C HAPTER--11I1

REGIONS OF UNIVALENCE FOR

CONVEXITY AND CLOSE=-TO=- CONVEXITY.

In this third chapter of dissertation, we have attempted to
obtain some results leading to the regions of univalence ,
particularly for convexity and close-to-convexity. In particular,
we have 1nvestigated these regions for ihe univalent functions
with second missing coefficient. We have also used the function

like P(z) = a, T (z-z)), 4introduced in the first
k=1

chapter, to determine these regions, under different conditions.

Particular cases and sharp results, wherever possible are

sited,
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R_EGIONS OF UNIVALENCE FOR

CONVEXITY AND CLOSE-TO- CONVEXITY.

INTRODUCTION :-

One of the classical and important problem of the
tInivalent function theory 1s to determine the regions of
univalence of given holomorphic functions, subjected to
the varieties of restrictions. This aspect of univalent
function theory has motivated us to determine the radii
of convexity and close-to-convexity of some holomorphic
functions.

Alexander [1] determined the radius of starlikeness of
z p(z) , where p(z) € P(n,1), Dieudonne [5] carried out

o
such considerations for z [p(z)] y where p(z) € P(n,1),
o« 1s a non  zero real number, Basgoze [3] has also carried
out several investigations under this heading. Barr [2] too
has done a lot of research work in this field. Causey [4] ,

Markes and wright [9] , Nunokawa [107] , Pflatzgraff [11]

Kulkarni - Thakare [8] , Royster [12] » Zdegler [13 ], have
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obtained very nice results by carrying out several researches

on the estimation of reglons of univalence.

§_§__gcr;on-_1__

The first section of this chapter deals with the
determination of radii of convexity of the univalent functions,
which are holomorphic and having second missing coefficient.
We in particular consider such holomorphic functions having

Taylor series expansion of the form,

o0
g(z)=2z+ azs + 2;:. ap z",

In our course of investigations we need the following

lemmas.
o0
Lemma $1.1:- If g(z) = z+az3 + Z4: ay 2" € s (), then
29" (2) (1-ct)+a|2| -a(1-2 x)[z!z‘- (1-20¢ )(1- =9 [2] 3
Re :} ' -
alz) (1=t a [z[+ afz? +(1-2) |2

0L axk, ]z[ = r<d1,
The proof of this can be found in [ 6] .

[emma :1.2:- If z = re19 ’y 24 = Rei¢ s and o 1s real .

then !

- r(R+r cosec ) el* 2 r (R-r cosx )

<Re —_—
\
z~24 R2-r

/AN

R2.12
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Lemma :1.3: [2] For < o<r <1 < R

Sty

R + r cosX 1 4 r cos¥
<<
R2 - 2 1 - 12
and
R - r cosaC 1 - r cosx
<
R2 - r2 1 -'r2

2) SOME THEOREMS 13-

Theorem :2.1:~ Let P be a polynomial of degree n belonging

to P(n,1), Let f be a function such that, £f(0) = 0 and

/n
(2.2) fl(z) = [p(z)] P - F(z), Where p= Qe“&

c §

(&)0), ¥ real and F(z) =z [g(z)] , where ¢ is a

é 3,3 n
non negative integer 0 £ y and g(z)=z+az” + 2 _a, z

4

holomorphic and starlike of ordere<, with 2nd missing

coefficient. Then for f and A (0L A<1), . we have. the

radius of convexity K\ given by the polynomial, H (r)
( 0£x<1)
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5[(1 ﬂ{)-}-ar-a(i-zt’(‘r -(1= 29 (1~ °()r3]
H(r) = (14c) + (1= = 2r 1057 23

€r(1+r ccs‘E\)
(1- x2)

Proof :~
Logarithmic differentiation of {2.2) and accustomed

computation ylelds,

[ .
£" z ' 2 '
z 9 B P
v+ — = (+c) +8 —— &
f
L ] g n P

Making use of lemmas 1.1, 1.2, and 1.3 we are led to

1

zf
Re 1+ —
fl

L

3 Ei-— o }+ar~a(1-2 0():2-(1-2 x){1- o(),_.a]

> (tec) <

(1= %) +ar + ar? + (1-o{)r3

gr{1+ T cos’g\)

(1=~ r2)
Cozg" '
Thus Re 1-;--,.*7_ >.x y for Jz
b i

pelynomial, H(r).

