
SEMIGROUPS AND IDEALS



Introduction :

In this chapter, in first section preliminary 

definitions of semigroup and its different ideals are given 

with illustrations. Also some results about ideals are given .

In second section, we have defined semigroup with 

idemptoent ideals and its different properties are discussed .

In third section, Normal semigroups are defined 

and some of its properties are discussed.

In fourth section, we have defined B-pure Bi-ideal
#

and some properties of B - pure semigroup have been 

discussed.

Section 1 : Semigroup, Ideals and Green's relations 

Definition 2.1.1 :Semigroup : A non empty subset S together 

with binary operation . is called semigroup iff . is 

associative.

i.e. a.(b.c) = (a.b).c va»b,ce S.

E.G. i) (N,x) where N is set of natural numbers,

ii) consider (z^, +^, x^) i.e. ring of residue

classes modulo 4, Now if we define binary

operation 0 on elements of Z as

a © b = a +, b - a x. b 4 4
Then (Z^, © ) is a semigroup.



e.g. © __0 1 2 3

0
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0 12 3
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2 10 3

3 13 1

(Z4,0 ) is a commutative semigroup.

Definition 2.1.2 :Subsemigroup : S be a semigroup. By

a subsemigroup of S , we mean a nonempty subset A of 
2S such that A C A

i.e. Vx, yeA,xy£A

E.g
i) (Set of all even natural numbers, x) is a 

subsemigroup of (N , x )

ii) (Z^ , © ) is subsemigroup of (Z^ , © )

Definition 2.1.3 : Left Ideal : A nonempty subset A of 

a semigroup S is called left ideal of S iff SA C A. 

i.e. V x £ S, y e A we have xy e A.

E.g.

i) Set of all even natural numbers is left ideal 

of semigroup (N , x)

ii) Let S =; { 1,2,3,4}

Define binary operation * on S as follows 

a # b = b v a>b e S



So we get composition table as follows

2

2

2

2

3 4

3 4
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Obviously (S,*) is semigroup.

For if we consider any three elements 

a,b,c £ S then

(a*b) * C = b * C = c and

(b * C) = a C = C

So (a * b) {b * C)

So * is associative

If we consider subset S' of S given by S' = { 2,3} 

Then S' is Left ideal of S

ya£ S, b £ S' we have a * b = be S' 

i.e. S' is left ideal.

Definition 2.1.4 Right Ideal : Non empty subset A 

semigroup S is called right ideal of S if AS C A 

i.e. V x e A, y e S we have xy e A.

E.g

i) Set 2N is Right ideal of semigroup (N, x

ii) Let S = { 1,2,3,4 }

Define binary operation * on S by a * b = a ya,i

of a

)

d e S



i.e. we get composition table as follows

Consider any three elements a,b,c, e S

Then (a * b) * C = a * C = a and ' j -V” \ • '
(a • (b * C) = a * b = a I

So * is associative.

i.e. (S, *) is a semigroup.

Consider subset S' = {2,3} of semigroup S.

Then ae S and be S' , b * a = b£ S'

So S' is right ideal.

Remarks :

1) For a commutative semigroup every left ideal is Right 

ideal also.
2) 2nd example given in 2.1.4 is an example of right ideal 

which is not left ideal.

Definition 2.1.5 Ideal : By Ideal, we mean subset of

semigroup S which is both left and Right ideal of S.
- )

Obviously every ideal is subsemigroup.

E.g. 1) Set 2N is an ideal of semigroup (N,x)
2) Z0 is ideal of semigroup (Z, , ® )



Definition 2.1.6 Simple Semigroup A semigroup S is

called simple if it contains no proper ideal.

E.g. Consider semigroup given in example 2 of 2.1.4.

It can be easily seen that the set

S = { 1,2,3,4} is only left ideal as well as right

ideal of S. So S itself is only ideal.

Hence it is an example of simple semigroup.

Definition 2.1.7 Bi-ideal : Subsemigroup A of S is called

bi-ideal of S iff ASA C A.

i.e. V" x and z e A, y£ S we have xyz e A.

E.g. Subsemigroup (2N, x) is bi-ideal of semigroup(N,x) .

Definition 2.1.8 Interior Ideal:

1) Subsemigroup of a semigroup S is called as 

an Interior ideal of S iff SAS C A.

2) By I(x) , we denote the principal interior 

ideal of semigroup S, generated by x e S

i.e. I(x) = { x, x2} U S x S

E.g Subsemigroup (2N,x) is an interior ideal of 

semigroup (N,x)

Remark :

Any ideal of semigroup S is an interior ideal of S

For let A be any ideal of semigroup S

i.e. SA C A and AS C A

Then trivially SAS C AS C A

i.e. SAS c A.
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Definition 2.1.9 Regular Semigroup : Semigroup S is called 

regular if for each element a of S, 3 an element x e S 

S. t . a =axa •

E.g. Semigroup (S,*) in example 2 of 2.1.3 is a regular

semigroup.

