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(1.1) INTRODUCTION:

The second order linear differential equations with variable coefficients

pM^+QM;r+R(x)y=0-
dx dx

when solved by the method of solution in series, gives certain functions, which are not 

elementaiy functions (like trigonometrically, logarithmic or exponential). These 

functions are often called special functions of mathematical physics or more simply 

the special functions [32.]

The theory of special functions plays a basic role in the formalism of 

mathematical physics. It covers an extremely wide domain of study (formulated early 

in the pioneering works of Euler, Gauss, Laplace, Riemann and many others) and 

continuously refined by new achievements and suggestions.

These functions (polynomials ) have been studied since long but a systematic, 

through and very fast development of the subject has been done during the last five 

decades. During the decades of eighties the development of larger computing 

machine has made it possible to study functions with multiple series representations 

from numerical point of view. Most of the functions of this type are hypergeometic 

in character and they occur in connection with such matter as statistical distributions, 

functional equations, characteri2ations, quantum theory, vibration of beams, 

conduction of heat, elasticity, telecommunication as well as agriculture and biological 

sciences. They provide a unique tool for developing simplified yet realistic models of
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physical problems, thus allowing for analytic solutions and hence a deeper insight 

into the problem understudy.

The specific physical problem can suggest investigating new aspects of the 

well established theory of special functions as well as introducing new functions and 

other possible generalizations, which usually exhibit deeper features and there by 

appear again and again in new role in various fields of mathematics.

Definition:

Orthogonal Polynomials:

A system of real functions f„(x) (n=0,l,2,....) is said to be orthogonal with 

weight p(X) on the interval [a,b] if

a-fb P(x)fm(X)fn(X>dx = 0,if .m * n

^ 0 if m = n -------------

where p (x) is a fixed non-negative functions which does not depends on the indices 

mandn[18].

Example:

The system of functions cosnx(n=0,lJZ,......) is orthogonal with weight 1 on the

interval [ 0, %]

Jcosmx • cosnx • dx = 0, if .m * n, 
o

*0, if m = n
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An important class of orthogonal system consists of orthogonal polynomials

Pn(x) (n=0,l, 2,.........) , where n is the degree of the polynomials Pn(x). This class

contains many special functions commonly encountered in the applications, e g. 

Legendre, Hermite, Languerre, Chebyshev and Jacobi polynomials. In addition to the 

orthogonality property (1.1.1), these functions have many other general properties.

Orthogonal polynomials are of great importance in mathematical physics, 

approximation theory, the theory of mechanical quadran tures etc.

(1.2) GENERATING FUNCTIONS:

Generating functions play an important role in the investigation of various 

useful properties of the sequence, which they generate. In 1812, the name generating 

function was introduced by mathematician Laplace. The theory of generating 

functions has been developed into various directions and found wide applications in 

different, branches of Science and Technology. A generating functions may be used 

to define a set of functions to determine a pure recurrence relation or a differential 

recurrence relation to evaluate certain integrals etc.

Linear Generating Functions:-

Consider a two variable function F(x , t) which possesses a formal (not 

necessarily convergent for t*0) power series expansion in t such that,

F(x,t)= 1 fn(x)tn.------------- (1.2.1)
n=0

where each member of the coefficient set

{fnWLo
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is independent of t. Then the expansion (1.2.1) of F(x , t) is said to have generated 

the set {fn(x» and F(x , t) is called a linear generating function (or simply, a
OO

generating {unction) for the set {fn(x)}„=i [35]

The definition may be extended slightly to include a generating functions of 

the type.

G(x,t)= r C„g„(x)r---------------(1.2.2)
n=0

where the sequence {Cn}n°°=o may contain the parameters of the set g„(x), but is 

independent of x and t.

A set functions may have more than one generating {unction. Flowever, if,

G(x,t)= s hn(x) tn
n=0

Then G (x, t) is unique generator for the set {h^x)} as the coefficient set.