<r, if r is given by the above
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For-0(=0, we c~n state tho result for s'(o) = s' functions,

which is surprisingly a new results

3 N n »
Corollary :- If g(z) = z + az" + 2 a, z belongs toS ,
4
the remaining conditions as usual in theorem 2.1 . We get the

radius of convexity by the following polynomial, H(r).
6[1 + ar - ar? - 3] €r (141 cost )

1 + ar + ar? - 13 | (1- r2)

H(r) = (1+¢) +

We now proceed to arbitrate the region of ‘>\ - convexity
of holomorphic functions whose derivatives involve polynomials
of degree m + n so that m of the zeros lle in the annulus and
also involve starlike function of order & having second
missing coefficient.

Theorem 3 2.2 :-

Let f be a function such that £f(0 ) = 0

2" [p(z)f [r(z)]”

Where p is a polynomlial of degree m+ny, F is starlike of order

and (2.3 ) f. (z)

6 (0 < $ < 1) y X>0 and P is any non negative real
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number. Further let m of tho zeros of p lie in the
annulus 0< dg|z| < D and the remaining n lie in

|z] 7 D. Then for £, K 3, T, where ris the

r&ot of the equation given by the polynomial H(r) = 0
(1- 6 )+ ar-a(1-2 §)r? 6(1'28 )(1-§) £
(1-5) + ar + ar2 +(1-§ ) r3

—

where H(r) = F

oL mr Anr
d-r D-r
Proof :-~ By carrying out the customary calculations we

obtain from (2.3)

" ] ?

zf zp F

1+ — = o{ + Fz —
f! p F

Now F(z) is starlike of order § , with second missing coefficients

so0 inview of lemma 1.1 we can use

zF (1= §)+ar ~a(1-2 S)r2 - (1-26)(1- 8) r3

Re) ——
e ;;;
F (1- §)+ar + ar

2 +(1= §)r°
with,z{ = T.

In view of this and taking into consideration the location

of m and n zeros of p(z),we obtain
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2£ (1- §)+ar - a(1-26) 12 -(1-26 )(1- §)r°
Re 1+ ) >/P ; -
£ (1- £)+ar + ar?+(1-6) r
Amr i nr
) d-r D=x

Thus f is convex of order A with its radius of convexity
K)\>r, where r is the root of the equation H(r) = 0, H(r)
given as in statement of theorem.

A simple calculation shows that tHe root lies between 0 and
1. '

For § ={'we get the radius of convexity for starlike
functions, which is again a surprising result and can be stated
as follows.

Corollary :- Keeping § ={)in the above Theorem 2.2 and the
other condition remaining the same, we get the radius of
convexity given by the polynomial,

r (-2 p) +r4B p(4+a) = ha+ o(a(nllﬁ-m‘)]

+ r3ZdD +#2 AdD +oXa(=Dm=Dn+m+n) + A a(-D +d2]

+ r( ~2aDP + ab (3= \)+ d Na(-D + 1) =onD a__)]

+ rl(-2pp - 2dp +nda (P"’\)]
So far we restricted ourselves to polynomials, YioW we

shall prefer rational functions which are quotients of
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polynomials that are the members of P(m,1) and P(n,1) with
m>1, n > 0, more categorically, we have,

Theorem :2.3:~ Let f be a function such that £(0) =0 and

' M(z) P £
(2.4) £ (z2) = (z ) [F(z)]

N(z)

Where F(z) is starlike of order & with second missing
coefficlent, M and N are polynomials of degree m 21yn>0
respectively and all the zeros of both M ar;d N lie outside
or on the unii circle, P = ‘{eiEs( >0, Rreal) 040(.

