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REGIONS OF UNIV ALENCE FOR 

CONVEXITY AND CLOSE-TO - CONVEXITY.

ABSTRACT

In this third chapter of dissertatlon9 we have attempted to 

obtain some results leading to the regions of univalence 9 

particularly for convexity and close-to-convexity* In particular 

we have investigated these regions for the univalent functions 

with second missing coefficient. We have also used the function
Y\

like P(z) (z-zk)t introduced in the first

»

chapter, to determine these regions, under different conditions. 

Particular cases and sharp results, wherever possible are

sited*



• • 50 • •

R EGIONS 01 U NIVAJ, E K£ E....J_ Q R

CONVEXITY AMP CL OSE-TO - CONVEXITY.

INTRODUCT ION 8-

One of the classical and important problem of the 

Univalent function theory is to determine the regions of 

univalence of given holomorphic functions, subjected to 

the varieties of restrictions. This aspect of univalent 

function theory has motivated us to determine the radii 

of convexity and close-to-convexity of some holomorphic 

functions.

Alexander f1] determined the radius of starlikeness of 

z p(z) , where p(z) £ P(n,1), Dieudonne [5^ carried out

such considerations for z where p(z) £ P(n,1),

o<. is non zero real number, Basgoze [3] has also carried 

out several investigations under this heading. Barr [2] too 

has done a lot of research work in this field. Causey [4] , 

Markes and Wright [9J , Nunokawa £10] > Pflatzgraff jjf] 

Kulkarni - Thakare £8] , Royster [12J , Ziegler [j3 ], have
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obtained very nice results by carrying out several researches 

on the estimation of regions o^ univaience.

§ s-E-c-T-I-°-N-^J-

The first section of this chapter deals with the 

determination of radii of convexity of the univalent functions , 

which are holomorphic and having second missing coefficient.

We in particular consider such holomorphic functions having 

Taylor series expansion of the form,
QOv

g (2) = 2 + az3 + 5Z2 an zn,
4

In our course of investigations we need the following

lemmas.
00

Lemma i1.1:- If g(z) = z+az3 + 5 l aR zn G S* ( «< ), then
4

fzg*(z)^
Re >

(1-<*)+a|z| -a(1-2 oc)|z| 2 - (1-2<* )(1-®<)jz

(1 - o<)+ a |z|+ alzl2 +(1-o<.) fzf3
|Zig(z)

O^a^.1, | z| * r < 1,

The proof of this can be found in £ 6^J .

Lemma :1.2s- If z * rei6> , Zy = Re1^ , and oC is real 

then J

- r(R+r cos«< )

R2.r2
4

i<Ke z '
Re

z-s

4

j

r (R-r cos« )

R2-r2
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Lemma :1«3: For < o <.r <. 1 R

R + r cosc*

2 2 R - r*

1 + r cos<*

1 - r4

and

R - r cos<x 1 - r cosoc

_2 2 R - r 1 - r

2) SOME THEOREMS l-

Theorem ;2.1Let P be a polynomial of degree n belonging

to P(n,1), Let f be a function such that, f(0) ■ 0 and

(2.2) f (z) = £ p(z) "J ^ * F(z), Where p « ^ e*K

C r $( ^^0) , ^ real and F(z) = z [g(z)j , where c is a

non negative integer 0 , and g(z)«z+az^ + 5I2an z”
4

holomorphic and starlike of ordered , with 2nd missing

coefficient. Then for f and X (0^ X<1), . we have the

radius of convexity given by the polynomial,H (r) (

£ o ^PC<1 )
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H(r) =
(Uc) + ^1 ~^*ar~a(1 -o- ?*)(1- o(,r3]

0-°0 + ar -t?r2 +{1-o()r3

3.r(1+r co$^)
<7- r2)

