
44

CH APTER-I II

P-SPACE FOR THE MAGNETOFLUID

3.1 Introduction :

The dynamical features of the magnetofluid space-time 

are exploited under the symmetry of p-space. The effect on 

the parameters associated with the time-like trajectories 

due to p-space is examined. Also the behaviour of magnetic 

lines in the p-space of the magnetofluid is investigated. 

Further the Ricci rotation ^"•"coefficients are introduced 

and their application is made in some dynamical relations.

The second section is devoted to the consequences of

p-space. The space matter current tensor is described in
/•f a.

this section. Her>e—■the condition for ihe transformation of 

p-space into c-space is obtained. It is deduced that for 

p-space (T-3y) is constant and the divergence of the space 

matter current tensor vanishes identically. The following 

results are obtained in the third section :

1) (a) For p-space, the magnetic field h is divergence free
h2

if and only if the value ( ■+• 2^) conserves along

the magnetic field lines.
.2

(b) The quantity ( • + 2f) is left invariant along the

magnetic field if and only if the four accelaration is 

orthogonal to magnetic field lines.
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2) Streamlines are expansion free if and only if

(y = - ^f+c), where c is any arbitrary constant.

Further some consequences of the typical fluid flows in

p-space of the magnetofluid are examined.

3.2 Space matter current tensor for the magnetofluid :

a) Space matter current tensor through stress tensor -

The defining expression for the space matter current
tensor J*a’DC is (S’naha, 1974)

= 2 Pn (3.2.1)T =2 pabc abc;n »

From equation (1.4.12) we have

This equation together with (1.4.13) and (1.4.14) produces

Pn abc

i.e. 2 P,n

The divergence of this yields
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;n
+ (9ac Tn_b).n - (gatTn.c>+ [?V(9n.cgab-

n \ " 
g .b J;n ’

,n ,ni*e* 2 P ,abc;n 2R ,abc;n + g .b Tac;n g .c Tab;n +

+ 2V,n[ ^.c «ab - ^.b 9ac 3 •

i,e* 2P .abc;n 2 R ,abc;n + Tac;b " Tab;c +

+ 2 Y,c 9ab- 2 'V.b^ac (3.2.2)

The well known Bianchi identities are

Rn , + Rn , + Rn , = 0 ,
#abc;n .acn;b .anb;c

i. e. Rn .abc;n

i. e. Rn.abc;n

. acn;b ' . anb;c ' ’

^"Rnabn;c^ " Rac;b *

Thus we have

R .abc;n Rab;c “ Rac;b *

It follows from equations (3.9.7) and (3.2.3) that

(3.2.3)

2 Pn . aoc ;n 2fRab;c " Rac;b 3 + Tac;b ’ Tab;c +

+ 2f,c %b - 2i,b %c ’

1-e* 2 P . abc ;n = 2f ^Tab;c ~ 2 gabT,c* ~ ^Tac;b

2 9ac ^.b^ 3 + ^ac;b “ Pab;c 4-
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2 V,c 9ab ” ^,b 9ac ' [ Vide (1.3.1) ]

The simplified version of this is

2 Pn . = T , - T g . F T-2W] +.abc;n ab;c ac;b yao l 'J,c

+ 9ac [ T - 3. o
(3.7.4)

Accordingly the space matter current tensor in terms of 

stress energy tensor becomes

J*abc = Tab}c * Tac ;b ' 9ab[* ' 2«,c + 9actT-2V3,b • <3-2-S>

b) Space matter current tensor for perfect magnetofluid :

In case of the perfect magnetofluid (3.2.5) yields

J*abc = t Auaub ' ®9ab " ^b 3;c * f AuauC- ^acT 'ihahc'l-,b '

- gabfA^B+Hh2-^ ]fC+ gac[ A-4B+Uh2 - 2V]ibi 

4c = A,cuaub + Aua; cub + Auaub;c- ^ajeN, - Hhahb;(. -

- A,buauc - Aua ;bUc * Auauc;b+ t*ha;bhc +

+ ^a^c;b + C,b9ac ” ^,c9ab ’

2where C = A - 3E; + p,h - 2y . 