For 1 = 1* 1 * 1, 2 = 2 * 2 • 2, 3 = 3 * 3 * 3 and 

4 = 4 * 4 * 4

Remarks :

1) Every ideal of S is subsemigroup

obviously

For if A is an ideal of S

• (€11 • j ’ !J

then ASC A and SA C A
2

In particular AA C A i.o. A c A 

2) Every subsemigroup of S need not be ideal.

We prove this by giving an example of a 

subsemigroup which is not ideal.

Let S = { 1,2,3,4,5}

Define binary operation * on elements of S by

a*k=bVa,beS

Then (S,* ) is semigroup.

(S’,*) is subsemigroup of S where S* = { 1,2,3}

But S' is not ideal of (S, *) : 

aS 3 e 5», 4e S But 3*4 = 4 ^S'



IS

3) Every ideal of S is bi-ideai.

Let A be any ideal of S. 

i.e. AS C A and SA C a.

Now ASc A => ASA C AAC A.

So A is bi-ideal.

4) Every bi-ideal of S is^ not an ideal of S.

Consider (S,# ) and (S*,*) as defined in (2).

(S’, * ) is subsemigroup of (S, *)

It is also bi-ideal.

As x |Z e S’ and ye S t^y,
# A Cl '"Vit-'N'C I Y.t h f

x v y * z = z e S • ’ , —
i - •• i ' /

But as proved in (2) S' is not ideal i
’ } t ' ! ■

S' is only left ideal but not right ideal.

Proposition 1 :

For a subset A of regular semigroup S, the following 

conditions are equivalent.

1) A is an ideal of S

2) A is an interior ideal of S.

Proof :

(1) ^ (2) Let A be an ideal of S.

=) A is subsemigroup of S 

Also SAC A and AS C A.

^ SAS C AS C A.

So A is an interior ideal of S.



(2) ^ (1) Let A be an interior ideal of S i.e. SAS £ a.

To prove that A is an ideal of S. 

i.e. to prove that if a€A and s€S 

The asfc A and saCA.

Now., ae A =. a e S : *’ /

As S is regular semigroup So 3 x e S s.t. a =a x a

Now as - a x a s = (ax) aSe SAS A j {as axe s}
Sa = Saxa = Sa(xa )£ SAS { as x a es} -y;r-F :

So as e A and sa e A.-V a £ A and se S»
i.e. SAC A and ASC A.

So A is an ideal of S.

Hence proved.

Definition 2.1.10 : Intra-regular Semigroup : A 

is called intra-regular if for each element a € S, 

x and y in S, s.t. a = x a^ y

E.g Semigroup (S, * ) in example 2 of

intra-regular semigroup.

For 1 = 1 * I2 1 3 = 3 * 32* 3

2 2 
2 = 2* 2*2 4 = 4* 4*4

Definition 2.1.11 : Semi-prime Subset :

Subset A of a semigroup S is called semiprime if

semigroup S 

3 elements

2.1.3 is

■ ■' - 'f^- \

ITV* " 

ri

ae S ^ a eA.

E.g. Subset 2N of a semigroup (. N , x) is semiprime.
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Definition 2.1.12 :

Left regular Semigroup : A semigromup S is called left regular
2

if for each element a e S, 3 an element x£ S s.t. a = x a 

E.g. Semigroup (S,*) in example 2 of 2.1.3 is left regular 

semigroup.
9 2 ' 2 2

as 1 = 1*1 , 2=2*2 ,3=3*3 ,4=4 * 4

Right regular semigroup is defined dually.

. Proposition 2 :

For a subset A of an intra regular semigroup S following 

conditions are equivalent.

1) A is an ideal of S

2) A is an interior ideal of S

Proof : Let (1) hold. SC;

i.e. A is an ideal of S 

So SA C A and AS C A 

Now SAC A ^ SAS £ AS £ A 

So SAS C a

i.e. A is an interior ideal.

Conversly, Let (2) hold

i.e. A is an interior ideal of S

Let a £ A and 5 tS
. Z' v \

as at A => a e S and S is intra-regular ^ -’/ )

23 x ,ye S s.t. a = x a y 

Consider
as = x a y S = (xa) a(y S )e SASCAias xa , and yae S }

Y3



So as £ A

Similarly sa<£A 

So SAc A and AS C A 

i.e. A is ideal of S.