We now extend our definition of a generating function to include functions which 

possess Laurent series expansions. If the set {fn(x)} is defined for

n = 0, ± 1, ± 2......... , the definition (1.2.2) can be extended in terms of the Laurent

series expansion:

F(x,t)= x Y„f„(x)-tn--------------- (1.2.3)
n = ~ao

where the sequence {yn} is independent of x and t
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Bilinear and Bilateral generating Functions:-

If a three variable function f(x, y, t) possesses a formal power series 

expansion in t such that

F(x,y,t)= ej„fn(x)f„(y)tn------------ (1.2.4)
n=0

where the sequence {yn} is independent of x , y and t then F( x, y, t) is called a 

bilinear generating function for the set {f„(x)}

Suppose that a three variable function H( x, y, t) has a formal power series 

expansion in t such that,

H(x,y,t)= l hnfn(x)gn(y)t2------------- (1.2.5)
n=0

where the sequence {hn} is independent of x, y and t the sets of functions

{fn(x)L35fen(x)t=0

are different, thenH(x, y, t) is called a bilateral generating function for the sets.

{fn(x)}r=o-or..{gn(y)}r=0

The above definitions of a bilateral generating functions used earlier by 

Rainville [30, p.170] and McBride [21, p.19] may be extended to include bilateral 

generating functions of the type.

-H(x,y,t)= E Y„f«(n) (x)gP{n) (y) • tn —(1-2.6)
n=0
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where the sequence {yn} is independent of x, y and t the sets of functions

fc(x)}r=o-and....{gn(y)}“0

are different and a(n) and (3(n) are functions of n which are not necessarily equal.

Suppose G(xi,x2,.....Xf; t) is a function of r + 1 variables which has a formal

expansion in powers of t such that

•G(X1X2,---------Xr;t)= IC^XjX^---------xr)tn----------- (1.2.7)
n=K)

where the sequence {C„} is independent of the variables xi,x2,..... x* and t. Then we

say that G(xi,x2,......x,; t) is a multivariable generating functions for the set

{gn(x1,x2,.....Xr )}n=i corresponding to non zero coefficient C„.

A natural extension of the multivariable generating function (1.2.7) is a 

multiple generating function which may be defined formally by

^(x!,x2,......xr;t,,t2,.-tr)

= e C(n,,n2,— nr)<|>-n1,n2,....nr(x1,x2,
ni,n2,—nr=°

-xr)w ,c—(1.2.8)

where the multiple sequence (C(nt, n2>....,.nr) is independent of the variables xi, 

x2,...,,.xr and tj, t2,.....
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It is not difficult to extend the definitions of bilinear and bilateral generating functions 

to include multivariable generating functions as (1.2.9) F(x,,x2,..... x,-; yi,y2,..... yr; t)

f(x„x2,.... ,xr;y1,y2,....yr;t)=]iiynfa(n)(x1,x2,......^r)fp(n)(y1,y2,.....yr)-tn--(1-2.9)

and

H(x,,x2,..... ,xr; y,,y2,......,ys; t)

= h nfa(n) (x,, x 2,------ xr )gWn) (y,, y 2,------ y r >n —(1.2.10)

respectively.

A multi-variables generating function G(xi,x2,..... x* t) given by (1.2.7) is said

to be a multi-linear generating functions if,

gn (xi,x2,..... xr)= fa, (n) (x,) fa2 (n) (x2).....f a«(nXx r)------(1.2.11)

where ai(n), a2(n),..... a,(n); are functions of n which are not necessarily equal.

More generally, if the functions occurring on the right hand side of (1.2.11) are all 

different, the multivariable generating functions (1.2.7) will be called a multilateral 

generating function.

(13) Brief Survey of the work done the other Researchers.

In brief we shall discuss here the general context of bi-orthogonal polynomial 

sets with particular reference to the known result obtained by others.

Let fix) and s(x) be real polynomials in x of degree h > 0 and k > 0 

respectively. Let Rm(x) and Sn(x) denote polynomials of degree m and n in r(x) and
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s(x) respectively then Rn,(x) and S„(x) are polynomials of degee mh and nh in x. The 

polynomials r(x) and s(x) are called basic polynomials.

The real valued function p(x) of real variable is x is an admissible weight 

function on the finite or infinite interval (a, b) if all the moments

Iy=.fbp(xXr00},{s(x)},*dx-, Vi,j = 0,1,2,...... ......... (1.3.1)

exists, with

Definition:

Biorthogonal Polynomials:

The polynomials sets {Rn, (x)} and (S„(x)} are biorthogonal over the interval 

(a, b) with respect to the admissible weight functions p (x) over the interval (a, b) and 

basic polynomials r(x) and s(x) provided orthogonality conditions.