Then for £ and X (0K \<1) we have |¢ > r, where r is the

root of the equation, H(r) = 0’ where c< §<¢ 14

H(r) = r6(2°()+r5[8 =1+ (1-3 4 & m cosy (§ -1) +4n cos;\(1~s)~')g+
+ r4[-a+o<(-2£-1 M4Sm(=1+ & ~acos g )+ S n(~145+ a cosy, N+
+ r3[-a+1- §+& (3¢ ~a=1)+ gma(-1- cos ¥ )+ na(~1+cosy, )-
- Aee )]
+ 1 Flegeaax(3s -2)4¢m(-a-cos ¢ + Scost, ) +
+8n (-atcos g+ bcosk)-A+ \§

+ r[a+o< a+ gm(-ucf )+ n(=1+8 )+ a)i]w[ﬂeu)\-)\q
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Proof :=- The routine calculation yields,

" ' ' '

z2f X zF zM zN
; = + 1 + P -

f r M N

Letrz“ 20y seeee Zo be the zeros of M(z) and 20140 *ccer Zmup

be the zeros of M(z). We in view of lemmas 1.1, 1.2 and 1.3

we get

)

zfm e([ (1-£)+ar-a(1-28)r2-(1-2’£)(1-6) x’]

Re 14 —| 21+ -
i £’ (1- §)+ ar + ar?.+ (1= §) 3
emr (1+ r cos % ) Qnr(1- r cos¥ )
(1- 2) (1-22)

j' 2f
Evidently, Re '\L1+ - >>\ and the radius of convexity 1is
f

given by the polynomial H(r) = O.
H(r) = r9(2)+r” [g-14x(1-30)+ ¥m cosk_( & -1)+en cogf1-8)-)1] +
b x [-aboc (=261 )+m(-148-a costH_n(-1+8+ a cos )] +
+ 1 Ea+1—5 + X (3ct-a~1 )+gma(-1-cosg)+gna(-1+cosi)-)‘a+)\] +
+ r2{-1+48+2+%(36-2)+gm(-a-cost#§cosn)+qn(-a+cosp+ 6 cogg)-) + ,\5] 4

+ r[a+o<a+gn(-1+ S’)ﬁn(q +S5) + a}\] +I—1+o< +A —)\S}
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Lastly we state a simple result, by puttings =Q, which
is surpris;ngly, a new result for starlike functions with second
missing coefficient.

Corollary := We put . §=¢, in (2.4) and the remaining
conditions. same as in theorem (2.3), we get the radius of
convexity, which is given by the equation

r6(2o< )+r5(—3<>c2+o<->\-1 )+ r4(-§ ma cos;\d—(n a cosy -3x-a) +
+ r3[3°(2- éma cost_+¢mn cosg\-&a(-m—n-o(-z-/\ )] +

+ r2(2Qn cost- €ma -Qna«K+a) + r{ax+a)+2a+1) +(1+¢ )

§ SECTITON=-1IT1
1, In the second section of this current chapter, we
are going to undertake the study of searching the regions of
univalence for close~to-convex functions. The several
researchers have carried out 1nvestigat16ns in obtaining the
radii of discs of close-to-convex functions in the detailed
discussion of which we are not going to enter.
For our analysis, we shall select p & P(n,1) to have
n .
the form, p(z) = QT (z-2y) with! W |> 1 and a; is to be
1
aopropriately selected, so that the resulting functions are

normalised. We obtain the radiil of close-~to-convexity to
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such integral forms, which consists of functions having the

Taylor series exnansions of the type
(o) n
f(z)=a+az3+2:anz'
4

i.e. with second missing coefficient form.

In the course of investigation, we need the following lemmas.
Lemma :2.1.% :- [2]

If z = rel® s Z4= Re 1p s where 0< r <R, then

z r
< i) <

R+r

-X

R-r

Equality holds in the first inequality if and only if

T :
z = — 24 and in the second inequality if and only if
R '
-r
zZ= — 2
R 1

This can be found in Basgdze [3].

The following is the characterization &f Kaplan [7]

of close-to-convex functions.