Proof

Logarithmic differentiation of (2.2) and accustomed

computation yields,

zf
1 +

zg

- (1 +c) +
P 2p

n

Making use of lemmas 1.1, 1.2, and 1.3 we are led to

zf

Re 1 +

L
£ (1-o(}+ar-a(l-2 <K)r2~(t~2 cx)( t- <<)x3l 

(t+cj ----------- ------------------------- ^
(t- <x) +ar + ar^ + (1-oOr3

^r{1+ r cos

O- r2)

Thus Re t+- zf
> \ , for J z|<^r, if r is given by the above

polynomial, H(r).
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Por o^=0, we c^n state th” result for S (0) =* S functions

which is surprisingly a new result,-
o°Corollary If g(z) = z + az3 + ^> ! nan z belongs to 5* »4

the remaining conditions as usual in theorem 2.1 . We get the 

rQflius of convexity by the following polynomial, H(r),
£ £ 1 + ar - ar2 - r3] (1+r cos^ )

H(r) * (1+e) + 1 + ar + ar2 - r3 (1- r2)

We now proceed to arbitrate the region of A - convexity 

of holomorphic functions whose derivatives involve polynomials 

of degree m + n so that m of the zeros lie in the annulus and 

also involve starlike function of order S having second 

missing coefficient.

Theorem s 2.2

Let f be a function such that f(0 ) = 0

Where p is a polynomial of degree m+n, F is starlike of order

8 (0 £ •< 1) , *>0 and B is any non negative real
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number. Further let m of th" zeros of p lie in the 

annulus 0 d^ | z| < D and the remaining n lie in

| z | D. Then for f f ^ r, where r is the

root of the equation given by the polynomial H(r) ’
(1-6)+ ar-a(1-2 $ )r2 -(1-2 S 5(1" $ ) 

p —where H(r)

<X mr 
d-r

(1- S ) + ar + ar2 +(1-S ) r3 
oCn r

Proof s— By carrying out the customary calculations we

obtain from (2.3)

Mow F(z) is starlike of order £ , with second missing coefficients

so Inview of lemma 1.1 we can use

(1- £)+ar -a(1-2 S)r2 - (1-2 6)(1- 6) r3

(1- fi'J+ar + ar2 +(1- &)rc

with J z| = r.

In view of this and taking into consideration the location 

of m and n zeros of pCzJ^we obtain
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r *\
zf

Re < 1 +

(1- S)+ar - a(1-2U r2 -(1-2& )(1- 6 )r3

>P
L_

c< mr

(1- £ )+ar + ar2+(1- & ) r^ 

<nr

d-r D-r

Thus f is convex of order X with its radius of convexity 

J^^r, where r is the root of the equation H(r) = 0, H(r) 

given as in statement of theorem.

A simple calculation shows that the root lies between 0 and

1.

For £ *=Owe get the radios of convexity for starlike 

functions, which is again a surprising result and can be stated 

as follows.

Corollary Keeping S =Oin the above Theorem 2.2 and the

other condition remaining the same, we get the radius of 

convexity given by the polynomial,

r5 (-2 p) +r4[l p(4+a) -Aa+ <*a(m+nXJ

+ Aa(-D +d)

+ r2[T -2aDp + aD (3- \)+ d A a(-D ♦ 1) -*nD 

+ r [(-2 D p - 2dp +Dda (p-A)]

So far we restricted ourselves to polynomials^ nfjow we

r^J(dD +2 AdD + o< a(-Dm-Dn+m+n)

shall prefer rational functions which are quotients of
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polynomials that are the members of P(m,1) and P(n,1) with 

m^1, n 0, more categorically, we have,

Theorem :2.3:-» Let f be a function such that f(0) =0 and
M(z)\P c<
«7> [«■>]