Green's Equivalence relations :

Two elements of a semigroup S are said to be L 

equivalent if they generate same principal left ideal of S. in­

equivalence is defined dually.

The join of equivalence relation L and R is denoted by D and
%

their intersection by H. These equivalence relations were first

introduced and studied by Green (1951). These equivalence

relations are called Green's relations.

By a^ b we mean S' a = S'b

where S' =S if 1 £ S where 1 is identity elt 

= SU. { 1 } if 1 f S 

R
By a b we mean aS' = bS'

By La we mean set of all elements of S which are L equivalent; 

to (X • We define a J b (a,b in S ) to mean S'aS^S'bS' i.e. 

a and b are .T equivalent iff they generate same two sided 

principal ideal.

Remarks :

1) S is regular if a e a S a
2

S is left regular if a e Sa
S is Right regular if ae a^S

2
S is intra rregular if a e Sa S



2) In terms of Green's equivalence relations

S is left regular iff a L a2

2S is Right regular iff a R a
2

S is intra regular iff a J a

For if S is left regular then for. all elements ae S,3 x e S s.t. x=xa
2 2 2Now a = xa and a=a.a=aLa

2 2Conversly aLa = a£L(a )

i.e. ae { a2} U Sa 2

T, 2 2 If a = a then a = a.a

and if a e Sa2 , 3 xe S s.t. a = xa2

S is left regular.

Propositionm 3 :

A semigroup S is left [Right,Intra-] regular iff every 

Left {Right,two sided) ideal of S is semiprime.

Proof : Let S be intra regular and let A be any ideal of S.

Let ae A,(/a2e S

Then as ae Sa2 S C SAS C A

So every two sided ideal of S is semiprime.

Conversly, assume that every ideal of S is semiprime.

Let ae S Then a2e J(a2)

2 2 But J(a ) i.e. principal ideal generated by a e S is

semiprime.

So a e J(a2 )
2Hence a Ja



and so by remarks above S is intraregular. The proof

of equivalence of Left (Right) regularity of S with

semiprimality of all Left (Right) ideals of S is similar.

Proposition 4 :

The following statements concerning a semigroup S are 

equivalent.

1) S is union of simple semigroups

2) S is intra regular.

3) Every ideal of S is semiprime.

4) The principal ideals of S constitute a semilattice Y 

under intersection. In fact J(a) n J(b) = J(ab) for 

every a and b in S.

Furthermore, S is union of semilattice Y of simple

semigroups Sa ( a e Y) each S being a J class of Sa

Proof :

Assume (1) holds
2

Let a e S. Then a and a both belong to same simple £

subsemigroup T of S

So a e Ta2 T C Sa2 S 

So S is intraregular. 

i.e. (1) (2)

(2) (3) is clear from proposition (3) evidently (4)=>(1)

The proof will be complete when we show (4) follows from 

(2) and (3) and this we do in several steps.



SaS is principal ideal J{a) generated by a 
For ae Sa^ S C Sa S

J(ab) = J(ba) for every a,be S
a.

For (ab) = a (ba) b e SbaS = J (ba)

And from (3) we infer that ab e J(ba)

Hence J(ab) C J(ba)

and Equality follows by symmetry.

J(ab) = J(a) n J(b ) V* a,b eS 

clearly J(ab) C J(a) n J(b) 

conversly

Let c e J(a) n J(b)

Sayc=uav = xby with u,v,x,ye S

Then d = xbyuav e J(byua) C J(abyu) by(ii)

By (3), this = e' e J(aby u)C J(ab)

Hence J (a) n J (b) = J(ab) and equality follows

By(iii) the set Y of principal ideals of S is a 

semilattice under intersection.

and mapping a--^J(a) is homomorphism, of S upon Y .

The inverse image of the element J(a) of Y is the set

Ja of generators of J(a),

i.e J class of to which a belongs.

In particular, Ja is subsemigroup of S and S is

semilattice Y of mutually disjoint semigroups Ja

Proof of (4) will complete when we show that each 

Ja is simple



But principal factor J(a)/I(a)=Ja ll{ 0 } is either 

O-simple or null semigroup.
From this and the fact that J(a) is closed under 

multiplication, it is clear that J(a) must be simple.

. Proposition 5 :

A semigroup S is a group iff it is left and Right

simple.

Proof :

H. Weber defined a group as a semigroup G such that 

for any given elements a and b of G, 3 unique elements x and 

y in G s.t. ax = b and ya = b.

Hunigton showed that it is not necessary to postulate 

uniqueness of x and y, that this followed as consequence.

If semigroup S is left and right simple

3 x and y in S s.t. a,b,£S

ax = b and ya = b 
So S is group.

Conversly

As S is group it has identity element 

So aS = S for every a in S 

and Sa = S for every a in S

So S is only left ideal as well as S is only right

ideal.

