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CHAPTER-TITITI

P-SPACE FOR THE MAGNETOFLUID

3.1 Introduction

The dynamical features of the magnetofluid space-time
are exploited under the symmetry of p-space, The effsct on
the pérameters associated with the time-like trajectories
due to p-space is examined, Also the behaviour of magnetic
lines in the p-space of the magnetofluid is investigated,
Further the Ricci rotationégﬁ;boefficients are introduced

and their application is made in some dynamical relations,

The second section is devoted to the consequences of
p-space, The space patter current tensor is described in
this section, Hefelih@ condition for.igg transformation of
p-space into c-space is obtained, It is deduced that for
p-space (T-3y) is constant and the divergence of the space

matter current tensor vanishes identically, The following

results are obtained in the third section

1) (a) For p-space, the magnetic field hb is divergence free
2
if and only if the value Eg— + 2Y) conserves along

the magnetic field lines,

2
(b) The quantity ( Hg— + 2¥) is left invariant along the
magnetic field if and only if the four accelaration is

orthogonal to magnetic field lines,
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2) Streamlines are expansion free if and only if

(Y= ~-<f+c), where ¢ 1is any arbitrary constant.

Further some consequences of the typical fluid flows in

p-space of the magnetofluid are examined,

3.2 Space matter current tensor for the magnetofluid

a) Space matter current tensor through stress tensor

The defining expression for the space matter current

% . .
tensor J%_, . is (Shaha, 1974)

n

* 0 _
J =27 abc:n e

ébc
From equation (1,4,12) we have

= /" n n
P = R .abC‘$ S . abc TtV . abc

(3.2.1)

This equation together with (1,4,13) and (1,4.14) produces

n - N 1 n n
P ,abc R Labe T3 [ 9 .b Tac' 9 .c
n n
-9 T I *VYI[8
n n n n
le. 2P . abc 2 R , abc + 9 .b Tac -9 ¢

n n n
= 9an! ct 2Y[9 .c%b = 9 b 9ac 1.

The divergence of this yields

n — Apn
2p .abc:n ~ 2R

n
.abc;n’ (g .b Tac)ﬁn - (g .C

.b
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n _ n n _n
i.e. 2P . abc;n 2R . abcin 9 .b Tac,n 9 .C Tab;n +
~ n
+ oy n[ 9 .¢%b " 9 .b Y9%c I
n n
i.e, 2P .abc;n 2 R .abc:n + Tac;b - Tab;c +
". —
+ 2 w,c 9ab 2 V,bgac : (3.2.2)
The well known Bianchi identities are
n n n —
R .abc;in + R ,acn:b + R .anbsc ~ 0,
. n _ AN .
i.e. R ,abc:n T 7 (R .acn;b R .anb;c )
. n - n
i.e. R .abc;n = (-» abn;c) - Rac;b y
Thus we have
R" = R - R (3.2.3)
-abc;n ab;C ac;b ¢ <0

It follows from equations (3.2,2) and (3.2,.3) that

n —
2 P .abc;n ~ 2[Rab;c - Rac;b I Tac;b - Tab;c +
+ Qw,c 9ab Qv,b Jac
n - — —
loee 2P besn 2] (Tab;c ) gabT,c) (Tac;b
- i g.. . T,) ]J+T - T +
2 2ac ,b ac;b ab;c
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2V ¢ %b = ¥ b 9ac - [ Vide (1.3,1) ]

’

The simplified version of this is
2 P abesn = Tabse T Tacib” Yab [T 29],(; +
- 2y 0,4
* o, [T-2Y ],b y (3.7.4)

Accordingly the space matter current tensor in terms of

stress energy tensor becomes

*

— 1
I abe T Tab}c - Tac;b - gab[f - 2w],c + gac[T°2wJ,b - (3.2.5)

b) Space matter current tensor for perfect magnetofluid :

In case of the perfect magnetofluid (3,2,5) yields

* = .
T abe = [ Augup - Bogp = Bhhy ];C = [ Augue Bo,e- “hahcj;b -

2 . 5 )
= 9ap[A-4B+unT-24 it 9acl A-4B+Rh" - 2§ ]

