for every a in S

and Sa = S for every a in S

So S is only left ideal as well as S is only right

ideal.

So, S is left simple and Right simple.
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Section 2 :
In this section we define semigroup with idempotent

ideals and discuss some of its properties.

Definition 2.2.1 :
By a semigroup with Idempotent ideals we mean a
semigroup in which every ideal is idempotent.

Proposition 6 :

The principal ideal <a > of a semigroup S is
idempotent iff a ¢Sa Sa S

Proof :

Note that principal ideal< a>={a} U Sa U aS U SaS
i.e.< a> = S'a S$'

Assume that ag¢ Sa/Sa S
i.e. a ¢(Sa) (SaS)C<a><a > =¢ a>

So <a>C<a >2
As converse inclusion is always true

2
we have < a> =<a>

Conversly, assume that <a > = < 'a >2
Then ag <a> = <a:>2
=< a> < a>

=<a > 2 < a >2
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= 5'aS'.5'aS', S$'aS'.5'aS'. S5'aS!
C Sa Sa S
So proof over,

Proposition 7 :

Let S be a semigroup and I be an ideal of S if

< a> =< a > for every element agl , then I =1 % too.
2
Proof : Assume < ay =< a> for each ag I
Thena&(a)2 C Iz‘v' ael
SoICII 2 (1)
. 2
Also for any ideal I, I "C 1 ceees(2)
From (1) and (2), 12= 1
Proposition 8 :(by S.Lajos) :
A commutative semigr'oup .is regutar iff it is a

semigroup with idempotent ideals.

Proof :

If S is semigroup with idempotent ideals then every

element a of S can be represented in form a = xayaz

.e- A = a (xyz)a by proposition 6 and
€ aSa commutatively
X,¥,Ze S = xyz €8S

So S is regular.

Assume conversly that S is regular and a be an arbitrary

element of S

Then 3 xe S, s.t. a = axa. -



b

-

Now a = axa=(ax)a e€<a>< a> =<a >
i.e. <a>C < a>

2 . .
Now <a > (¢ <a> is always true

So S is semigroup with idempotent ideals we have used
proposition 7 also.

Remark :

Converse statement of proposition 7 does not hold.

i.e. In a semigroup S if I is any ideal of S and I=I2 does
not imply <a > = <a >2 for ae 1

e.g. Let I =S ={0,1,a} be commutative semigroup in which
a=290

Every ideal of 5 1is reproducedby S

i.e. SI=IS=I for every ideal I of S,

But principal ideal< a> is not idempotent.

<a>2 =< 0> #£ < a>
Proposition 9 :

In case of semigroup S, following assertions are

equivalent,
1) S is semigroup with idempotent ideals
2) S is semigroup with idempotent principal ideals
3) ac Sa Sa S for every element a of semigroup S.
Proof :
(1) =2 (2) Trivially

(2) & (3) By proposition 6,
(3) (1)



Proof : If (3) holds, by proposition 6, every principal ideal
is idempotent.

and by proposition 7, every ideal is idempotent.

Proposition 10 :

Every ideal of regular semigroup is idempotent.
Proof :

Let aeS as S is regular, 3 x€ S s.t. a€ aSa

i.e. a = axa=(ax)a

€ < a>< a>=<a>2
So <a>C<a >2 ceees(1)
< a>2_(; a> eeees(2) trivially.

So <a>=< a»

So, by proposition 7, every ideal I of regular
semigroup is idempotent.
Remark :
1) In a similar way, it can be shown that every ideal
of left regular, Right regular or intra-regular semigroup is
idempotent.
Fox Intra-regular semigroup. v ae S 3 x and y in § s.t.
a = xaly = (xa) (ay)e< a>< a> =<a>2 -

So <a > C«<a >2
converse inclusion <«a >§< a > always true.

2

S0 < a> = <a>

By proposition 7, it now follows that every ideal 1 of intra-
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regular semigroup is idempotent. Similarly, result can be

proved for Left and Right regular semigroups.