So, S is left simple and Right simple.



Section 2 :

In this section we define semigroup with idempotent 

ideals and discuss some of its properties.

Definition 2.2.1 :

By a semigroup with Idempotent ideals we mean a 

semigroup in which every ideal is idempotent.

Proposition 6 :

The principal ideal < a > of a semigroup S is 

idempotent iff a e Sa Sa S 

Proof :

Note that principal ideal < a > = { a} U Sa U- as U SaS 

i.e.< a> = S'a S'

Assume that a e Sa- Sa S
2

i.e. a e(Sa) (SaS)C<a ><a > =< a>
2

So <a>C<a>

As converse inclusion is always true
2we have < a > = < a >

2Conversly, assume that < a > = < a >

Then ae<a> = <a > ^

=< a> < a>

> 2 2 -<a > < a >

2= <a> <a> <a>
2 2=<a><a> <a>

5
< a >



S’aS*.S*aS'. S'aS’.S'aS*. S»aS*

C Sa Sa S

So proof over.

Proposition 7 :

Let S be a semigroup and I be an ideal of S if

2 2 
< a > = < a > for every element a el , then 1 = 1, too.

2
Proof : Assume < a > = < a > for each a e I

2 2
Then a € <a> C I V a C I 
So 1 C 1 2

Also for any ideal I, I I ......... (2 )

From (1) and (2), I^= I

Proposition 8 :(by S.Lajos) :

A commutative semigroup is regular iff it is a 

semigroup with idempotent ideals.

Proof :

If S is semigroup with idempotent ideals then every

element a of S can be represented in form a = xayaz

CL = a (xyz)a by proposition 6 and

e ^ commutatively

x ,y ,z e S = xyz e S

».e-

So S is regular.

Assume conversly that S is regular and a be an arbitrary 

element of S

Then 3 xe S, s.t. a = axa. ~



Now a = axa=(ax)a e<a>< a> =<a >

2
i.e. < a > C < a >

2
Now <a > c<a> is always true

So S is semigroup with idempotent ideals we have used

proposition 7 also.

Remark :

Converse statement of proposition 7 does not hold.

i.e. In a semigroup S if I is any ideal of S and I=I2 does

2
not imply < a > = < a > for a e I

e.g. Let I = S =|0,1,a} be commutative semigroup in which

a2= 0

Every ideal of S is reproduced by S 

i.e. SI=IS=I for every ideal I of S.

But principal ideal< a> is not idempotent.

2
< a > =<0> 4 < a >

Proposition 9 :

In case of semigroup S, following assertions are 

equivalent.

1) S is semigroup with idempotent ideals

2) S is semigroup with idempotent principal ideals

3) ae Sa Sa S for every element a of semigroup S.

Proof :

(1) ^(2) Trivially

(2) (3) By proposition 6.

(3) => (1)



Proof : If (3) holds, by proposition 6, every principal ideal 

is idempotent.

and by proposition 7, every ideal is idempotent.

Proposition 10 :

Every ideal of regular semigroup is idempotent.

Proof :

Let a e S as S is regular, g x e S s.t. a e aSa 

i.e. a = axa=(ax)a
2e<a><a>=<a>

2
So < a >C< a > ..... (1)

2 , v< a>Ca> ......... (2) trivially.
2

So < a > = < a>

So, by proposition 7, every ideal I of regular 

semigroup is idempotent.

Remark :

1) In a similar way, it can be shown that every ideal

of left regular, Right regular or intra-regular semigroup is 

idempotent.

For Intra-regular semigroup, y ae S 3 x and y in S s.t.
X , , , . _ 2a = xa y = (xa) (ay)e< a>< a> =<a>

2
So < a > C < a >

converse inclusion < a >(?< a > always true.

c 2 So <a> = <a>

By proposition 7, it now follows that every ideal I of intra-
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regular semigroup is idempotent. Similarly, result car, be 

proved for Left and Right regular semigroups.

2) Class of semigroups with idempotent ideals is

properly wider than class of semigroups with prime

ideals, even inside class of commutative semigroups.

Following example proves above statement 

Example :

Consider commutative semigroup {o,a,b} in which every

element is idempotent and ab=0 obviously, every ideal of 

S is idempotent. But principal ideal < a > is not prime 

Because ab < 0> but neither ae< 0 > nor be< 0>

Definition 2.2.2 :

Ideal I of a semigroup S is said to be reproduced

by S if SI = IS = I

Remark :

Class of semigroups reproducing their ideals is 

properly wider than class of semigroups with idempotent

ideals.

See proposition 11 and example given in Remark 

following proposition 8.