Lehma $2,1.2:~- Let f be a holomorphic function in IzJ< Ty

(r < 1) and £’ (z) # 0, on Izl =r, Iff € C then

0, | i
- 7 4 [Re(i-o--i:—,) de <'n'+2'n'

S
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Where 0 § <6, < 27T, Conversely each of the inequalities

separately implies that ¢ € C

MAIN THEOREMS

Theorem 32.3.1.%-

p

Let f(z)=a+a23+;§ a, zn, be 5*(0(), 0< x<1

€ P(n,t1), ¢v€ K, K denoting the class of convex functions.

0<6 4, 0£e< 1, then the function F defined by the

expression

F(z) =

§

z fét)

Pt)

A
n
(}(tf) dt is close-to-gonvex

in the disc, the - radius of which is given by H(r) = 0, where

H(r) is given by

H(r) = r4v(o<- 1436 +4 2§ =7 8¢ -2Q +2Qc¢ ) +

+ o ( ~a+1- X =38 47 § < -—4«25 +3 6 a-4%§a-2 R a)+
+ r2(4%8 a -4 8 a=2 Qalir(x+a~1 +da+dk - § 42¢x -2 )}

+ (1 -X+8§ - ExX ) =o0.

Proof :- By routine computations, using logarithmic

differentiation, we are led to
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zF 1 E zf 20y zp
! / R
1+ | = i . +1
I
L
F f n p
_ 1L P _
Therefore because of Lemmas 2.1.1., 2.1.2, we have
(9 '
2 153 zf 0 29
Re 1+—-—-— de = fie +£fne__. de-s Re de
9' g,
IR z
+ i Re i - de
n 1 zZ~2z
0, k
B 2 ]
3
&[h—o()-&ar-a {1-2o)r -(1-2o<)(1-°<)rJ R 5
= (5-g)|1+ ——— e ST
(1-)+ ar + ar? + (1-< )r3

(1-x)- 2
e

i

Thus upon using Kaplan's result, we conclude that, F(z).

is close-to=convex in the disc, the redius of which is given

by the polynomial, as stated in Theorem 2.3.1.

We conslider the following functions for sharpness.
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“h(1-4)

(1 o()i-O(
3(1-9)-Q

z

f (z)
o,

1-L - 1-
(v2) [0 (1mmadzs (1))

a n. A
0< ag1, whemever —— g1, p(z) =(1-t) , QS(z) =
1= (1+2)

We shall see that theorem 2.3.1, subeumes as
special cases several results which seem to be new.

For 6=0, and € =1, we shall get the theorem 2.5 as

derived by Barr [ PP, 19 ] .
For §=0 and =n, we shall get theorem 2.8 of Barr

[ppy 22] from above theorem.

For =0 we get a result for starlike functions with

second missing coefficients, which seems to be new.
*

Corollary :~ Suppose that f € S, p € P(pj1),p€e KK

denoting the class of convex functions 0L 8< 1, 0< <1

— ~—~ ?

th@n the function J defined by the expression

z [e(t)\d e/
‘5‘(2) = (p(t) dt is close~to-convex in the

o \@(t)

disc, the radius of which is: given by the equation H(r) = 0
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r"‘(-1+ 38 -2 )+ r3 (-a + 1-38 +3§a - 2R a)
+ r2(-4§a-2§a) + r(a-1 +8a- §-2Q) + (1+8) =0
This result is not found in literature.

Theorem :2.3.2 :~ Let f be holomorphic function belonging

to the class S*(o( ), starlike of orderc(, with second missing
coefficient, 0 < x<1,c 1is an integer greater than = 1

g 1s convex, p € P(n,1)y, 6 » 7, )\ are non negative real

numbers then

z &

c-1 [f(t) g(t) Y §/n

F(z) = t _ (p(t) dt

) /

t t

is close-to-convex, in a disc,  the radius of which is given by
the polynomial,
P [(-x)2 e -y - 4x§ -2 #D)]F
+ 13 [2(1—«-a) (c- &= V/2) =2 § (1-2)(1-)=2ak +(1- = )-a | 4
+r2r4o(a8-4a8 -2a>~] +r[2 ac=ay-2c¢ +V+2 c-; KY=20 (1= o« )+a ~(1-o¢ )]+
+E1-o<)2 [ e-8-Y27 + (1-%¢) C 28+ )]