2) Class of semigroups with idempotent ideals is
properly wider than class of semigroups with - prime

ideals, even inside class of commutative semigroups.

Following example proves above statement
Example :

Consider commutative semigroup {O,a,b} in which every
element is idempotent and ab=0 obviously, every ideal of
S is idempotent. But principal ideal <a > is not prime.
Because ab < 0> but neither a€< 0> nor be< 0>

Definition 2.2.2 :

Ideal 1 of a semigroup S is said to be reproduced
by S if SI = IS = 1
Remark :

Class of semigroups reproducing their ideals is
properly wider than class of semigroups with idempotent
ideals.

See proposition 11 and example given in Remark
following proposition 8.

Proposition 11 :
Every ideal I of semigroup S with idempot:ent ideals

is reproduced by S,
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Proof : I = I°C S1 C1I
whence: SI =1

Similarly IS = 1
So SI =1 = IS
hence proved.

Section 3 : NORMAL SEMIGROURS

Definition 2.3.1 :

i) Normal Semigroup : A semigroup S is called normal
if x§ = 5x V¥V x €S

ii) Let B (5) = set of all .non empty subsets of
semigroup S and B(S) = set of all bi-ideals of
semigroup S.

iii) Subsemigroup A of a semigroup S is called normal
if xA = Ax V¥V x €8S

iv) Semigroup S is called competely regular, if for any

aof 5,1 x €5 s.t. a = axa - and ax= xa

v) As used iIn previous part let us use Tollowing
notations
L(x) = principal Left ideal generated by x={x}U Sx

R(x) = principal Right ideal generated by x= {x} UxS
B(x)=principal bi-ideal of S generated by x

={x,x2} U xSx

Proposition 12 :

Let A be any ideal of semigroup S. Then



1)

A.B (x) = A.L (x)=Ax VY x €S

2) B(x).A = R(x).A = xA ¥VxXE€S
Proof :
Let x be element of S
A.L{x) = A(x U Sx) = Ax U(A) (Sx)
= Ax U(AS) x CAx CA.L (x)
So Ax = A.L (x) veeso()
and A.B(x) = A(x U xz U xSx)

So A.B(x) = Ax

1O

¢

AXx

A.B(x)

Ax U sz U A{xSx)
Ax U(Ax)x U (AxS)x

(As A is an ideal)

eereo(2)

From (1) and (2) Ax = A.L(x)=A.B(x)V X €S

Similarly A.B(x)

Proposition 13

For

an

R(x).A=xA ¥V x €5

ideal A of a semigroup S, following

conditions are equivalent

1)
2)
3)
4)

5)

A is normal

XA

XA

B(x).A

B(x).A

]

AX

AX

i

v Xe B(S)

X € B(S)

A.B(x) v xeg S

A.L{x) VvV x€ S



6) B{(x).A = Ax ¢y x €S

7) R(x).A = A.B(x) v xt §
8) R(x).A = A.L(x) v x€ S
9) R(x).A = AXx ¥V x€S8

10) xA = AB(x)V x¢8§

1) xA = A.L{x) V¥V x€& §
Proof :

Let A is normal, X be any nonempty subset of S and
xa(x € X,a€ A) be any element of XA. »
Thus xa € xA = Ax C AX so XA C AX | o
Similarly, converse inclusion holds SR
So AX=XA V X € B(S)
So (1) 9 (2)
Now (2) = (3) clearly

(3) 2 (4) clearly
It follows from proposition 12 and A is normal that if A
is any ideal of semigroup S. Then A.B(x)=A.L(x)=Ax
=xA=B(x) .A=R{x).Avxe S
i.e. (1) and (4) to (11) are equivalent.

Hence proved.

Proposition 14 :

Let A and B any normal ideals of semigroup S then
products AB and BA are also normal ideals of S and AB=BA.
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Proof : It follows from proposition 13 that AB=BA holds
From any element x of S, we have

x(AB)=(xA)B = (Ax)B = A(xB)=A(Bx)=(AB)x

Proposition 15 :
For an ideal A of a regular semigroup S, following

conditions are equivalent.

