CHAPTERS-O

MATHEMATICAL PRELIMINARIES

0.1 Introduction

In this chapter we present some basic methematical
concepts and definitions used in thie disszertation. Second
section deals with curvature tensor and its properties., The

third section deals with time-like, svace-like and null

congruences, The concepts of Tez-rad formalism, Ricci rotation
coefficients and Newman-Penrose Zormalism are given in fourth

section, Last section includes <he definitions of typical

flows of the magnetofluid.

C.2 Riemann Christoffel curvature tensor

The Riemann Chrictoffel curvature tensor of rank four ic

defined through
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Here T gc is the Christoffel symbol of second kind with
expression
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Riemann Chrictoffel curvature tensor is the only tensor which can

be constructed from the metric tensor and its first and second



derivatives, It has 256 components of which 20 are independent.

It satisfies the following properties.
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(002.3)
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The contraction of Rabcd produces Ricci tensor
_ cd
Rab = 9 Rabcd . (0.7.4)

In terms of Christoffel symbole it can be exoressed as
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It is the symmetric tensor of rank two, i.e.

Rab = R(ab) ” (0-2-6)

This Ricci curvature tensor has only 10 independent components.

0.3 Congruences and associeted parameters

Synge (1962) defined a congruence as a system of curves
filling a portion of space, and such that in genersl a single
curve passes through any assicned point. The null congruences
exist in gravitational radiations, time-like congruences in
cosmological models and space-like congruences in self-gravita-
ting magnetofluids., This establicshes the importance of the study

of congruences in the theory of general relativity.



Parameters associasted with time-like congruences

Mathematically time-like curves are expressed in terms

of parameters as

-
X =x2 (nX,7),

=< . . .
where m denotes Lagrangian coordinates and ©C is the

parameter along world line of the fluid element,

The four-

vedocity vector u? at a point along one of the streamlines

is defined as
a
ud = g—).%- (m‘xfixed),

with normalising condition

u® u, = 1, (:uagabub = l:J,

which gives

scalar

The exnressions for expansion/8, shear tensor

Cab

and

rotation tensor W_,  are given by (Greenberg 1970,3a)

Q = ua, s
;a
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Wap = UCain] - Vrdbeg .

The four accelaration is defined as

e P

ab,

(0.3, 2)

(0.3.3)

(0.3.4)

(0.3.5)

(0.3.6)

(0.3.7)



u = ua;b u R (0.3.8)

and the three-~space projection operator Pab is described

by
Pab T 9ab = YaYp - (0.3.9)
It follows from (0.2.6) to (0.3.9)
Sab = %(sb) * Wap = WCab] (0.3.10)
?, =o0=w _, (0.3.11)
b u? = Wy ub = ﬁaua =0 , (0.3.12)
P u’=0,p2%=3, p°pP=pPh (0.3.13)

Thus shear tensor Sab is symmetric, rotation tensor Wop is
antisymmstric, %,b and Woh both are trace free., The magnitudes

of the shear and rotation tensors are defined as

%3b oab = 2 02 ,

ab _
wab w = 2w .,

(0.3.14)

In terms of expansion, shear tensor, rotstion tensor, projection
operator and four accelaration the gradient of four velocity

can be expressed as

(0.3.15)
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The null congruences defined by Witten (1962) are very
much significant as " all astrophysical information comes to us
optically i,e, by photons - the history of photons is a null
geodesic in space-time", The propogation equation for the
expansion is obtained by Raychoudhari (1955), The theory of
time-like and null congruences was initiated by Ehlers, Jorden,
Kundth and Sachs (1961), The parameters associated to space-
Likef 55?32&!5&555 by Greenberg (1970,b). Shaha (1974) has
used the kmematical parameters in the study of magnetochydro-
dynamics whereas the parameters associated with time-like and
space-like: werg ;S:I;;a by Ghunskikar (1974) in the study of
self-gravitating charged fluids with null conductivity, The
kinematical parameters are aonlied by Virkar (1978) in the
study of self-gravitating elastic systems. The propogation
eguations for the kinematical parameters in the space-time
filled with a viscous compressible, thermally conductivity,
relativistic fluid with infinite electrical conductivity and
constant magnetic permeability (magnetofluid) are computed by
Asgekar (1979). By obtaining a new solution of Bianchi type VIII
for homogeneous cosmological model consisting of perfect fluid,
the ratio of matter shear to expansion is derived by Collins
et,al, (1980). We examine the space-time of the magnetofluid

under particular symmetry conditions and through the parameters

associated with time-like trajectories,

0.4 Tetrad formalism

The symmetric metric tensor has ten independent components

while the tetrad field possesses sixteen independent components,



Hence the geometry obtained from tetrad formalism is more

general than the Riemannian geometry (McCrea and Mikhail 1956),

The relativistic tetrad formalism was first used by
Lichnerowicz (1955) for definite material scheme, The extended
version of this is studied by Eisenhert (1964), Mé&;;a and
Mikhail (1996) used this tetrad procedure to derive the equa-
tions for “C-fleld theory" given by Hoyle (1948)., Ellis (1967)
3%;}plorted a set of tetrad{%g;{gglv1ng Einstein's field equations
for pressure free matter.v Stewart and Ellis (1968) apnlied this
theory to study a fluid exhibiting local rotational symmetry,