Proposition 1T :
i

Every ideal I of semigroup S with idempotent ideals 

is reproduced by S.



Proof : I = I2£ SI C I 

whence SI = I 

Similarly IS = I 

So SI = I = IS 

hence proved.

Section 3 : MORr^ftu 3 semis-roups

Definition 2.3.1 i

i) Normal Semigroup : A semigroup S is called normal

if xS = Sx V x ES

ii) Let 3 (S) = set of all non empty subsets of

semigroup S and B(S) = set of all bi-ideais of 

semigroup S.

iii) Subsemigroup A of a semigroup S is called normal

if xA = Ax V x e S

iv) Semigroup S is called competely regular, if for any

a of S,-3 x £S s.t. a = axa and ax= xa

v) As used in previous part let us use following

notations

L(x) = principal Left ideal generated by x={x}U Sx 

R(x) = principal Right ideal generated, by x= {x} UxS 

B(x)-principal bi-ideal of S generated by x 

= { x ,x2} U xSx

Proposition 12 :

Let A be any ideal of semigroup S. Then



i*f»

1) A.B (x) = A.L (x) =Ax Vx es

2) B(x).A = R(x).A = xA VxeS 

Proof :

Let x be any element of S

A.L(x) = A(x U Sx) = Ax U(A) (Sx)

= Ax U(AS) x CAx CA.L (x)

So Ax = A.L (x) ......... (1)
2

and A.B(x) = A(x U x U xSx)

= Ax U Ax^ U A(xSx)

= Ax U(Ax)x U (AxS)x 

C Ax (As A is an ideal)

C A.B(x)

So A.B(x) = Ax ......... (2)

From (1) and (2) Ax = A.L(x)=A.B(x)V x e S 

Similarly A.B(x) = R(x).A=xA V x £ S

Proposition 13 :

For an ideal A of a semigroup S, following 

conditions are equivalent

1) A is normal

2) XA = AX V X£ B(S)

3) XA = AX V X e B(S)

4) B(x).A = A.B(x) V xe S

5) B(x).A = A.L(x) V x£ S



6) B(x).A = Ax v x e S

7) R(x).A = A.B(x) V xe S

8) R(x).A = A.L(x) V x£ S

9) R(x).A = Ax V x € S

10) xA --- A.B(x) V x e S

11) xA = A. L (x) V x e S

Proof :
Let A is normal, X be any nonempty subset of S and

xa(x £X,a£ A) be any element of XA.

Thus xa e xA = Ax C AX so XA C AX

Similarly, converse inclusion holds '

So AX=XA V X e 8 (S)

So (1) => (2)

Now (2) (3) clearly

(3) (4) clearly

It follows from proposition 12 and A is normal that if A 

is any ideal of semigroup S. Then A.B(x)=A.L(x)=Ax

=xA=B(x),A=R(x).A V xe S 

i.e. (1) and (4) to (11) are equivalent.

Hence proved.

Proposition 14 :

Let A and B any normal ideals of semigroup S then 

products AB and BA are also normal ideals of S and AB=BA.



Proof : It follows from proposition 13 that AB=BA holds

From any element x of S, we have 

x(AB)=(xA)B = (Ax)B = A(xB)=A(Bx)=(AB)x

Proposition 15 :

For an ideal A of a regular semigroup S, following 

conditions are equivalent.

1) A is normal

2) eA = Ae V idempotents e of S

3) B(e) .A=A.B(e) V idempotents e of S

4) B(e).A - A.L(e) V idempotents e of S

5) B(e).A=Ae V idempotents e of S

6) R(e).A - A.B(e) V idempotents e of S

7) R(e) .A=A.L(e) V idempotents e of S

8) R(e).A=Ae V idempotents e of S

9) eA =A.B(e) v idempotents e of S

10) eA = A.L(e) V idempotents e of S

Proof :

(1) = (2) Trivially

(2) to (10) are equivalent can be proved in similar way

as in proof that (1) and (4) to (11) are equivalent in 

proposition 13.

Now assume that (2) holds

In order to prove that (1) holds

Let x be any element of S. As S is regular



y is S s.t. x = xyx and yx is idempotent.

xA = (xyx)A = x ((yx)A) = x (A(yx))

= (xAy) x C Ax

Similarly it can be proved that converse inclusion holds 

So xA = Ax ¥ x e S 

So (2) ^ (1)

Hence proved

Proposition 16 i

Let A be normal ideal of a semigroup S and x e S

then xA is an Ideal of S.

Proof : Let A be any normal ideal of semigroup S and x£ S. 

Then (xA) S=x(AS) C xA and S(xA)=S(Ax) = (SA)xC Ax 

So xA is an ideal of S.