Jb p(x){Rm(x)}{sn(x)}dx = 0, if m,n = 0,1,2,-------,m * n

* 0, if m = n ------ (1.3.2) (

are satisfied.

In 1951, Spencer and Fano [33] used a particular pair of biorthogonal 

polynomial sets in order to calculate penetration of gamma rays through matter. They 

did not establish any general properties for this particular pair of biorthogonal 

polynomial sets but they obtained the property of biorthogonality of polynomials in x 

and polynomials in x2 with respect to weight function xa e'x where a is non negative 

integer over the interval (0, °o).
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Preiser [29] in 1962 acquainted with the work of Spencer and Fano,[33] 

established the third order differential equation of the type,

•A(x)Yf + B(x)Y" + C(x)Y' = ZnYn----------- (1.3.3)

exists such that it has biorthogonal polynomials solutions of degree n in x™ and such 

that the reduced adjoint differential equations of

((p(x)A(x)Zn)ffl +(P(x)B(x)ZJ" ~(P(x)C(x)Zj = A.nP(x)Zn.— (1.3.4) 

has biorthogonal polynomial solutions of degree n in x, n=0,l,2.... In (1.3.3) and

(1.3.4) the prime denote differentiation with respect to x; p(x) is a weight function 

having three continuous derivatives, A(x), B(x) C(x) are functions of x independent of 

n and is a parameter independent of x.

Preiser also established the existence of pure recurrence relations connecting 

four successive polynomials and obtained generating iiinctions for the polynomials in 

x2 and gave integral representations for his pair of biorthogonal polynomial sets.

Unaware of the work of Spencer - Fano [33] and Preiser [29], I. M. Shefifer, 

proposed the application of notion of biorthogonality to polynomial sets, the 

determination of the conditions under which pairs of biorthogonals set exists and the 

comparison of the properties of biorthogonal polynomials with properties of 

orthogonal polynomials. With these directions and under the guidance of I. M. 

Shefifer, Konhauser [16] in 1965 obtained may more general properties of 

birothogonal polynomial sets.

In order to apply his general investigations of biorthogonal sets, Konhauser 

[17], 1967 considered two biorthogonal polynomials sets {Z^x (x; k)} and {Yan(x;k)}
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of degree n in / and x respectively, where x is real, k is positive integer and a > -1. 

For k=l both these polynomials set reduces to die generalized Laguerre polynomials 

La„(x); for k =2 we get the polynomials considered by Preiser [29],

In fact Konhauser [17] stated that

n n! j=o \U

X kj

r(kj + a + l)
-----(1.3.5)

and

Y (x;k) =
_k_a^_
man

~xt (t+i)a+kn

(tk ! +ktk 1 +.... + k),k-2 n+1 — (1.3.6)

we call (1.3.5) as Konhauser biorthogonal set of first kind and (1.3.6) as Konhauser 

biorthogonal set of second kind.

The field of study of biorthogonal polynomial sets is quite new and hence it 

will be worthwhile to review some of the work accomplished in this very interesting 

area. Prabhakar [25] has obtained generating functions of integrals and recurrence 

relations for the Konhauser biorthogonal sets of the first kind Zna(x ; k). .At a letter 

stage Prabhakar deduced a generating fiinctions, Rodrigue’s formula by using contour 

integral representation for the polynomials Yna(x; k). An application of these results 

be obtained two finite sums involving Z„a(x; k).

Using Langrange’s theorem, Carlitz [5, 6, 7] obtained a generating function 

and an explicit polynomial expression for the polynomials Yna(x; k). Also he shown 

that Y„w(x; k) can be identified with the polynomials studied recently by Chatteijea 

[8,9].
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Karande and Thakare [14] have constructed a much more general generating 

functions in the hypergeometric form. Some recurrence relations, bilinear generating 

functions for Zn“(x; k). They introduced the polynomials related to the Konhauser 

biorthogonal polynomials of the second kind and obtained some of their properties.

