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CHAPTER - 11

Hankel Type transform of Distributions

2.1 Introduction:

The Hankel type transformation of a function f(x) is defined by

F(y)=hyf = J‘U 7, () f)d e 2,11,

where J, (x) is the Bessel function of first kind and of order 4.

The inversion formula for this is given by

f(x)= JU (2N )Py weeemeees (2.1.2)

In this chapter we have studied in details the extension of this Hankel

type transform to a class of distributions and use it to solve a distributional

integral equation.

For a real numberA and a positive integer a. we construct a testing

A

2
function space H, , , which contain the kernel (Z) J, (2\/5 ) as a function on
X

0<x < foreach fixed y.
The Hankel type transform F(y) of a distribution f in the dual space
H! ,is defined by

%
F(y)=hf=<f (x),(—zj J, (2\/5 ) > for suitably restricted y.
X

In section 2.2, the spaces H,,and H, are developed. In sec.2.3 and

2.4, we discuss the distributional Hankel type transformation and its inversion.
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Sec.2.5 is devoted to an application to the solution of distributional integral
equation.
frinf=g
where g :s known distribution in certain space
For any real numbera, let L, be the space of all smooth functions #(¢)

k

on I such that B, (¢) = sup |e” Ed;qé(t)

O<ticoo

<o , k=0, 1,2, 3-mmmm-

L, , is a-esting functions space such that e™ e L, , if Res>a [26, p.90].

L, ,denotes the dual space of L, .
If feL,,,the Laplace transform of fis defined by
F(s)=< f(t),e™ > (Res >a )-------n=n- (2.1.3)
If f is a locally integrable function on I and if, then f generates a regular

generalized function in L, , through the definition,

<[f.>= [fOp@)dt, peL,,.

2.2 The Testing Function Space H_, and its dual #_ , :
For a>0 and A be any real number. Let H_ be the collection of all

infinite differentiable functions ¢(x)defined on I, such that for every

nonnegative integer k,

L) =T""(#) =25

e”""A'})x(/ﬁ(x)‘ <O mmmmmmmeoes 2.2.1)

A =[Dx*'Dx* ], D

4
dx
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H, ,is a linear space over the field of complex numbers. We assign to it the

topology generated by the separating countable collection ‘{7}«}20 of seminorms.
Hence H, ,is Hausdorff locally convex topological vector space that satisfies
the first axiom of countability. The dual space H, consists of all continuous
linear functionals on H_,.

The dual is linear space to which weak topology generated by the

multinorm {£, }¢ , where

&) =|< f,¢>| and ¢ varies through H_,.

Lemma 2.2.1: H, , is complete and therefore a Frechet space
Proof: Let {g,}” _ be a Cauchy sequences in H, ,. Then by equation (2.2.1)

we have a uniform Cauchy sequence {y,,}”_on I.

For each k,
Wm (x) = e“axA/;.,x¢m (x) -------- (2'2‘2)

By Cauchy write {y, }"_ converges uniformly to {¢}  on I forallk.
Hence by Theorem of mathematical analysis, there is a smooth function
w(x)on Isuch that v, (x) - w(x) uniformly on I, where y/(x)=e A% ¢(x).
since v, (x)is a uniformly Cauchy sequence then for each >0, there is

an integer N such that

sup |y, (x) -y, (x)|<e Vm,n>N.

O<x<on

Taking the limit as n— 0.
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We get,

sup |y, (x)—yp(x)|s€  ---m-- (2.2.3)

O<x<on

Thus foreach £, m> N,

T (g, —¢)—>0 as m —x.

Finally tecause of the uniformly of the convergence and the fact that each

w, (x)is bounded on 7, there exist a constant C not depending on m such that
. ()| <C  Vx
Then (2.2.3), we get

sup |y (x)| <M where M is constant.

O<x<on

which shows that y/(x)is bounded on L.

Hence a function ¢(x) which is the limit of a given sequence {4, } is a member
of H, ,. Thus the sequence {¢,} converges in H,, , to the unique limit ¢.

Hence H, ; is a countably multinormed space which is complete.

Therefore H,, is a Frechet space.