(2.4) f (z) a

Where F(z) is starlike of orderS- with second missing

coefficient, M and N are polynomials of degree m ^,1, n >• 0
(

respectively and all the zeros of both M and N lie outside 

or on the uni1 circle, f * ^ ( % > 0, ^real^ 0 4o<

Then for f and X (0^\<1) we have r, where r is the

root of the equation, H(r) « 0^ where o < £ < A

H(r) = r6(2o()+r5[s-1 + o«1-3c<)+^rn cos^( $ -1 5 4^n cos^(l-*)-XJf- 

+ r4|~-a+o<(-2<5-i )4^m(-l4 £ -acos^ )+ ^ n(-l4 g 4 a co%\ )j+

+ r^-a+1-S + o< (3c<-a-1)+ %ma(-1- cos\>4 ^na(-l4cos\ )-

- X a+ X]

+ r2 j“1 + £ 40.4 e<(3 S -2>4^m(-a-C0S^4 £cos^ ) -f*

4$n f-a4cos ^4 6 cos ^ )-X 4- X5]

4 r[a4<*a4 ^m(-l4cf )+%n(-1+^ )+ aXJ ,4 jj+ c<+A-AAJ
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Proof The routine calculation yields,

zf 7.P

r
+ 1 + r zM

M

zN

N

Let zl9 z2t .........2m be the zeros of and zm+1 * m-*n

be the zeros of M(z). We in view of lemmas 1.1, 1.2 and 1.3

we get

zf"

Re 1 +

<[ (1-&)+ar-a(1-2&)r2-(1-20(1-<&) r3]

^1+

(1- 4 )+ ar + ar^ .+ (1- & ) r3

^mr (1+ r cos )

0- r2)

Evidently, Re jl+ and the radius of convexity is

given by the polynomial H(r) - 0.

H(r) a r6(2«< )+r5 [&-1+o<(l-3e<)+cos^(S-1)+^n co$£l-fe)-X] + 

+ r £-a+c< (-25-1)+ etm(-1+£-a cosT^H^n(“^+^ + a cos ^)J f- 

+ r3 jja+1-5 +o<(3o(i*a-1 )+^ma(-1-cos^)+^na(-1+cos^)-Aa+ AJ H 

+ r2'tjl+i+a+K(3S-2)+^m(-a-cos^fScos^)+^n(-a+cost+ 6 cos^-\ + X£j

‘^a+<Ka+^m(-1+ £)-^n(-1 +S) + aXj +£l+<* +X 1

^nr(1- r cos^ )

*

(1-r2)

+ r
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Lastly we state a simple result, by putting 5 which
4

is surprisingly, a n^w result for starlike functions with second 

missing coefficient.

Corollary :- We put . & = in (2.4) and the remaining 

conditions' same as in theorem (2.3), we get the radius of 

convexity, which is given by the equation

r6(2od )+r5(-3c/2+c<-\-i )+ r4(-^, m a cos^+^n a cosfc^ -3c<-c\) -f

+ r^p*2- ^ma cos^+^mn cos^+a(-m-n-o<-2 - A -f

+ r2(2^n cos|>- ^ma -^na-K<+a) + r(a<*+aA+2a+1) +(1+* )

SEC TIP N -I I
1. In the second section of this current chapter, we

are going to undertake the study of searching the regions of

univalence for close-to-convex functions. The several

researchers have carried out investigations in obtaining the

radii of discs of close-to-convex functions in the detailed

discussion of which we are not going to enter.

For our analysis, we shall select p s. P(n,1) to have 
n

the form, p(z) = aQ-pp (z-z^) with J z^ J*^ 1 and aQ is to be
1

appropriately selected, so that the resulting functions are 

normalised. We obtain the radii of close-to-convexity to
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such integral forms, which consists of functions having the

Taylor series expansions of thrt type

00
f(z) = a + az3 + J22 an zn

4

i.e. with second missing coefficient form.

In the course of investigation, we need the following lemmas. 