S* Lajos has given following

Theorem 17 :

Product of bi-ideal and of a non empty subset of 

a semigroup S is also a bi-ideal of S.

Proof :

Let A be any non empty subset of S and B be any

bi-ideal of S.

To prove that BA is bi-ideal of S.

Let *^1 and Xg y2 be any two elements of BA s.t. x1 ,x2e B

and y^ yg e A.



So BA is subsemigroup of S.

Consider (BA) S (BA)

= B(AS)BA 

C (BSB) A

C BA As B is bi-ideal
BSB C B

So BA is bi-ideal of S.

Proposition 18 :

Any minimal ideal of a semigroup S is zero element of 

B(S)

Let A be minimal ideal of S 

Then clearly A£ B(S). { As every ideal is bi-ideal}

Let X be any bi-ideal of S.

Then XA C SAC A

Then it follows from .Theorem 17 and minimality of A that 

XA = A

Similarly we can prove AX = A 

V X e B(S)

A is zero element of B(S).

Proposition 19 :

Any minimal normal ideal of a semigroup is group.

Proof :

Let A be minimal normal ideal of a semigroup S 

Let x be any element of S. Then we have



Then it follows from proposition 16 and minimality of A

that Ax = xA = A

i.e. Ax = xA = A y x e A

So A is group.

Propositon 20 :

Following conditions about semigroup S are equivalent.

1) S is normal

2) xS = SX V Xe $(S)

3) XS = SX V X£ B(S)

4) B(x) .S = S.B{x) Vx e S

5) B(x).S = S. L(x) V x e S

6) B(x).S = Sx v xe S

7) R(x).S = S.B(x) y x e S

8) R(x).S = S.L(x) y xe S

9) R(x).S = Sx v xe S

10) xS = S.B(x) v x e S

11) xS = S.L(x) y x e s

12) B(S) is normal

13) B(x).B(S) « B(S).B(x) yx e S

14) B(x).B(S) * B(S).L(x) yx e S

15) B(x).B(S) = B(S).x V x e S

16) R(x).B(S) = B(S).B(x) yx^S

17) R(x).B(S) = B(S).L(x) y xe S

18) R(x).B(S) = B(S) y x es

19) xB(S) = B(S).B(x) y x eS

20) x B(S) = B(S).L(x) V x eS

21) xB(S) = B(S) x y x e S



Proof :

Since semigroup S is itself an ideal of S it 

from proposition 13 that (1) To (11) are equivalent. 

Assume (1) holds

Let A and X be any bi-ideals of S and a

element of A. Then we have

a X C aS = SaC SAC B(S) A

and so A.B(S) C 0(S).A

Similarly B(S) .A C A.B(S) can be shown.

So we obtain that A.B(S) = B(S).A

So B(S) is normal.

So (1) ^ (12)

Clearly (12) $ (13)

Assume (13) holds

In order to prove that S is normal 
Let x be any element of S

Then for some ACb(S), we have

xSC B(x).S = A.B(x) C S.B(x)C Sx

Similarly we can prove that converse inclusion holds

So S is normal and (13) ^ 1

Remaining proof easily follows.

Hence proved.

follows

be any
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Corollarly 21 :

Every one sided ideal of normal semigroup is a 

two sided ideal

Proof : Immediately follows from proposition 20 

As S is normal

= XS = Sx v X e B(S)

Proposition 23 :

For a semigroup S, the following conditions are 

equivaalent.

1) S is completely regular.

2) a e a2 Sa2 V a e S

3) S is left and right regular.

Proof :

(3) ^ (2) Let (3) hold i.e.

S is left and right regular.

So if a e S 3 x and ye S s.t.

2 . 2 a = xa and a = a y

2 2
To prove that a € a Sa 

2
a = ay = aay 

2
= a y a y

= a y x ay

- a2y x(a2y )

2
= a y x a

= a^(y x^) c? 
c 2 c 2Sa asx,yeS

So (2) holds.

y x2e s
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(2) ^>(1) Let at a2Sa2

To prove that S is completely regular.

2 2
a = a x a for some xe S

= a(axa) a i.e. a is regular.

Consider a(axa) and (axa) a

Claim

a(axa) = (axa) a

t= t \ t \ 2 2 2 2For a(axa) = (aa) xa = a xa = a xa xa 

and (axa)a = a x(aa) = a xa = a xa xa 

So claim proved 

^ S is completely regular, 

i.e. (2) ^ (1)

(1) (3) Let S is completly regular.

i.e. ae S, 3 x £S s.t.a = axa and ax = xa 

To prove that S is left and Right regular

Now

a = axa = (ax)a = (xa) a = xa

a = axa = a(xa) = a(ax) = a2x

2 . 2 i.e. a = xa and a = a x

So S is left regular and also right regular.