In the study of gravitational radiation Newman-Penrose (1962)
used a tetrad of a complex null basis, Shaha (1974) has consi-
dered the tetrad field in relativistic definite magnetofluid

schemes, Lord (1976) derived the special relativistic ecuations

for the electron field given by Dirac in terms of tetrad,

We consider the tetrad of vecteors

Mag = ( V2, W, NP, ¥ ). (0.4.1)

Here the Greek index denotes the tetrad suffig and Latin index

a a

denotes the coordinate suffix : V7, W, N®

are the space like

vectors, These tetrad vectors Maa satisfy the following

relations
a a - a
M‘GM'b d ﬁ.b y (00402)
e wP = 5P , (0.4,3)



a —
M.(I Mae = ga?, ’
aQ —
Maa M b T % .

(004.4)

(0.4.5)

The space-like vectors satisfy the relations

Ay = AN = Wl =
\Y Va = N Na =W Wa = -1

A second rank tensor Xab

put in the form (Shaha 1974)
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It follows from (0.4,7) that

9ab T YaYp ~ Vavb - Wéwb

Ricci rotation coefficients

(0.4.5)

in terms of tetrad vectors can be

c. d
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NN~ ) NaNb
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The Ricci rotation coefficients are defined as

r =M

aps aa;b

-P

M M

(0.4,9)



They satisfy the conditions

¥ = - V (Oo 40 10)
apd Bad

Kinematical parameters in terms of Ricci rotation coefficients

The values of the kinematical parameters in terms of

Ricci rotation coefficients are (Shaha 1974)

3
© =u .=~ 71 + v + 1 )
;3 411 422 433 , - (0.4,11)
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a 433 3
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1 .
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+=( v + v ) (NV_+ VN ), (0.4.12)
2" 431 413 a’b " "a'b
W = 4 ( v - v Y (VW -WV_ )+
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a 414 @ 424 ¥ 434 °

Newman-Penrose (N-P) formalism., (Spin Coefficients )

To explain the concept of tetrad formalism orthonormal

basis is selected while—forN-P—formalism—a—compltex—pull-basis—ts



seleeted while for N-P formalism a complex null basis is chosen,
(Hawking and Israel 1979). The complex null basis (l,n,m,m) is
chosen to explain the concept of N-P formalism, Here la, n®
are two real null vectors and ma, e are a pair of complex

conjugate null vectors, These vectors satisfy the relstions

a _ a _ a _ - =a _
lal = mm® =nn® =mm” = o, (0.8.15)
lana = 1, (0.4,16)
mafﬁa = "l Iy (004¢ 17)

a _ -3 _ a _ _=-a _
lam = lam = nm- = nm = Q , (0.4,18)

The N-P formalism is found to be amazingly useful in various
fields, It is useful in the study of algebraically special
fielcs (Hawking and Israel 1979), Flaherty (1976) expressed the

spin coefficients elegantaly in the tabular form.
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Spin coefficients through Ricci rotation coefficients

LO

The reletions between spin coefficients and Ricci rotation

coefficients are developed by Newman and Penrose (1962),
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0.5, Special types cf flows

We study the following typical flows

1) Geodesic flow : The geodesic flow is cheracterised by
Ua =0 . (00501)
2) Essentially expanding flow : The essentially expanding

flow is cheracterised by

4, =0, &,=0 and W, =0, (0.5.2)
3) Killing flow : The flow is said to be K&lling if and only
if % Ip = O, where &£ 1is the Lie derivative, This
implies

{xa =0, 6,=0 and ©=0, (0.5.,3)

4) Born rigid flow : A continuous medium is said to be

kinemstically rigid if and only if the time-like voctcr is

shear free and expansion free (Trautman, 1964),

i.e, 5

ab =0 ' ©&=0. (005.4)

This flow is defined to be Born rigid,

5) Harmonic flow : This flow is characterized by

a. =0, W =o,9=o,<{ab#o. (0.5.5)

6) Boost flow : This flow is characterized by

s, =0, W,_=0,8=o0, 6a;£o. (0.5.6)
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7) Steady state magnetofluid : The steady state magnetofluid is

defined by (Yodzis 1971)

6

= = b_y g c -
ab - O, 9 - O, h b u ""O, ‘A‘ab;cu had O Py (0.5.7)

as

<y _
where h™ is the magnetic fieldv,w66ﬁ0\ .