¥ ¥

T e J:bc = A Uale * AU . Up t AUU L m BNy hy - by -

- A’buauc - A;Ja;buC - Auauc;b+ pha;bhC +

* phahc;b + C,bgac - C,cgab ’ (3.2.6)
where C=A~- 3E + phg— 2y . (23.27)

(3.2.6) can also be written as

-p'ha;[chb:‘uhah[b;c]*h C, [bgC]a P (3.9.8)
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We prove some important lemmas for the perfect

magnetofluid,

T .

G

Lemma (1) : P-svace implies C~space when ¥y =

Proof : We have the expressicn for the space matter current
tensor (Asgekar, 197€)

* 1 - i
Jabe = Tabse™ Tacibt 3 %!, b 3 %ab’,c - (

&Y

R
.
0
Ser”

~
)

.. On employing the conditions for)fZSpace (1,4,17) and
V/zispace (1.4,11) and making use of the expressions (3,2,5)

and (3.2.9) we have

o L
Yo

oY

0

T,b = 9,¢ (1‘--2{‘1)’b

1 - ,
OR 5 9,, T, =9, (T-2) .,

1 - i
1.€. 3 95¢ T,b P T,b - 2 95¢ u,b ’
. 1 -
fee g, [3T-T ],b = - 29,¢ w,b ’
ie. =5T,=-2Y, .

In particular we have
V=%, (3.7.10)

Hence the derivation is complete,
Lemma (2) : For P-spaced the guantity (T-3y) is constant,

Proof : In case of P-space we have

I abe T Tab;c - Tac;b + gac( T-Zw),b -

= 95b (T”ZW)’C =0 .
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This on contraction gives

Ta.b;a," Ta.a;b + ga.a [T'2W],b- ga.b[T'zw},az o,
fee. =T+ 4 [T=2y] - [T-24] , =0,

ive, (2T = 6(;1),b =0,

e, (T-3y) =0,

i.e, (T - 3?)4»

Constant, (3,2.11)
This justifies the statement of the lemma.

Lemma (3) : For the relativistic fluid with particals of
"zero rest mass"™ the divergence of J*abc vanishes

identically,

Proof : We have T = O , for the fluid with particles at

zero rest mass (Radhakrishna 1973)

This constraint with (3,2.5) yields

* -

I abe T Tab;c - Tac;b (3.7.12)
This gives

%3 _ a a

J .bcya ~ T b;ca ~ T .C:ba ° (3.2.123)
It follows from contracted Bianchi identities and
Riccei identities that
a a _ a C .C .a
T .b;mn” T .binm T T .c:R . bmn~ T b R c.mn ° (3.2.14)

From the equations (3.2,12) and (3.2.14) we get

3 - a m . 8
J .becsa” T .m(R .bca” Rm.cba)+ Tm.c(R m.ba) -

o M e d
-Tme .

.Ca
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As the stress energy tensor is symmetric

*3 - m _ om
J .bcja ~ Tmb R T° R

. %*a -
i,e. J .bCsa mc . m

. *a -
i,e. J .bcia - o .

Hence the proof of the lewrma is complete,

3.3 Consequences cf P-space

[

i

We prove some theorems for p-space in the magnetofluid.

Theorem (I) : For P-space of the magnetofluid the magnetic

2
field is divergence free if and only if ( A2 + 2y)

conserves along the maggnetic field lines,

Proof : The expression for the space matter current tensor

is (vide 3,2.6)

T abe ® AcUa¥p * Aug;cUp F AU, pha,@hb ala
- uhahb, A’buauC -~ Au bUcT Au Ue.p +
* whyphe * Bhghep + Cpg, = C gy . (3.301)
)

From the p-space condition,we have

* =

T ape =0
Loeo A Uy #AU, Uty + AU UL, - Vha;chb - phahb;c -

- A’bUaUC - AUa;bUc - AUaUC;b + ].Lha;bhc

*uhhey FC %~ C e 9 = O (3.3.2)
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The result J*abcua with equation (3.2,2) produces