(3.2.6) can also be written as

(3.2.6)

(3.2.7)

4 abc = 2 {uaA,[cub] + Aua;[cub] + Auau[b;c]

-^ha;[chb7^hah[b;c]+ C,[b9c]a * * (3.9.8)
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We prove some important lemmas for the perfect 

magnetofluid.

Lemma (l) : P-space implies C-space when IjJ = ^ T .

Proof : We have the expression for the space matter current 

tensor (Asgekar, 1976)

* _ t irlrabc ~ ab;c" ac;b+ 3 ^acT,b” 3 ^abT,c *

.r-
V

(3.2.9)

On employing the conditions for^-space (1.4.17) and 
yz^-space (1.4.11) and making use of the expressions (3.2.5) 

and (3.2.9) we have

3 9ac T,b " 9ac (T-2Y)^b

0R 3 9ab T,c = 9ab (T-2V)_C ,

i-5- 3 9ac T_b = gac T_b - 2 gac Vjb ,

1-e- 9ac C 3 T'T lb = " 2gac V,b ’
i-e' - ! T,b = - 2 Y,b •

In particular we have

P | T . (3.2.10)

Hence the derivation is complete.

Lemma (?) : For P-space| the quantity (T-3^f) is constant. 

Proof : In case of P-space we have

J abc “ "^abjc “ ^ac;b + 9ac(

- 9ab (T-2I|0>C = O .
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This on contraction gives

Ta.b;*- T\a:b + <a [T-2V],b- < , a= 0

i.e. - T)fe + 4 [T-2V3>b - [1-21(1], b = O ,

i.e. (2T - 6y) b = 0 ,

i.e. (T - 3y)(b = O ,

i.e. (T - 3y)^ = Constant.

This justifies the statement of the lemma.

(3.2.11)

Lemma (3) : For the relativistic fluid with particals of 

"zero rest mass" the divergence of J gj£)c vanishes 

identically.

Proof : We have T = 0 , for the fluid with particles at 

zero rest mass (Radhakrishna 1973)

This constraint with (3.2.5) yields

t"^ » "P t
abc ~ ab;c ” ac;b

This gives

J■fca
. be; a

_ -j-a -T-O

b;ca .c;ba *

(3.9.13)

(3.2.13)

It follows from contracted Bianchi identities and 

Ricci identities that

-r-3 _ -t-3

.b;mn . b;nm
_ yS pCu. — T* ^ R* ^.c“ .bmn b c.mn (3.2.14)

From the equations (3.2.12) and (3.2.14) we get

1^3 _ -j-9 / rjIT) rffi \ , -yin / p. 9 \
.bc;a" ,m' ' . bca .cba .c' m.ba

_ -j.# m 3
b m.ca
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As the stress energy tensor is symmetric

t^* s _ *t* ^m Tm T3

J .be;a - mb . c- . cnmb ’

i.e. J*a , = R Rm .- R , Rm ,
.be; a me ,b mb . c ’

T*a
i-*- J .bc;a = 0

Hence the proof of the lemma is complete,

3.3 Conseauences cf P-space :

We prove some theorems for p-space in the magnetofluid.

Theorem (I) For P-space of the magnetofluid the magnetic 

field is divergence free if and only if ( |— + 2fjJ) 

conserves along the magnetic field lines.