Patil [23,24] have obtained some operational formula for Y„a(x; k) in terms 

of the differential operators txk +xk+1 D where D = d/dx. By using operational 

technique they obtained pure recurrence relation, generating functions and 

multilinear generating function for the Konhauser biorthogonal polynomial, sets.

The question of constructing a pair of biorthogonal polynomials suggested by 

the Jacobi polynomials and the Hermite polynomials remained open for several 

years. Prabhakar and Tomar [28] introduced a biorthogonal pair {U„(x; k)} {V„(x;k)} 

of polynomial sets which is analogously suggested by the orthogonal set of Legendre 

polynomials Pn(x). Prabhakar and Kashyap [27] have discussed the polynomials.

------ (1.3.7)

-(1.3.8)

and shown that they form a pair of biorthogonal polynomials over (-1, 1) with 

respect to the weight function { [(l-x)/2)]w}. For k=l both Una(x; k) and V„a(x; k) 

reduces to P^fx; k)
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Madhekar and Thakare [19, 20] succeed in completely setting the question of 

constructing a pair of biorthogonal polynomials suggested by the Jacobi polynomials. 

They have defined the following pair of biorthogonal polynomials J„(a, |3, k ;x) and 

Kn(a, p, k ;x) which are suggested by Jacobi polynomials.

Jn(a,p,k;x)=
(1+a),kn

n!
H-iy
i=o

^(l+a+P+n)kj
u

O+aXj

1—x

. 2 J
Akj

------(1.3.9)

.Kn(a,R,k;x)=Z ZH)
r=0 s=0

r+s (1+P)„ ^(s+a+1)^ Tx-lYx+A
W n!ri(l+R)„ l k 1,1 2 A 2 J (1.3.10)

In Jn(a, P; k ;x) has the following hypergeometric form

Jn(a,p,K;X) = (1+a).
n!

kn r? 
k+1 rk

-n,A(k,l+a+p+n);/’ J_

);A(k,l+a);
-(1.3.11)

where A (m, 5) is sequence of m parameters..

8 8 + 1 S+m-1
m m m

,m > 1.

For k=l, both, Jn(a, p, k ;x) and K„(a, P, k ;x) reduces to the Jacobi polynomials 

Pn'1’p (x) Thakare and Madhekar [37,38] obtained the generating functions recurrence 

relations, multilinear generating relations, bilateral generating functions etc. 

Parashar [22] also considered the biorthogonal polynomials J,,0'p (x;k) and he obtained 

the recurrence relations, expansion formula by using a forward difference operator.

A k f(a) = f(a + k) - f(a).
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The study of biorthogonality of pair of polynomials sets received impetus after 

the publication of the work of Konhauser [16,17]. Unacquainted with the work of 

Didon [12] and Deruyts [11]. Chai [10] suggested hypergeometric polynomials 

Z„(x;k) of degree n in xk that satisfy the following condition,

Jxa(l-x)pZn(x,k)x‘dx = 0, i = l,2,3,...... ,n-l-------(1.3.12)

* 0, i = n

where Zn(x;k) = i (-1)*
j=0

( (l + a + p+n)kj ^
X

(l+a)kj

and a > -1, k and p are nonnegative integers.

Madhekar and Thakare [19] constructed a pair biorthogonal polynomials with 

respect to the weight function (l-x)u (l-x)p, (a > -1, P > -1) over the interval

(-U).

The pair of biorthogonal polynomials corresponding to the Laguerre weight 

function could be given as follows (see Konhauser [17] and Carlitz [5])

,z;(x;k):
f(kn + a + l) n

n!
±(-iy(j>r(kj + a +1)

(1.1.13)

Y“fck)=-7i2Vt(-l)’(0l
n! r=o r! s=o

s + a + r 
, k Jn --------- (1.3.14)

These polynomials are called as Konhauser polynomials. The Konhauser 

polynomial Z„a(u; k) and Ynw(u; k) satisfy biorthogonal condition.
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0 J" u“ exp(- u)z; (u, k)Y„-“ (u; k)du = r(ktl + a + 1)s - _ _ (1.3. 15)
n!

where 8 ^ is the usual Kronecker’s delta.