A Uy * AU - uuaha;chb = AU - Augy t
+ puahaa;bhc +C pu, = C u, =0 (3.3.3)
Similarly J*abc uaub = 0 , implies

A,c + C,b ubuc - A,bubuC - Auc;bub +

+ fh .y uaubhc -C.=0, (3.3.4)

and the result

* ab

C—t
J abe U U h” = O

gives
c . 2 c b 2 ab _
(A-C)’ch - (8f+ph”) ('hc;bu u) - uh ha;bu u. =0,

. 2 s c ab _
i.e. [ A-A+3B - ph™+2y ],c h™+ [gf]ha;bu u =0,
By the usage of Maxwell equations (1,3,6) we get
[ 38 - ph®+2y ] h° + [r+p] h°,_ =0,
y ’
. 2 2 c c _
ive, [3(p + 1 (1-4) b )= ph” + 2y 1 0%+ [r+p]n, =0,
. 2 2
i.e. [3(p+ p/2(1-p) h%+ % ph™ = ph™ + 2y ],chc +
c
+ [ r+p ] h - o,
ie.3[ p+ £ (1-p) 02 h® + Bﬁ?+ 2 h® +
- 05 p 2 p’ ],C [ 2 I'I ],C

+ [ rtp ] hc;c =0

Then it follows from the equation (2,2,10)



52

2
c h c c  _
-3[r+p]h;c+[£2-+2l‘x],ch + [ op Jn%. . =0,

2
ice. [ M- +2y ] n®=2[r+p]°, . (3.3.5)

>
This shows that the quantity ( & + 2y ) is

invariant along the magnetic field lines,

Corollarly : In p-space for the magnetofluid the quantity

-

2
( H% + ZV) is conserved along the magnetic field lines
if and only if the four-accelaration is orthogonal to

the magnetic field,
h° b
proof : From the result (3,3,5) we have | 35— + 2w],bh =

b

=2[r+p]h b .

On coupling this with the consequence of Maxwell

equations (1,3,6) we obtain

wh’, o hP =-2 u, h° 3.3.6
[ 2+ v]’b - {r+p]ub b (c\o )

h2

This shows that the value ( 2§~ +2V) is conserved
along the magnetic field lines if and only if the
four accelaration is orthogonal to the magnetic

field.

Remark : The result (3,3.6) in terms of Ricci rotation

coefficients can be translated as

>
h b b
E7— + 2 h™ = ~2{r+ y V. + v W+ 7y N_]h".

[ ¥ 1b [x*e] [414 b " 404 P 434 b]

If h¥ is along one of the tetrad vectcrs then this

imolies that
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2

( Bh 2? ) = K constant = y =0 or
2 414
r = 0O or r = 0.,
424 434
Theorem(2) : In p-space of the magnetofluid the stream-

lines are expansion free if and only if (&f+y)

conserves along the flow,

Proof : The result, J* o2 With (3.3.2) qives
a b b b
A,c - pha;ch = p’hb;ch - A,bU uc = Au sbc ~
b b b ab
- Au Uc;b+ uh ;bhc + u h hc;b+ C,bgacg -
- 4CC=O . (30307)
* b .
Also, J abe ab y¢= o , gives
A uS - pho. n®uCo ph R3S - A WP o A s
,C asc asc , b ;b
b ¢ Ub

+ phg,p hu” +Cu” -4 c, u® =0,

(o4
i,e, uh b U - Aub;b + p,hc;bhb u® - 3C’CUC=O . (3.3.8)

This with Maxwell equations produces

2 1.2 b

[ wh™ - 3C + 5 ph ],b u- [ r+p ]88 =0,
4’)
ie. [+p JO=3[2 _c] W,
b
: 3.,2 3 202 b
ise. [ r+p ] ® =3 [ 2p-r + & ph” = = p°h° + 2y]
[ o+ ] [ 2p-r + 5 n 7 WhT o+ 2y]
2 2

2
i, e, {r-!-p]e::—g {[r-—l“-",—zh—-i-l'!'-—z-h ]..
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i.e, [r+p] & = g[r+p] © + % [ r+p+y ],b“b ’

e, =8 [ t+p JO = 5 [ rtpHy ],bub,
2 b
ie. - 8 (3) 8= 5 (9F+y) u° . (3.3.9)

Conseguentaly,

8= 0> (§f+y ),, u® =0

Hence the theorem is proved.