Effect of vanishing kinematical parameters on the

Ricci rotation coefficients

1) We have Ga = r V_ 47 W_+ r N_. (vide 0.4,14)
414 424 2 434 98

« e U =0 = ¢y V_+ v W_+ 7y N, =606,

a 414 @ 424 2 434 @
= r = v = y = 0,
414 424 434
@“ Y = O v (0.5.8)
Ad4

2) We have from (0,4,12)

€. = (v + 20 )VV, + (1 ++e)ww +
ab T3 alb * (1t 3 RUR
+ (1 +30)NN +5 ( 7+ 1) (VW V) +
433 412 421 a

1 ; 1

+=( r+ v ) (WN_+NW)+5( v+ v )NV +V.N)
2 " 403 a3p’ @b abtt 2% g7 4137 @biad

.. &, =0
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1

2> (7 + 9)VV+(7+-—@)NN+(7+—@)NN+
411 3 b " Y42 b " 433 3 a'b
1 1
+= (r+7v ) (VW +WV)+=(r+71) (w N, + N W, ) +
2 “g1p 421 @D @bt 2 tyngiaas b
1
+=(r+71)( N V., + V N, ) =0
2 ‘431 413 b b '
=77--é-(r+7+r)=0,
411 411 422 433 :
=2 2 ¢y - 9y - 31 =0,
411 422 433
Similarly - { + 2 ?2 - r =0,
411 42 433
- Y - r + v =O.
411 422 433
Which give
Y = 4 = T .
411 422 433 (0.5,9)
Also
Y = -7 , ¥ =E-=-71 4, ¥Y=-vr ,
412 421 423 432 431 413
1.,

Y
4AB 4BA

3) Now, (0,4,13) gives

W, =(7-7) (VW -WV )+
3b 410 421 a’b  Ta'b
+ (r - 1) ( W_N ) +
423 432 b~ N
+ (r - rv) (NWV.~-VN_) .
431 413 a’b  “a’b
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5 (v - v ) (VW -wWVv )+ (r - v) (WN
412 421 a’b  Ta'b 423 432 @b
+( v - v )Y(NV_=-VN )=0,
431 413 a’lb = "a'b
= v = 7 s 7T = 7 , YT = 1,
412 421 423 432 431 413
i.e. r = 1 (A#B) .
4AB 4BA
4) Also we know
6 =~-( r + + 1 ) ( vide 0,4,11)
411 422 433
.. ®8=0 = - ( 7t r + 1) =0,
411 422 433
= r = y = 3y = 0
411 422 433

- NaW

b )t

(0.5.11)

(0.5.12)

Thus all the defining conditions for the typical flows

can be expressed through Ricci rotation coefficients with

the help of following table
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it i T T S m——mmmee -
i Type of flow | Characterization
b frm e o e e :
i ! x
1) Geodesic flow ! r = 0., !
[ ‘ Ad4 '
\
b = = = - == : ____________________ )
) Essentially | r =0, r = 0., i
' expanding flow . Ad4 4AB
i
‘ t
e e 1
, |
3) Killing flow ; y =0, v = ¢ = ¢ = 0, ‘
: ] A4d4 411 422 433 \
) . ]
) -‘ r = -r , (AfEB) '
i 4AB 4BA
I
S '
} ! ‘
4) Born rigid flow | ry = vy = 1y = 0, ‘
411 422 433 |
}
{ \
! i { = - 4 ’ ( A /J: B ). .
! . 4AB 4BA
\
.. e )
i i t
5) Harmonic flow i y =0, v = v , (AFEB), ‘
, i A44 4AB  4BA ‘
' | ry = ¢y = ¢y =0, {
! ; 411 422 433 ‘
e e m ch ww wm e e s e e em e e m em mm e e e o owm owm mm o = o e em o e e
‘ |
6) Boost flow ) ry = 0. ‘
, ‘ 4AB ‘
P —————————— IS S T R e T S e e e s e e L
)
7) Steady state ; y = ¢y = 3y = 0, '
; magnetofluid s 411 422 433 '
1 {
! 7 = - 7 1) (A # B) L] Y
‘, ‘ 4AB 4BA \
L] . \
: hy =0, Wop = O - :
L} \
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