1) A is normal

2) eA = Ae V idempotents e of S

3) B(e) .A=A.B(e) V idempotents e of S
4) B(e).A = A.L(e) Vv idempotents e of S
5) B(e).A=Ae V idempotents e of S

6) R(e).A = A.B(e) V idempotents e of S
7) R{e).A=A.L(e) V idempotents e of S N
8) R(e) .A=Ae V idempotents e of S

9) eA =A.B(e) v idempotents e of S

10) eA = A.t(e) V idempotents e of S
Proof :

(1) = (2) Trivialty
(2) to (10) are equivalent can be proved in similar way

as in proof that (1) and (4) to (11) are equivalent in

proposition 13,
Now assume that (2) holds

In order to prove that (1) holds

Let x be any element of S5, As S is regular
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y is § s.t. x = xyx and yx is idempotent.

xA

[

(xyx)A = x {(yx)A) = x (A(yx))

"

(xAy) x C Ax -

Similarly it can be proved that converse inclusion holds
So XA = Ax ¥ x €S
So (2) 2 (1)

Hence proved

Proposition 16 3
Let A be normal ideal of a semigroup S and x € §

then xA is an ideal of S.

Proof : Let A be any normal ideal of semigroup S and x& S,
Then (xA) S=x(AS) € xA and S(xA)=S(Ax)=(SA)xC Ax

So xA is an ideal of S.

SsLajos has given following
Theorem 17 :

Product of bi-ideal and of a non empty subset of
a semigroup S is also a bi-ideal of S.
Proof :

Let A be any non empty subset of S and B be any
bi-ideal of S,
To prove that BA is bi-ideal of S.

Let x and X, ¥, be any two elements of BA s.t. x1,xz€ B

11
and Yy ¥g € A,
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XqY XgYe BA
So BA is subsemigroup of S.

Consider (BA) S (BA)

= B(AS)BA
[ (BSB) A
c BA As B is bi~ideal

BSB C B
So BA is bi-ideal of S.

Proposition 18 :

Any minimal ideal of a semigroup S is zero element of
B(S)
Let A be minimal ideal of S
Then clearly A€ B(S). { As every ideal is bi-ideal}
Let X be any bi-ideal of S.
Then XA C SAC A
Then it follows from .Theorem 17 and minimality of A that
XA = A
Similarly we can prove AX = A
VvV X e B(S)
> A is zero element of B(S).
Proposition 19 :
Any minimal normal ideal of a semigroup is group.
Proof :
Let A be minimal normal ideal of a semigroup Sv~
Let x be any element of S. Then we have

Ax = xA C sA C A
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Then it follows from proposition 16 and minimality of A
that Ax = xA = A

i.e. Ax = XA = A vy x € A

So A is group.

Propositon 20 :

Following conditions about semigroup S are equivalent,

1) S is normal

2) xS = SX v X& B(S)

3) XS = SX Vv XE€ B(S)

4) B(x).S = 5.B(x) V¥xES
5) B(x).S = S. L{x) v¥vxES
6) B{x).S = $x vy xE §
7) R(x).S = $,B{x) vy x€8
8) R(x).S = S.L{x) v x€tS
9) R(x).S = bx v x& §

10) xS = S.B{x) yx € S

11) xS = S.L{x) v x € S

12) B(S) is normal
13) B(x).B(S) = B(S).B(x) yx €S

14) B(x).B(S) B(S).L(x) vx €S

i

15) B(x).B(S)

B(S).x ¥ x € S

16) R(x).B(S) B(S).B(x) v x€ S

17) R(x).B(S)

H

B(S).L{x) v xe S

18) R(x).B(S) B(S) v x €S

]