Remark : On employing the Ricci rotation coefficients in

(3.3.9) we have

2 b
8 [r+p Yy + v + v | =3 [RE+| v,
[x+p] [411 422 433] A ER*

e, v 4+ v + 1 =0<> (efHy) w =0,
411 422 433 '
Hence the necessary and sufficient condition for the
conservation of (&f+y) along the world line is

ry + v +rvr = 0O,
411 422 433

3.4 The special flows of the magnetofluid in P-space

The generalization of "Ferraro's theorem of isorotation®

is derived by Yodzis (1971) in the form

2 a _ 1 a
w , 3 h - 4 Rabcd uw

bchd

¥

where w2 is the magnitude of the rotation tensor Wop -

The compatibility condition for the killing flow of the
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steady state magnetofluid is deriveq,/by Khade (1973), For
self-gravitating magnetofluid admitting an essentially
expanding flowﬁKhade (1973) has proved that the magnitude
of the magneti; field vector cannot be conserved albng the
flow while the pressure is conserved along the magnetic
lines, Shaha (1974) showed that for definit material
scheme in RMHD when matter energy density is uniform the
Born rigid flow implies adiabatic flow, 1In case of boost
flow of the magnetofluid with uniform heat flux vector the
law of conservation of baryons characterizes the adiabatic
flow (Asgekar 1976), For the geodesic flow of the charged
fluid with the electric field orthogonal to magnetic one,
Asgekar (1978) has obtained the following results (a) the
magnetic lines are divergence free if and only if the
electric field vector is normal to the vortex lines and

(b) the electric field vector is divergence free if the
magnetic field vector is orthogonal to the vortex lines when
the residual charge vanishes, We examine the magnetofluid

flows under the symmetry of p-space,

We have the equations

2

2, o b . b
[ %3 +2y ] h° =2[ o+p ] Gh

(303.6)

2 N b
and -8[r+tp ] 6 = 3 [ Sf+y ],b u- . (3.2.9)

For different fluid flows these two equations produce the

following results ;
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Geodesic flow

From (3,3.6) and (0,5.1) we have

h? b
[BB+2y ], h =0, (3.4,1)
1]

Essentially expanding flow

Making use of (0,5.2) in (3.3.6) we get

h? b
[E-+2y ], h" =0, (3.4.1)
b}

Killing flow :

It follows from equations (0,8.3), (3.3,6) and

(3.3.2) that

2
[ +2y ], =0, (3.4.1)
and b
[8f +y ],b u =0 ., (3.4.2)

Born rigid flow :

By the usage of (0,%5.4), (3.3.9) takes the form

[ sf+y ]y w=o. (3.4,2)

Harmonic flow :

On account of (0,5,5%), (3.3.6) and (3.3.9) becomes
2

[ B2y ] wP =0, (3.4.1)

and [ Sf+y ], w’ =0, (3.4.2)
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Boost flew :

Equation (0,5.6) with (3,3,9) produces
b
[¢f+§ ]pu =0. (3.4,2)

Steady state magnetofluid

Employing (0,5.7), (3.3.9) can be put in the form

[f+y ]y W =0 . (3.4.2)

Thus from (3.4,1) and (3,4.,2) we observe that the value

o o

2
of the potential Y coincides with ( ¢ - E§~ ) along magnetic

field lines whenthe flow of the magnetofluid is either

geodesic, or essentially expanding or killing or harmonic,

Moreover i = ¢ - f along the flow lines when the flow is

either Born rigid, or killing or harmonic or boost or st=ady

state magnetofluid.