Lemma [ 2]

If z = re10 , Z1= Re ^ , where 0 < r <R, then

- r

R-r
Re .

r

z-z\ R + r

z =

Equality holds in the first inequality if and only if 

r
— z. and in the second inequality if and only if R
-r

z = --- z
R 1

This can be found in Basgoze £ 3 J 

The following is the characterization 6f Kaplan [7] 

of close-to-convex functions.

Lemma :2.1.2t- Let f be a holomorphic function in |zj<r,

(r 1 ) and f (z) ^ 0, on | z| ■ r, If f 6 C then
©*.

4- M

7T Zf de Tt + 27YRe (1 +
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Where 0 ^ §i ^ • Conversely each of the inequalities

separately implies that f C C t

MAIN THEOREMS

Theorem :2.3.1.H

Let f(z) = a + az3+^^ an z°, be s* ( ®C ), <*<1
4

P G P(n,1), <p G K, K denoting the class of convex functions. 

0£ 8 , 0^ ^ 1, then the function P defined by the

expression

F(z) * / 'f(t)

v.0( t)~J ^p(t)^ dt is close-to-*onvex

in the disc, the radius of which is given by H(r) = 0, where 

H(r) is given by
A AH(r) = r (*- 1+3&+4oC£ -7 8* -2€,+2^cx ) -j-

+ r3 ( -a+1- o< -36+7 £-< —4c<2£ +3 S a-4«(£a-2 S a)-f-

2+ r (4<*S a -4 £ a-2 ^a)+r(o<+a-1 + £a+c&<- S-|-2^<-2^ )-f-

+ (1 - <K + & - £o< ) = 0.

Proof By routine computations, using logarithmic

differentiation, we are led to
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N

zF
1 +-----

t
F

1
ii
| 3 s

zf

f

1 

+ 1

P n

Therefore because of Lemmas 2.1.1., 2.1.2, we have

0*> " 0, ■ *
Re 1 +

zF

t
F J

^2. Zf 01 2 p
de = j d© +£ | Re— de - £ / Re .__

f s*
de

0, fi.

A

n J
Re
£

0|
Z*“Z,

de

> <Q-e.)
)+ar-a (1-a«)r2-(1-2oO(1-^)r®J <{r £

(1-o<)+ ar + ar2 + (1-c<)r3 (1-y)' 2
>-7T

Thus upon using Kaplan’s result, we conclude that, F(z) 

is close-to-convex in the disc, the radius of which is given 

by the polynomial, as stated in Theorem 2.3.1.

We consider the following functions for sharpness.
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f (z) 
a,c<

0-®<>
1-o< 2(1-*)

1 “ ^ —a r a -.1 —*
(1+z) [(I-1*.)z^-( 1-<x.-a)z+(1-cxl )j J

a n z
0 ^ a ^ 1, whenever ---^1* p(z) =(1“t)n, fi(z) =

1-o< ' (1+z)

We shall see that theorem 2.3,1, subaumes as 

special cases several results which seem to be new.

For 6 =0, and *<=1, we shall get the theorem 2.5 as 

derived by Barr £ p£,19 J .

For <5=0 and ^,=n, we shall get theorem 2.8 of Barr 

Jjpp, 22j from above theorem.

For©<.=0 we get a result for starlike functions with 

second missing coefficients, which seems to be new.

Corollary »- Suppose that f G S p 6 P(p*1) <6 G K, k 

denoting the class of convex functions 1, 0^. 1,

thhn the function cf defined by the expression

disc, the radius of which is given by the equation H(r) = 0
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r4(_i+ 3 & -2 ^ ) + r3 (-a + 1-3 & +3 £ a - 2 ^ a)

+ r2(-4<T a-2 ^a) + r(a-1 +«5 a- 6 - 2<^ ) + (1+ £) = 0 

This result is not found in literature.