19) xB(S) = B(S).B{(x) v x €S
20) x B(S) = B(S).L{x) ¥V x¢€5S
21) xB(S) = B(S) x wx €5
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Proof :
Since semigroup S is itself an ideal of S it follows
from proposition 13 that (1) To (11) are equivalent.
Assume (1) holds
Let A and X be any bi-ideals of S and a be any
element of A. Then we have
aX C aS =SaC SAC B(S) A
and so A.B(S) C B(S).A
Similarly B(S).AQA.B(S) can be shown.
So we obtain that A.B(S) = B(S).A
So B(S) is normal.
So (1) = (12)
Clearly (12) 2 (13)
Assume {(13) holds

In order to prove that S is normal
lLet x be any element of S

Then for some A CB(S), we have

xSC B(x).S = A.B(x) C S.B(x)C sx

Similarly we can prove that converse inclusion’ holds
So S is normal and (13) > 1

Remaining proof easily follows.

Hence proved.
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Corollarly 21 :
Every one sided ideal of normal semigroup is a
two sided ideal |
Proof : Immediately follows from proposition 20
As S is normal
= XS =S5SX y Xe B(S)
Proposition 23 :
For a semigroup S, the following conditions are

equivaalent.

1) S is completely regular.

2) aEaZSanaas

3) S is left and right regular.

Proof :
(3) =2 (2) Let (3) hold i.e.
S is left and right regular.
So if a€S 3 x and y€ S s.t.
2 2
a=xa and a =a'y

To prove that aea2 Sa“2

2
a=zay=aay

r

ayay

2 2
ay xay

H

i

2
=a'y X(azy )
2

=ay x a

- aZ(y XZ) a2

€ a’ s a® as X,y €S
y x2€ S

So (2) holds.
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(2) » (1) Let ae a’Sa’

To prove that S is completely regular.

2 2
a x a for some xg S

a(axa) a i.e. a is regular.

L]

Consider a(axa) and (axa) a
Claim

alaxa) = (axa) a
For alaxa) = (aa) xa = azxa = azxazxa2
and (axa)a = a x(aa) = a xaz= azxa2 xa
So claim proved
2 S is completely regular.

i.e. (2) (1)
(1) 2 (3) Let S is completly regular.

i.e. aeS, B x €S s.t. a = axa and ax = xa

To prove that S is left and Right regular

Now

2
a = axa = (ax)a = (xa) a = xa
a = axa = a(xa) = a(ax) = azx

i.e. a = xaz and a = azx
So S is left regular and also right regular.
So (1) > (3)
and hence proved.
Proposition 24 ¢A) .
A semigroup S is completely regular iff every bi-

ideal of S is semiprime.



Proof :
First we assume that S is completely regular.
Let A be any bi-ideal of S,
Let azeA and a€ S
Then it follows from proposition 23 that
aea2 S aze ASA C A
= A is semiprime,
Conversly, Let every bi-ideal of S is semiprime.
Then since any one sided ideal of a semigroup S is bi-
ideal, every left and right ideal of S is semiprime

=2 S is left and right regular.
= S is completely regular.

Hence proved.

Section 4 :

In this section definitions of B-pure Bi-ideal and

] ¥*
B -~ pure semigroup are given. Some properties of B -pure

semigroup are discussed.
Definition 2.4.1 :

Semigroup S is called normal if aS = Sa v ag S
Definition 2.4.2 :

Bi-ideal A of a semigroup S is called B-pure if
An xS =xA and An Sx = Axy x€ S

Definition 2.4.3 :

%
Semigroup $ is called B - pure if every bi-ideal

of it is B-pure.
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Proposition 24 (B) :

3
Normal regular semigroup is B - pure, semigroup

Proof :
First we prove that every bi-ideal of normal reqular
semigroup is ideal.
Let S be normal regular semigroup and let B be any bi-ideal
of S i.e. BSBCB
To prove that B is ideal
i.e. BSTB and SBCB
Let bgeBS i.e. beB and st 8§
As S is regular 3 g€ S s.t.
b = bgb
So bs = bq b s {as s is normal }
=b qgqS'b
€ BSB

C B

So BSCB
Similarly sBCB

i.e. B is ideal.