So (1) (3)

and hence proved.

Proposition 24 (a) .

A semigroup S is completely regular iff every bi­

ideal of S is semiprime.



Proof :

First we assume that S is completely regular.

Let A be any bi-ideal of S.
2Let a e A and a 6 S

Then it follows from proposition 23 that 
2 2

a € a Sag: ASA C A 

=> A is semiprime.

Conversly, Let every bi-ideal of S is semiprime.

Then since any one sided ideal of a semigroup S is bi­

ideal, every left and right ideal of S is semiprime

=?S is left and right regular.

^S is completely regular.
Hence proved.

Section 4 :

In this section definitions of B-pure Bi-ideal and
* *

B - pure semigroup are given. Some properties of B -pure

semigroup are discussed.

Definition 2.4.1 :

Semigroup S is called normal if aS = Sa V ae S 

Definition 2.4.2 :

Bi-ideal A of a semigroup S is called B-pure if 

A n xS = xA and A n Sx = Axy x€ S 

Definition 2.4.3 :
*

Semigroup S is called B - pure if every bi-ideal

of it is B-pure.



Proposition 24 (B) :

Normal regular semigroup is B - pure, semigroup

Proof :

First we prove that every bi-ideal of normal regular 

semigroup is ideal.

Let S be normal regular semigroup and let B be any bi-ideal 

of S i.e. BSBCB 

To prove that B is ideal 

i.e. BS CB and SB C B

Let b§ e BS i.e. b e B and se S 

As S is regular 3 q £ S s.t.

b = bqb

S° bs = bq b s { as S is normal }

= b q S'b 

€ B S B 

C B

So BS C B 

Similarly SB 9 B

i.e. B is ideal.

So in normal regular semigroup every bi-ideal is ideal.

Now let A be any bi-ideal of S 

To prove that A is B-pure 

i.e. A n x S = xA

Let a e A n x S



i.e. ae A and, a £ xS

i.e. P and S,S,£ S s.t.

a= aPa (regularity) and a = xs = s'x

So a = apa

= xsPaPa

€ x SA SA

= x(SA) SA

C x ASA 

C xA

(every bi-ideal is ideal 

in Normal regular semigroup)

A is bi-ideal

So A n x S C xA (D

For converse inclusion consider following.

xA C x S as A is bi-ideal of S 

also for normal regular semigroup every bi-ideal is ideal 

= xA C A

So xA C A n :< S ......... (2)

From (1) and (2) A n xS = xA 

Similarly A n Sx = Ax can be proved.

So A is B-pure bi-ideal.

But as A was any arbitrary bi-ideal 

We have S is B - pure.

Hence proved.

Let E(S) denote set of all idem potent elements of a

semigroup S.



Proposition 25 :
*

Let S be a B - pure semigroup. Then S has following 

properties

1) aS = a^S and Sa = Sa^ V" a £ S

2
2) For every a e S, a is completely regular .

3) S is normal.

4) E(S) is contained in the centre of S.

Proof :
(1) Let a be any element of S

Now aS is bi-ideal of S
{ As aS.S.aS C a S }

*
As S is B - pure, Bi-ideal aS of S is B-pure.

Then aS = aS n a S = a (aS) = a^S 

Similarly Sa = Sa^

(2) Let a be any element of S

Then by (1) we have

2 2 a £ aS = a S and ae Sa = Sa
2 2 i.e. a e a S and a e Sa
2

i.e. a e aS n Sa = a2 S n Sa2 = (a2)2Sn S(a_2)

Then it follows that 
2

a is both left and right regular.

So S is completely regular.

(3) Let a be any element of S

Then Sa is bi-ideal of S.

As S is B - pure semigroup,

12359



Sa is B-pure Bi-ideal of S.

By (1) we have

aS = a^S £. (Sa) S = Sa n SS£Sa 

So aS£ Sa

Similarly SaCaS \/ a £ S

i.e. Sa = aS Va £S 

So S is normal.

(4) Let aC S be any element and e £ E(S)

Then by (3) above

Sa = aS and Se = eS

i.e. x , y, p, q e S s.t.

ea = ax ae = ye ae = ep ea = qe

Consider

ea = qe = qee = eae = eep = ep = ae 

So ea = ae

i.e. E(S) is contained in the centre of S.

Definition 2.4.4 :

A semigroup S is called Archimedian if for each 

element a and b of S, g +ve integer n s.t. an e Sb S 

Proposition 26 :

For a B - pure semigroup S, 

equivalent.

1) S is Archimediann

2) SaS = SbS v e S

the following conditions are
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3) aS = bS ^ a,be S

4) aSa = bSbVa,be S

5) S has exactly one idempotent element.