Theorem *2.3.2 Let f be holomorphic function belonging 

to the class S*(oC ), starlike of order cX, with second missing 

coefficient, 0 ^ <*< 1, c is an integer greater that's: 1 

g is convex, p 6 P(n,1), £ ,V, X are non negative real

numbers then

is close-to-convex, in a disc, the radius of which is given by

the polynomial,

r4 [(1-oO(2 c - y - 4<*£ - 2 X +1)] +

+ r3 J^2(1-<x-a) (c- £- v/2) -2 S (1-2c*)(1-©0-2a\+(1-ot)-a]+ 

+r2|40(aS-4a& -2as]+r[2 ac-aV-2c +Y+2c*c- *V-2X(1-c( )+a -(1-oc jTJ + 

+ I(l-o0 2. [ c- £ - v/2 ] + C25+1

Proof By conventional calculations we can write down,

n * 1 *zF zf zg v zp
1 +------- = (c -£->») + 8 (-----)+ y(------ ) + A (—-)

F f g P
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and therefore in view of lemmas 2.1.1, 2,1.2, we have
« zF

Re ( 1 +---; ) de
e,

>«fc e,5 (c-g- V/2)+^(1-oc)+ar-a (1-2*)r2 -(1-2*)(1-*)*^J Ar

(1 - <* )+ ar + ar2 + (1 - <x Jr3 1 -r
>-TT

On applying Kaplan’s result, we conclude that F(z) is 

close-to-convex in |z)<r, where the radius of close-to-convexity 

is given by the polynomial as given in the statement of the 

theorem.

We consider the following functions for sharpness.

f (z) a»<

—11-oC
- o< ) 2(1-K)

3(1-«x)-a

4O+z)1"*'8 |{1-«)*2-<1-*«)z+(1-*jf

Whenever --- - ^1 , g(z) = ____  , p(z) « (1-t)n
(1-c<) (1+z)

It may be seen that, fpr V =0, c =* 1, and X = ^ , we shill 

fet the following new result.
* , %Corollary : 1 Suppose f 6 S (c<), starlike of orders, 

with second missing coefficient, p G P(n,i), then F(z) given

by
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is close to convex in | z |< r, where r is given by the 

polynomial
2H(r5 = r4 )] +r3[2-2<-2a-4«f+8°<S+2a£ -4*5']+

+ r2^4o(aS -4aS -2a^j+rpa-3+3c< -2^(1-«< ) [J + [*(1-oO 3 J

This result is not found in literature.

In the next development, we shall obtain a particular case 

of a result of Barr [2j but with a function having second 

missing coefficient for the following substitutions, 

c ss X = S = 1 and oC = V = 0. So we have

Corollary :2 Let

F(z) - J (-“-)(p(t>)1/n dt

0
*f 6 S , starlike having second missing coefficient, 

p 6 P(n, 1) then F is close-to-convex for |zj<r, where r 

is given by the polynomial

H(r) = r4 - r^ (1+3a) - 6 ar^ + r (3a - 5 ) + 3

This result is also a surprisingly new one.
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Theorem t2.3»3t- Suppose that F(z) is given by

Where p G P(n,1), g G K,0^<1 o?p ^ 0, and 

#
f G S (o<.), with second missing coefficient. Then F 

is close-to-convex in |z|<r, where the radius of close-to- 

convexity is given by the polynomial,

H (r) = A r5 + B r4 + C r3 + D r2+ E r + F

the root lying between 0 and 1, where

A = (1-oO { - ph - 2o<^h - h - 7\}

B = [-Jh (1-«<)-ph(l- ©0“pha-2o<^ba - ha - 7\ a]

C = &\(1-<*)-Sha-2pha - 2^h (1-«<)2-2£ha+(1-o<)(h+7l) -a(h+7f) 

D ®TTa-7Kl-^)+ha-h(l-(A)-pha-ph (1-o<) -2h^a(1-o< )

E = (6ha - &h(1-o<)- ph ha +l\ a^)

F = (1-o<) [<£h +^h + h +7\J

Proof s- By usual computations, we obtain
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By applying a lemmas (1.1), (2.J.1.) we obtain,

rb2_

Be

©

zF

1 + r
F

<Sh prh

de^>
(1+r) (1-r)

m

h(o-©c)+ar-a(1-2ert)r2-(1-,20O(1~e«) r^j

+--------------------------------------------+(i-$K>-7?
(1-&0+ ar + ar2 + (1-vO

Which in view of Kaplan's result helps to conclude that F(z) 

is close-to-convex in | z|< r , where the radius of close- 

to-convexity is given by the polynomial stated above in the 

statement of theorem.