S0 in normal reqgular semigroup every bi-ideal is ideal.
Now let A be any bi-ideal of S

To prove that A is B-pure

i.e. An x S = xA

let ae An x S

3%



i.e. ac A and, a €xS
i.e. ¢ ands,s'c S s.t.
a= aPa (regularity) and a = x5 = s'x

So a = apa

= xsPaPa
€ x SA SA
(every bi-ideal is ideal
= x{SA) sA in Normal regular semigroup)
€ x ASA
c XA A is bi-ideal
So Anx SC xA eeena (1)

For converse inclusion consider following.

xAC x S as A is bi-ideal of S
also for normal regular semigroup every bi-ideal is ideal
= xAC A
So xAC An xS ceesal(2)
From (1) and (2) A n x5 = xA

Similarly A n Sx = Ax can be proved.

So A is B-pure bi-ideal.
But as A was any arbitrary bi-ideal

¥
We have S is B -~ pure.

Hence proved.
Let E(S) denote set of all idempotent elements of

semigroup S.
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Proposition 25 :

propert
1)
2)
3)
4)

Proof :
(1

{

E-3
Let S be a B - pure semigroup. Then 5 has following

ies
2 2
aS = a S and Sa = Sa” N a €5
For every a €8S, a2 is completely regular
S is normal.

E(S) is contained in the centre of S.

Let a be any element of S
Now aS is bi-ideal of S
As aS.5.a5 C a S}

E-3
As S is B - pure, Bi-ideal aS of S is B-pure.

Then

(2)

(3)

aS=aSnaS=a(aS)=a25
. 2

Similarly Sa = Sa

Let a be any element of S
Then by (1) we have

a €asS = aZS and a€ Sa = Sa2

i.e. a2€ a S and aze Sa

2
i.e. a ¢ a5 n Sa = a2 S n Sa2 = (a2)25n S(a‘z)2

Then it follows that

a2 is both left and right regular.

So S is completely regular.

Let a be any element of $§

Then Sa is bi-ideal of S.

%
As S is B - pure semigroup,

12359
A

4}
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Sa is B-pure Bi-ideal of S.
éy (1) we have
aS = a®sC(Sa) S = Sa n SSC Sa
So aS& sa
Similarly SaCaS v ae §
i.e. Sa = aS va €S

So S is normal.

(4) Let aC S be any element and e € E(S)
Then by (3) above
Sa = a$ and Se = e$S
i.e. x, ¥, P, g € S s.t.
ea = ax ae = ye ae =ep ea = Qe
Consider
ea = & = gee = eae = eep = e.p = ae
So ea = ae

i.e. E(S5) is contained in the centre of S.

Definition 2.4.4 :

A semigroup S is called Archimedian if for each

element a and b of S, 3 +ve integer n s.t. ae Sb S
Proposition 26 :

%
For a B - pure semigroup S, the following conditions are

equivalent.

1) S is Archimediann

2) SaS = SbS vy a,be S




3) aS = bS Af a,be S

4) aSa = bSb ¥Ya,b€ S

5) S has exactly one idempotent element,.
6) Every bi-ideal of S is archimedian.
Proof :

(1) 2(2)
Let a and b be any elements of S. Then since S is
archimedian, 2 positive integer n ,s.t. a"€Spb S
By proposition (25(1))
SaS = Sa"' S ¢ S(SbS)S =(SS)b(SS) € SbS

Similarly SbS € SaS
So SaS = SbS

(2) (@)

Let SaS = SbS
To prove that aS = bS
aS = azS =aaS €SaS = SbS = bSSC bS
So a5 € bS
Similarly bSc aS
So a5 = bS
(3) = (4) Let aS = bS MW a,b€ S
In particular aZS = bZS
Now aSa = aaSca’S = b2S = bbS = bSb