6) Every bi-ideal of S is archimedian.

Proof :

(D => (2)

Let a and b be any elements of ,S. Then since S is

archimedian, 3 positive integer n ,s.t. a11 e Sb S

By proposition (25(1))

SaS = SaP S£S(SbS)S = (SS)b(SS) C SbS

Similarly SbS CSaS 

So SaS = SbS

(2) * (3)

Let SaS == SbS

To prove that aS = bS 
2

aS = a S =aaS £SaS = SbS = bSS C bS 

So aS C bS 

Similarly bS c aS 

So aS = bS

(3) = (4) Lei aS = bS V a,b e S

In particular a^S = b2S 

2 2
Now aSa = aaS C a S = b S = bbS = bSb 

So aSa C bSb

♦



Similarly bSb C aSa 

So aSa = bSb

(4) => (5) Let e and f be any two idempotents of S

Then as eSe = fSf v * and y in S 

s.t. e = f and f = eye 

Now e = fxf = ffxf = fe = eyee = eye = f

since E(S) is nonempty by proposition 25(2), S has 

exactly one idempotent.

(5) => (6)

Let A be any bi-ideal 

a and b be any elements of A.
9 oThen as a , b* are completely regular by proposition 

25(2) , elements x and y s.t.

2 2 2 a = a x a ,2 2 2b = b y b
2 2Since a x and b y are idempotents we have

2 u2a x = b y 

Then
3 2 , 2 2,a = a.a = a (a x a )

tv2 2 = a(b y) a

= ab (bya^)

£ Ab (ASA)

C AbA

= A is archimedian.

(6) ^>(1)

Trivially true.



Definition 2.4.5 :
-V"

Semigroup S is called weakly commutative if a,be S, 

3 +ve integer n s.t.

(ab)nebSa.

Proposition 27 :
2 2Let S be a semigroup s.t. aS = a S and Sa = Sa a e S. 

Then following conditions are equivalent.

1^ E(S) is contained in centre of S

2) S is normal

3) S is weakly commutative.

Proof :

(D £ (2)

2 2Let ae S. The a eS and a is completely regular 

So a^ is regular ~

3 x £S s.t. a =axa
2 2 Let a y be any element of aS(=a S)

2 2 2

2 2 Since xa is idempotent x a eE(S)
2 ,2 2,a y = (a x a ) y

= a2((xa2)y)

= a2(y(xa2))

= a2 (y(xa2) (xa2))

{ As completely regular
2

= left regular and xa is

= (a2y a2) a2

e Sa2 

= Sa

idempotent }

{ E(S) is contained in centre ofS}



So aS Q Sa 

Similarly Sa c a S 

So aS = Sa

=) S is normal

(2) $ (3) Let a and b be any elements of S

Then as S is normal 

ab eSb and ab€ aS

(ab) (Sb) (aS)

= (bS) (Sa)

= b(SS)a

C bSa

Thus S is weakly commutative.

(3) =» (1)

Let a be any element of S and e be any idem potent of S 

Since S is weakly commutative, we have 

(ae)ne eSa for some +ve integer n.

Then
n

ae = aee e aeS = (ae) S C (eSa)Sc eS 

So ae e eS

So 3 x in S s.t. ae = ex 

Similarly, 3 y in S s.t. 

ea = ye

So ae = ex

= eex 

= eae 

= yee

= ye 

= ea

gust mffr.

ca



So E(S) is contained in centre of S.

Proposition 28 :

For a semigroup S, following conditions are equivalent.

1) S is B - pure.
2

2) S is normal and Sa = Sa y a € S

Proof :

(1) (2) Trivial
. (2) =>(1)

Let (2) hold.

Let A be any bi-ideal of S and x be any element 

of S.

2 2 
Let a = x S be any element of A n x ,S(=A n x S)

2
Then it can be seen that x is regular, so

c , 2 2 23 ye S s.t. x = xyx

Since
O

ya £ Sa = Sa , 3 element ze S s.t.

2ya = za

Then since S is normal we have 

a = xS=(xyx)S=(x y)(x S) = (x y) a

= x2(ya) =x2(za2) = x((xz)a) a 

e x(Sa)a = x (aS) a C x (ASA) C xA

So A n xS C xA ......... (1)

Let xa (at:A) be any element of xA 

Then xa c Sa = Sa^ = aSa — ASA^. A

So xA C A



Since xA c xS

We have xA C A n xS ......... (2)

So From (1) and (2) A n xS = xA

Similarly it can be proved that A n Sx = Ax

So Bi-ideal A is B-pur©

As A was any arbitrary bi-ideal^

S is B - pure semigroup.