8 n, m = 1, if n = m,

=0, if n * m

Thakare and Madhekar [37, p.1033.] introduced the polynomials Sn(x;k) and 

Tn(x ; k) that are related to he Konhauser biorthogonal pair Zna(x;k) and Yna(x;k) 

in the following compact form

n (\-
V

UJ
S.(x;k)= + 6jX(-1)i

}

\ J

, nk~2kj

r(BW±&-kj)
—(1.3.16)

•T„(x;k) = (-1)L J2n Y.
|] J2] x"-2r [2
2jTn T __________V

nnl r

r=0f
E(-l)s

, s=0

Bl- s + (k + l)% + %

\ y

-(1.3.17)

where € is 0 or 1 according to n is even or odd integer. Through out this 

dissertation € will always have this meaning. Also through out [n] denotes the 

greatest integer less than or equal to n and k to be positive odd integer in view the of 

existence theorem of Konhauser [16, p.253]. We note that Sn(x; k) and T„(x ; k) are 

polynomials of degree m and n in xk and x respectively. For k = 1 above relations 

gives relationship between the Laguerre’s polynomials and the Hermite 

polynomials (see Szego [36]. Since for k?=l both S„( x; k) and Tn (x ; k) reduces to 

Hermite polynomials and both reduced to the Laguerre’s polynomials.
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The biorthogonality of the sets {s„(x; k)} and {Tn(x; k)} can be obtained by 

taking a=-l/2yx = k/2 in the biorthogonality relationship for Konhauser polynomials

L>xp(- x2>„ (x; k)Tm (x; k)dx

= 22n r(e +(kn + k - k e)|2)- [n 12}l 5n m ------ (1.3.18)

where 8^ „ is the usual Kronecker’s delta.

The separate direct proof of above (1.3.18) biorthogonal condition is also possible by 

using the identity of Carlitz [5, p.429] in the form

—(1.3.19)

Thakare and Madhekar [38] introduced a pair of biorthogonal polynomial 

sequence {S/(x; k)} and T„^(x; k) with respect to Szego-Hermite weight function

x 2|i exp(-x2),p 1> — 
2

[1S"(x;k) = 2”r((kn + k - k e|2 + n+ e)- Z(-l)
r nk-2kj

r(fc?±L«-kj+p) -(1.3.20)

V y

T^(x;k) = (-l)L2J2nI
x. n-2r

r=0
I (-1)'
s=0

v y

^(2s + (k +1) e +2\x +1)^

f]
------ (1.3.21)
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They have obtained following biorthogonal condition.

r f -00
2ti exp(-x2 )SJ(x; k)T» (x; k)dx

= 22n n
2

!r(n+e+(kn+k-ke)|2)5ll_m------(1.3.22)

The proof of (1.3.22) is possible independently by using the identity (1.3.19) where 

€, [n], 8 „ jn and k have their unusual meaning.

Thakare and Madhekar [38, 1987] obtained, generating functions, mixed recurrence 

relations for both these sets. For k=l , both the above sets get reduced to the 

orthogonal polynomials introduced by Szego.

The work of Konhauser, Thakare and Madhekar motivated me to study the 

biorthogonal polynomials in special function theory.
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(1.4) Notations and Basic formulae:

0) (a)„
r(a + n) _ f1 if n = °--*°

F(a) [a.(a+lXa+2),-----(a+n-1), if n = 1,2.3...

<«) (a).-t = i ^ H ,0 < k < n
(l-a-n)k

1jf o

(iii) (-n)k = -
(n-k>! 5. k i n

0 k

(iv) Ffe~Pl = -L-l) a*0, ±1, ±2,
T(a) (l-a)n

(v) (l + n)„=22n f-1
a)

(Vi) z ZA(k,n)=Z-ZA(k,n-k)
n=0 k=0 n=0 k=0

(vii) t ZB(k,n) = i £B(k,n + k)
n=0 k=0 n=0 k=0

(viii) (™)=m Cn = m! . =(■ Q ^ m^n 
v ' n !(m-n}! n! 0<n <m.

s- \ \{ 88 + 15 + 2 8 + m-l ,(ix) A(m,8)=—,  ,----------------- , m>l
mm m m

(x) (^)m+n =(^-)m(^ + m)
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