Proof :- By conventional calculatlions we can write down,

: f
t4--— = (c =&-)) +8(—z——- )+Y(—z—?—) + A (—z——‘-)-)
f g P
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and therefore in view of lemmas 2.1.1, 2.1.2,‘ we have
92_ "

zF
Re(1+—-———')d®

0, F

>(Qi' 9') ?c-{- 9/2)+{(1-°<)+ar-a (1-2&)1-2 -(1-2&)(1-&)23:1 )\r-
- —>
(1= )+ ar + ar2 + (1= )3 1-r

-

-

On applying Kaplan's result, we conclude that F(z) is
close-to-convex in |z|« r, where the radius of close-to-convexity
is given by the polynomial as given in the statement of the
theorem.,

We consider the following functions for sharpness.

—

1= 2(1-«)
e FrE
3(1-x)-a
fa’<(z)=z '
1=k - ’~ 1 = |
L(_1+z) 2 E1-°()22~(1-e(-l)z+(1-o<zl _‘1
Whenever 2 <1 , gfz) = y p(z) = (1"*-)"
(1-) (1+2)

It may be seen that, for ) =0, c = 1, and A = f , we shall

flet the following new result,

»
Corollary : 1 :- Suppose f € S (c<), starlike of order(,

with second missing coefficient, p € P(n,t), then F(z) given

by .
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A
§
F(z)—j (f(t)) Q/Y\
— Q)(t) dt
0 t

is close to convex in }z|<;r, where r 1sfgiven by the

polynomial

| ~ 2
H(x) = 1* [(1-¢)(1-406-22 ) ] 413 [2-2¢-2a~4848 +2a § ~4otE ]+

+ r2[4o(a5 -4a§ -2ag]+r[3a-3+3o< -2¢(1-«) J+[(1-¢) 3 ]
This result is not found in  literature.
In the next development, we shall obtain a particular case
‘of a result of Barr [2] but with a function having second
missing coefficient for the following substi@utions,
c=A=8=1 and =Y = 0. So we have
Corollary :2 :- Let

z
£(t) 1/
F(z) = ,/‘ (—~—.)(b(t)) " dt
t

5 :

f € s', starlike having second missing coefficient,
p € P(n, 1) then F is close—to-convex“ for |z|«ry where r
is given by the polynomial
H(r) = -3 (143a) = 6 ar2 + r(3a-5)+3

This result is also a surprisingly new one.
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Theorem :2.3.3:~ Suppose that F(z) is given by

o)

z p/n g(t) E\

P = f (i) i (f(t)> at
0 t

where p € P(n,1), g € K,oéd(t’ 6;}0,,3 > 0, and

£ e s (o< )y with second missing coefficient. Then F

1s close-to-convex in |z| L r, where the radius of close-to-

convexity is given by the polynomial,

2
‘H (r) = Ar5+Br4+Cr3+Dr+Er+ F

the root lying between 0 and 1, where

A = (1-x) {- ph - 2z h = h -7}
B = [-8h (1= <)-pn(1= )-pha-2<tba - ha = T\ a |
C = §h(1-c9-Sha-2pha - 2§ h (1= <)2-2tha+(1-o) (h+7) -a(her )

D - ="Tla=T\(1~-)+ha=-h( 1-&)-Bha=ph (1=) -2hy a(1- )

m
il

(Sha - 8§h(1-x)- Bh (1-o()+ ha +7¥ a)

-
]

(1<) [$h +¥h + h +71]

Proof :- By usual computations, we obtain

2F" 2g AL 2 2
il N B >0 ___), .
T F' <g) ¥ n 1 z-zK+ k(f (1 &5)
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By applying a lemmas (1.1), (2.1.1.) we obtain,