For sharpness, we consider the following functions,:

1 -c<
(1-p<)

fa,«/z) - z 

Whenever -

(1+z)1 ^ [(1-o<)z2-(1-e<-a)z +(1“6<iJ1

----- ^1> p(z) * (1 - t)n , g(z) * -------
1-c< (1+z)

2<1-«)
3( 1-°< )-a

Foro<-0, we get a very interesting result for starlike functions, 

with second missing coefficient.

Corollary Suppose that F(z) is given by

F(z) a j ^p(t)^ ^ 

0

g(t)
i

dt
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Then F(z) is close-to-convex in (zj^ r, given by the 

polynomial H(r) » Ar5 + Br4 + Cr3 + Dr2 + Er + F, where

A = (-^h - h - X )

B - (~ &h-ph - pha - ha - 7V a)

° ' (Sh'Sha -2Pha-Mh-2\ha+(*>^)-a(h+A))

D = 7\ a -7T+ ha - h - pha - ph - 2 h t a

E - <£ha - £h ~ph + ha+7Va 

F = .5h + £h + h +7^ .

This result is entirely new one

^ conclude our findings of regions of
close-to-convexity

by considering the rational function M(z) /n(2),

" ® P(m’ R,) and N 6 p( ». R2) with R,, r2 > ,, 

m >1* n>0» in the. integral form.

Theorem :>2.?.4 «- Let
0 ^ * < '» 5 >0 , p o

e p( n’,) and f e s*(e< ), starlike
functions of orders

having second missing coefficients. Then F(z) given by

F (z) == /(p(t))Pf- f. f(t)
<
6

dt

is c!6se-to-convex in | zj r where r is the ro6t of the
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polynomial given by H(r) where,

0“ °0 + ar - a(1 ■ ?.<) r2 - (1 -2c< ) (1 - ) r3
O”5*) + ar + ar2 + (1-o< ) r3

H(r) = h

- —^ — + (1- 8) + 
(1-r)

M N(1 “ 8) + ^ ( — + ----  \
R1”1 Ro + 1 J

Proof By conventional calculations we are led to

zF zf p
1 + ---= S> ---  +--- n

12
z r m— +o-m N

F f n 1 z-z^

Application of the Lemmas 2.1.1, 2.1.2, yields.
r®2.

R.-1 R2+1Li

1

J

Re
e, J

1 + zF
de

> (Ci-e,) S(1- <) + ar - a (1-2X ) r2 - (1-20(1-«<) r3

(1-o<) + ar + ar2 + (1-®<) r3

P]
+ 0- S) + <2,

(1-r)

M N n

R1 - 1 R2 + 1 J >-T

If we treat (0^ - as h, then because of Kaplan*s result,

previously stated, we directly conclude that,
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2>(1-°<) + ar - a (1 -2c< ) r2 - (1-2o<)( 1-c*) r3 

(1-cx)+ ar + ar2 + (1-°<.) r3

Pr
+ (1- S) +?

\

(1-r)

F(z) is close-to-convex in |z| < r,as given in the statement 

of the theorem.

The result is sharp for the following functions

f
a*c<

(z) z
(1-^) j2(1-<<)

30-X)-a

I (1+ z)
i-.

a
Whenever, ---- / i

1 ~

This above stated

[i[1-o<)z2-(1-efa) z+ (1-voJ1"01 

p(z) = (1- t)°.

result is quite new and not found in

literature.
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