Lemma 2.2.2: H_,is Testing function space.

Proof: Clearly, H_,satisfies the first two conditions of testing functions space.

We shall prove the third condition.

Let {¢,} converges in H_, to zero.

In view of equation (2.2.2) and the seminorm defined by (2.2.1) it

follows that by an induction on £, that for each %, {Df(z}m} converges uniformly

to zero function. Therefore H, , is Testing function space.
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We now list some properties of H_, spaces:

i). H,,is sequentially complete space hence H_ , is also complete [26].

). LetA > —% , for fixed complex number y belonging to the strip Q

Q= {y:’Im\/ﬂ<g ,y#0 or anegative number}

2

2
Indeed, by analyticity of z7*J,(z),z =0 it follows that (—ii) J 1(2\/};)

is smooth on o < x <« .Also in view of the property

1w

X

Al [(sz J,2xp) |= (D' y* (y j RO R — (2.2.5)

and the fact

e"“x(2\/35)’1J1(2\[§;)i is bounded for O<x <o, yeQ [9], the

quantities

A

pao {(.}:)2 JAA/E)} are finite for all k=0, 1, 2, 3---

X

WA
Therefore [%} "y . (2\/5 ) €eH,,;

iii. Let0<b <a, Then H,, c H,, and the topology of H, , is stronger than the
topology induced on it by H,_ ,.This follows from the equality
L “($) ST (¢) for geH,,.

Let 0<b<a
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Let 0<e™ <e™ on I.

Then

e, P(x)| <|e AL p(x)|
So that 7“(¢) < T/’ (¢) for g H, .

Hence the restriction of fe H,,to H,, isinH, .
iv.D()c H, ,, and the topology of D(J) is stronger than that induced on it by
H,,. Hence, the restriction of feH,, to D(J) is in D'(I).Thus members of
H! , are distributions in Zemanian’s sense [26].

v. Let f(x) be locally integrable function on O0<x<c and such that

o0

j’e—ax

1}

f(x)|dx <o, then fgenerates a regular generalized function in H),

defined by

< fo4>= [F(X)(x)ddx e (2.2.6)
Let < f,¢>= j F(x)p(x)dx .

< f.¢>|=

jﬂﬁ e p(x)dx
9 e

dx

—ax

0

< 7:;1,&¢(x)0]‘1 f(x)

which shows that (2.2.6) truly defines a functional fon H,,.
This functional is clearly a linear one.
Moreover, if {g,}"

~, converges in H,,to zero, then 7.)“(4,)—>0 so that

< f.8,>—0.
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Thus f'is alsc continuous on /.

Hence f generates a regular generalized function in H .

2.3 The distributional Hankel Type Transformation:

Let —% <A<w, a>0.In view of note iii (sec. 2.2), for every feH,,

there exists a unique real o, >0 (possiblyo, =) suchthat feH,, if b<o,

and f¢H,, ifb>o,.

For feH,, and /12—?12—, We define the A" order Hankel type

| Y
transform A, f of f as the application of f to the kernel (;—) J, (2\/5)

%
ie. F(y)=hf =<f(x),(~ii) Jl(z\/;c;)> --------- (2.3.1)

o, )
Where yeQ, ={y: |Im \/;l < > y#0 or anegative number}.

The right hand side (2.3.1) has a sense because, by note ii,

%
(l) J, (2\/)C__V)G H,, foreveryb<o, and yeQ,.
. .

If f(x) satisfies the conditions of note v. sec (2.2) for everya <o, then

we may write

w©

F(y)=h )= J(%T J,l(2\/;}7)f(x)dx , yeQ,.

0
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Theorem 2.3.1: For feH,, and A2 —é—, Let F(y)be defined by

%
FOI=Hf0)=<f0( 2] 2, (2)>

Then F(y) is analytic function of y on Q, and

A
DF(y) =< f(x), D[(ij J,(2\xy)]> where D =-5~.
x ly

Proof: Let y be an arbitrary but fixed point inQ, .

o.