So aSa < 1bSb
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Similarly bSb ¢ aSa
so aSa = bSb

(4) = (5) Let e and f be any two idempotents of S
Then as eSe = fSf v xand y in S
s.t. e = fxf and f = eye
Now e = fxf = ffxf = fe = eyee = eye = f
since E(S) is nonempty by proposition 25(2), S has
exactly one idempotent.
(5) = (6)
Let A be any bi-ideal
a and b be any elements of A.
Then as az, b2 are completely regular by proposition
25(2) , elements x and y s.t.

azz a2x az b2= bzy b2

Since azx and bzy are idempotents we have

azx = bzy
Then
3 2 2 2

a=a.a=a (ax a)
= a(bzy) a2
= ab (byaz)
€ Ab (ASA)
E AbA

= A is archimedian.

(6) (1)

Trivially true.



Definition 2.4.5 :

..V—
Semigroup S is called weakly commutative if a,b€ S,

A +ve integer n s.t.

(ab) e bsa.

Proposition 27 :

Let S be a semigroug s.t. aS = aZS and Sa = Sa2 af®s.
Then following conditions are equivalent.
11 E(S) is contained in centre of S
2) S is normal
3) S is weakly commutative.
Proof :
(1) 3 (2)
Let ae 5., The azSS and a2 is completely regular
So a2 is regular -
9
3 x €S s.t. a’ = a’x &
2 2
Let a”y be any element of aS(=a”S)
Since ><a2 is idempotent x ang(S)
2 2 2
a’y = (@"°x a%) vy
2 2
= a" ((xa”)y)
2 2
= a (y(xa™)) { As completely reqgular
= a2 (y(xaz') (xaz)) = left regular and ><a2 is
idempotent }
= (a2y a2) a? { E(S) is contained in centre of S}
€ Sa2

it

Sa
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So aS ¢ Sa
Similarly Sa ca S
So aS = Sa

< S is normal

(2) 2 (3) Let a and b be any elements of S

Then as S is normal
ab ¢Sb and abe€ aS

(ab) € (5b) (aS)

(bS) (Sa)

= b(5S)a
C bsa

Thus S is weakly commutative.

(3) = (1)

Let a be any element of S and e be any idempotent of
Since S is weakly commutative, we have

n .
(ae) € eSa- for some +ve integer n.

Then

n
ae = aee € aeS = (as) S C (eSa)ScC,eS

So ae¢ eS
So 3 x in 5 s.t. ae = ex

Similarly, 3 y in S s.t.

g

ye

ea
. T 1 “%33 ‘L\“%}R&'§

iy B
__‘:l; § g g\ﬁﬁ"ﬁ‘—‘?@
oLk

o S e
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So E(S) is contained in centre of S.

Proposition 28 :

For a semigroup S, following conditions are equivalent.

3

1) S is B - pure.

2) S is normal and Sa = Sazv aes
Proof :

(1) 2 (2) Trivial
A(2) (1)
Let (2) hold.

Let A be any bi~ideal of S and x be any element

of S.

Let a = xzs be any element of A n x S(=A n xZS)

Then it can be seen that xz is regular, so

3 YeS s.t. x2= xzy x2

Since

ya €8Sa = Sa2 s+ 3 element ze S s.t.

Then since S is normal we have

x2s = (x%y x?) s = (x*y)(x?s) =(x®y) a

a

xz(ya) =x2 (za2) = x((xz)a) a
€ x(Sa)a = x (aS) aC x (ASA) C xA

So A n xSC xA eenes (1)

Let xa (acA) be any element of xA

Then xac€ Sa = Sa2 = aSa C AsAC A

So xAC A



Since xA & xS

We have xA € A n xS

So From (1) and (2) A n xS = XA
Similarly it can be proved that A
S0 Bi-ideal A is B-pure

As A was any arbitrary bi-ideal,

%
S is B - pure semigroup.

eeene(2)

n Sx

Ax
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