© "
= 2F Sh prh

Re |1 + o do > P P

E h (:( 1=c)+ar-a(1 -200:2-( 1=200) (1=ex) rﬂ]
+ — <41 {)\\} iy

(1=-Q+ ar + ar + (1-x)

Which in view of Kaplan's result helps to conclude that F(z)
is close-to-convex in lzl < r 4 where the radius of close~
to-convexity 1s given by the polynomial stated above in the

statement of theorem.,

For sharpness, we consider the following functions,:

— 1= J201- )
(1=-X) SRS
3(1=K )=a
fa’a((z) =z » !
i1+z)1~ -aB1-—o()22-(1-o(-a)z +(1=0q] % |
a
Whenever <1, pl(z)= (1~ t)", g(z) = .
1~ (1+2)

ForA =0, we get a very interesting result for starlike functions,
with second missing coefficient.
Corollary :- Suppose that F(z) is given by

z p/n g(t) 3 k.
Flz) = | (p(t)) ) ()t e

0 t
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Then F(z) 1s close-to-convex in ,z!( Ty glven by the
polyhomial H(r) = Ar5 + Br? 4 C:r3 + Dr? + Er + F, where
A = (-’Bh - h - )

B = (-5h-—Ph-Pha-ha -7 a)

@]
H

(6h ~8ha -2 Pha = 2 ¥h=2%ha + (h+70)-a (her) )
D'=7§a-ﬁ+ha-h-Pha-Ph-2h}Sa

E = &ha -§h =~ Ph + ha +xa

F = Sh +‘g\h+h+7\ .

This result is entirely new one.

We conclude our findings of regions of close-to-convexity
by considering the rational function M(z) /N(z),

M € P(my Ry) and N ¢ P( ny, Ry) with Rys Ry > 1,

m>1, n>» 0y in the. integral form.

Theorem :-2.3.4 :~ Let 0 £ « < 1,8%0,p > o
*
P €P(nyt)and rf ¢ g (<), starlike functions of ordero(,

having second missing ceefficients. Then F(z) given by

I'd 1
z / f(t) 0 M(t) ?
p/n
F (2) = /(p(t)) — —_— dt
0 \ t N(t)

is clése-to-convex in ]zl < r where r is the rodt of the
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polynomial given by H(r) where,
(1= o) + ar = a(1-2< ) £2 = (1-2&) (1- ) £3
Hiz) = [M (1-¢) + ar + ar? + (1=« ) £3 )

2 4 » N
- —£-+U-M+ Q(»L-+ )
(1-2) Ry=1 Ry + 1

Proof :~ By conventional calculations we are led to

zF" 2f" Pz [ m N
1+ —=§ — & § ‘ +{(1= ERQ — 4 —
: —
F' £ n 1 2z Ry=1 Rt |

Application of the Lemmas 2.1.1, 2.1.2, yields.
D2

zF"
Re 1 + —_— ds
F
6|

> (6’1'94) FSU- K) + ar - a (1-2&) r2 - (1-20(1-) 13

(1-X) + ar + ar? + (1= ) 3

Pr M N
- — + (1-8)+ g + 7:]]—
(1-1) | Ry = 1 Ry + 1

-

If we treat (@1- 6)’) as h, then because of Kaplan's result,

previously stated, we directly conclude that,
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».5(1- X) + ar - a (1-24 ) r - (1-2 = )( 1-X) r3

— ————.

(1~ <)+ ar + ar® + (1-R) r’

Pr T M N i

+(1-5)+Q —_— 4+

>
(1-r) Ryt R+

2

F(z) is close-to-convex in[z|.<; ryas given in the statement

of the theorem.

The result is sharp for the following functions

fa;x (z) = 2z

B 1- ot B(1-«)

(1- ) —_—

— (1=-X)=a

——

1=-K=a) ; 1
L(“’ z) Ei'd)zz-(i-xjfa) z+ (1’-%?} J

{1 oplz) == )"
Whenever —_— plz) =(1-¢t) .

This above stated result is quite new and not found in

literature,
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