Proof : The expression for the space matter current tensor 

is (vide 3.2.6)

J*abc = A,cuaub + Aua;cub + Auaub;c * ;Shb * *

- ^ahb;c - \buauc ' Aua;bu<r Auauc;b +

+ pha;bhc + ^ahc;b + C,b9ac " C,cgab • f3-3-1)

P
From the p-space condition,we have

J abc ’ 0 •

\cuaub +Aua;cVb + Auaub;c " I*a;chb * ^aVc ‘

- A,buauc - Aua ;buc ‘ Auauc;b + ^a;bhc +

+ ^hahc;b + C,b9ac " C,c 9ab = 0 • (3.3.2)
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The result with equation (3.2.2) produces

\cub + Aub;c - " A,buc ' Auc;b +

+ |iuahaa.bhc + C buc - Ci(;ub = 0 . (3.3.3)

■4* is j^j
Similarly J abc u u = 0 , implies

. „ b . b + C u u u_ - A uu u.’,b l,bu uc Auc;bu +

a b,+ /D>a;b u u hc " C,c = 0 • (3. 3.4)

and the result

t* ,,a b, c _ 
J abc u u h = 0

gives

(A-C)>chC " (Sf+Iih2) (-hc;bucub) - iih2hg.buaub = 0 , 

i.e. [ A-A+3B - ph2+2y ]^c hc+ [^f]ha;buaub = O .

By the usage of Maxwell equations (1.3.6) we get

[ 3B - yh2+2tjJ ]>chC + [r+p] hc.c = 0 ,

i.e. [3(p + p (1- £) h2 )- jih2 + 2y ] chc+ [r+p]hc.c= 0, 

i.e. [3(p+ vt/2(l-ji) h^+ | ph2 - |ih2 + 2ljJ ]>chC +

+ [ r+p ] hC.c = ° ,

2
i.e.3[ p+ £ (1-ji) h2 ]fC hc + [ + 2lfJ ] chc +

+ [ r+p ] hc.c = O

Then it follows from the equation (2.2.10)
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- 3 [r+p] hc;c + [ ^ + 2lf ]>chc + [ rfp ]hC;c = 0,

i.e. [ + 2y ]>chC = 2[r + p]hC;c , (3.3.5)

.2This shows that the quantity ( ^ + 2y ) is 

invariant along the magnetic field lines.

Corollarly : In p-space for the magnetofluid the quantity
( ^ + 2y) is conserved along the magnetic field lines 

if and only if the four-accelaration is orthogonal to 
the magnetic field.

proof : From the result (3.3.5) we have [ + 2y] ^h^ =

= 2 [ r + p ] hb.b .

On coupling this with the consequence of Maxwell 
equations (1,3.6) we obtain

[ 4+ 2V ],b hb ='2 [r + O %hb . (3.3.6)

h2
This shows that the value ( +2y) is conserved
along the magnetic field lines if and only if the 
four accelaration is orthogonal to the magnetic 
field.

Remark : The result (3.3.6) in terms of Ricci rotation 
coefficients can be translated as

r ^ + 2v ],b hb - •2Cr+p3 r4»4 vb + 4'4 wb +4'4 Nb]hb-
If ha is along one of the tetrad vectors then this

imolies that
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( jy£
v 2

Thsor

Proof

2y ) K constant =v> r - O or
414

r = 0 or y = 0 .
424 434

;m(2) : In p-space of the magnetofluid the stream

lines are expansion free if and only if 

conserves along the flow.

ab with (3.3.2) givesThe result. J a be
. , , a , , b . b . bA,c - ;ch - »*b:ch - A,bu uc - A u ;buc ‘

- A u\i , + uh^ ,h + u h^h ,+ C , q g9*9 _
c; b ;b c r c;b ,b3acJ

- 4 C = 0 .