Q = {y : !Im \/}’ < ?f,y # 0 Or a negative number }
Let C denote the circle whose centre is at y and whose radius is# . Restrict r,
still further by requiring that C lie entirely with inQ, .

Finally, let Ay be a nonzero complex increment such that

]Ayi <7 and llm\/y+Ayl<%.

A

Consider Fly+ Ag —Fo) <f (x),-g- (Z)E J 1(2\[5)} >=< f(X),1/,,(x) >
Ly

X

Vs =;§;{("’ L ) JAA/x(wAy»—[X)z Ji(zﬁ)}—g;{(ljz Ju(zﬁ})}

X X

Our theorem will be proven when we show that (2.3.2) converges to

zero as |Ay| > 0.
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This can be done by showing that y, (x)converges in H,,to zero as

Ay — 0,
Using the fact that
i
(2 e |-y (2 s e
X
and

A%, (x) can be written as a closed interval on C by using

Cauchy’s integral formulas.

This gives

Ai,xwéy(x>=5%£v(-1)kf*@ / (ZJ—){ ( SERE y (- y)}

e(E)
% U J,2\Ex)
i (E-pY(E-y-Ay)

Next forall feCand0<x <o,

e (1)5( ] J(2\/—)d§
¢ C-yE-y-my)

We may write e A%y Ay(x)! =

27

£ [5;—) e, (24/Ex)
E-»(E-y-Ay)

IAyl I

VL E E-»(E-y-Ay)

1y q g 2te ey, 080,
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Here A4,be a constant bounded on e"“"(z\/.f_x)“JlQ\E;) for0<x <o and

Moreover,

E-yl=r and|E-y-Ay|>r-r>0.

Thus e‘“A’;’xl//Ay(x)’ —0 as |Ay| 0.

This proves that y, (x)converges in H, ,to zero as|Ay| 0.

Consequently, < f(x),,,(x) >0 as |Ay| - 0.

Using equation (2.3.2), we say that F(y)is analytic.

Theorem2.3.2 Let F(y)be the distributional Hankel type transform of fe H,_,

as defined by (2.3.1) then, F(y) satisfies the inequality
|FO)| <{ o’ 0<y<l

ky’ l<y<w
where p is a sufficiently large real number and k is chosen appropriately.
Proof: In view of a general result [26, Theorem 1.8.1], there exists a constant

¢ >0 and non negative integer » such that
4
2
[F(y)|< Cmax Suple A7, (Z) J,(2yxy)
SKSF xef ’ X

By (2.2.3), the right hand side is equal to

Ogksr xel

A
=max Suple ™y* (%)2 J, (2\/5)
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—max Suple-2r yr T2

0sk<r o) (2\/’;};)’1

Since forall y >0,

AN 4, 9]

Q2xp)

where 4, is constant with respect to x and y, the theorem follows.

Inversion Theorem for the Distributional Hankel type transform
This section is devoted to prove an inversion formula for distributional
Hankel type transformation. This inversion formula determines the restrictions

to D(I) of any &, transformable generalized function from its Hankel type
transform. Form this we will obtain an incomplete version of a uniqueness
theorem, which states that two A, transformable generalized functions having
the same transform must have the same restriction to D(J).

Theorem 2.4 Let f e H:,, , and Let F(y) be the distributional Hankel type

transform of f defined by

%
F) = (1)) =< f(x),(ii) J,(2)>.

Let 12—1.
2

Then for each ¢ € D(I),

2

J, )y, d(x) >>< f,¢> as R >,

<frof3)
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R 4
ie. f(x)=lim [F(y)(i)z QN xy)dy wweseeseeneees (24.0).
Proof: Letg e D(J).

Choose a real number a such thatO<a < o;.