Also, J*abc gab uc= 0 , gives

\cuC - ^a;chV- ^a;^ " A,bub " +

+ phc,b hbuc + C hub - 4 C ^uc = 0 ,

(3.3.7)

',b
. e. yh2 ^ ub - Aub.h + ph_Khb uC - 3C „uC=0

;b c ; b (3.3.8)

This with Maxwell equations produces 

[ \ih2 - 3C + ^ V-h^ ] b ub- [ r+p ]9 = 0 ,
9 O

i.e. [ r+p ] 0 = 3 [ ^---C ] bub ,

i.e. [ r+p ] 9 = 3 [ 2p-r + ^ yih2 - ^ y?h2 + 2y]

,h2 2k2i.e. [ r+p ] 0 = -g {[ r - ] -

b
,bU •

- r|r + |p+|v j J}bub ,
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(3.3.9)

Consequentaly,

0 = o^)> ( 5Jf’+V ) *b ub = 0 '

Hence the theorem is proved.

Remark : On employing the Ricci rotation coefficients in

(3.3.9) we have

411 422 433

Hence the necessary and sufficient condition for the

conservation of (<f+ljJ) along the world line is

y + r + r - 0 .
411 422 433

3.4 The special flows of the magnetofluid in P-space :

The generalization of "Ferraro's theorem of isorotation" 

is derived by Yodzis (1971) in the form

2
where w is the magnitude of the rotation tensor w^a
The compatibility condition for the killing flow of the
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steady state magnetofluid is by Khade (1973). For

self-gravitating magnetofluid admitting an essentially 

expanding flow^Khade (1973) has proved that the magnitude 

of the magnetic field vector cannot be conserved along the 

flow while the pressure is conserved along the magnetic 
lines. Shaha (1974) showed that for definit material 

scheme in RMHD when matter energy density is uniform the 

Born rigid flow implies adiabatic flow. In case of boost 

flow of the magnetofluid with uniform heat flux vector the 

law of conservation of baryons characterizes the adiabatic 
flow (Asgekar 1976). For the geodesic flow of the charged 

fluid with the electric field orthogonal to magnetic one, 
Asgekar (1978) has obtained the following results (a) the 

magnetic lines are divergence free if and only if the 

electric field vector is normal to the vortex lines and 
(b) the electric field vector is divergence free if the 

magnetic field vector is orthogonal to the vortex lines when 

the residual charge vanishes. We examine the magnetofluid 

flows under the symmetry of p-space.

We have the equations

and

[ ^ + 2ly ]>b hb =2[ r+p ] ubhb 

- 8 [ r+p ] 0 = | [ S*f+y ub

(3.3.6)

(3.3.9)

For different fluid flows these two equations produce the 

following results ;
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Geodesic flow

From (3.3.6) and (0.5.1) we have

[ “r + 2V ],b h 0 (3.4.1)

Essentially expanding flow :

Making use of (0.5.2) in (3.3.6) we get 
2[ *T-+ 2Y ],b h = 0 * (3.4.1)

Killing flow :

It follows from equations (0.9.3), (3.3.6) and
(3.3.9) that

[ ^ + 2Y ],b h 0 ,

and [ sf + V ],b u = 0 •

(3.4.1)

(3.4.2)

Born rigid flow :

By the usage of (0.5.4), (3.3.9) takes the form

[ Sf+tf ]fb u‘ 0 (3.4,?)

Harmonic flow :

On account of (0.5.5), (3.3.6) and (3.3.9) becomes

[ + 2V ] h ht> = 0 ’
and [ %f + If ] u O .

(3.4.1)

(3.4.2)
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Boost fl«w :

Equation (0.5.6) with (3.3.9) produces 

[ <>f + tjJ ]>b ub = 0 . (3.4.2)

Steady state magnetofluid :

Employing (0.5.7), (3.3.9) can be put in the form 

[ <?f+ If} ]>b ub = O . (3.4.2)

Thus from (3.4.1) and (3.4.2) we observe that the value 

of the potential ty coincides with ( c - ) along magnetic

field lines when the flow of the magnetofluid is either 

geodesic, or essentially expanding or killing or harmonic. 

Moreover y = c - c;f along the flow lines when the flow is 

either Born rigid, or killing or harmonic or boost or steady 

state magnetofluid.