Since the integral in (2.4.1) is a continuous function of x, it generates a regular
distribution in D(I). Hence, we have

A i
R 3 © R -
< jF(y)[-f;} @)y, ¢(x) >= [9(x) jF(y)E] T, (2[xy)dya
0 0 0
Since from smoothness of F(y) and ¢ is of bounded support and the integrand

on the right hand side is a continuous function of xand y, we can change the

order of integration and obtain

[SIE

N,

<f F(y>| ;) Ty 2\x)dy, ¢(x) >= [F(y) J¢(x>( J(2xy )ddy

i
Y

py

A

x i .
= j< f (t),[%) T,y > j«ﬁ(x)[-ﬂ J,(2\xp)dxdy ---(2.4.2)

0

(57

A

Now, Let () = mj¢(x>(-;‘;f T,y and My (6) = chb@)(i—’-f 1,3

[N

Since

e A M (1) = e %, jcb(y)[—f—} J,@\y0)dy

A

R 3
=|[y*e (%) T,y 0(y)dy

< B log)pdy
0
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For some suitable constant, M, (t)e H, ,for eachR >0.

Using the Riemann sum technique, (2.4.2) can be rewritten as

A

<| F(y‘)[ﬂz T, )dy, $(x) >= [< fm,[—ty—] J,@2Jyt) > )y
0 0

~ 1%

i

= ([ f(t)(-}tijz J,2\[y)dtd(y)dy

By change the order

4
=Jro j(-f) T @yD)®(y)dydt

~ (oM, e

=< f(t),M,(t)>, R>0.
This has sense because M, (1) e H, , .

Hence now proof of the theorem will be complete, if we show that

My(t)—>¢@) in H,, asR —> .

Since @( y)({—jz J, (2\/;; ) is smooth and¢ e D(I), we may repeatedly
differentiate under the integral sign and use the equation (2.2.3) to write

AL M) = j@(y)Ai,,[({)Z T,y

i

=0 2] g, o] | ey
! 0

X
y

| &
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A

=:[( y [y] JReNIT: >j¢(x>("]za(2@>dxdy

y

A
R z

= [y 2120,y [ 4 (1) »* (—j—c’—) T, (2\xy )dxdy

0

I

R A A @ 3
= [y 20,2 [Féal, [(—j—c’—] J1(2«/5)}dxdy
0 0

= [r20,dp) [0, x)AL [g(x)ldxdy

The last equality is obtained by integrating by parts the inner integral 2k
times and nothing that the limit terms are always equal to zero.

Now, reversing the order of integration and using the formula

A AR

Ly(x,f)=x2t 2 j NN VRN T — (24.3)
~ ﬁxgt_g
= S W V), i) =Nt (24 ), (i)
Jx =+t
We obtain,
R A AT TR 1) — (2.4.4)

Denote / '—-‘/1 [p(0)] by g, (x).

Now suppose that the support of ¢(x) is contained in[4, B], where
0<A<B<w.Let0<S <4 .Letus break the integral in (2.4.4) into
AL M) =) +Vy () +V3(0)

-8
where V1) = [ L(x,)A} [¢(x)]d

0
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Vie)= [ Ly(x0)As [(x)ldx

1+8

We shall first show that N,(r)=e [V, (r)—A’;,xgb(t)] converges uniformly

to zero on O<t<ow asR—x If 0<r+d<4 or t-6>B, then V,(1)=0 and
A $(0)=0.

Therefore, we need merely consider the intervalA-6<t<B+§.

Moreover, since the support of ¢ is an [4,B], we can take the integral in

(2.4.4) on (4,B). Using the asymptotic expansion of J,(z) [8], we have for

large R,

A1 /1 1
't e [EWZ}( 2 4]51n(2f— 2\/~)
A%U):- aﬂé%up t N

A

_L;ﬂfhf%( )x [2 4) ("5' Z) COS(Z\/_E+2\/— )m)
Jx+t

First consider the middle term. For all R >1, the integrand is bounded on
{(x,)] A<x<B, A-5<t<B-6 }

by a constant independent of R. Therefore, given €>0, we can choose § so

small, say & =46,, that the magnitude of the middle term can be made less then
S forall R>1.
2

Now consider the sum of the first and last term in (2.4.5). This sum can

be written as

29



1&3—% 1 2R+~ sin
— | HT.sin@VRDET+e A 0| = [ Tdy-1)| e (2.4.6)
S T RN Y

i1

e 2 [(T+ND (T +0) 76 24 = A% g()
T

where H(T,t) =

Since H(T,t) is a continuous of (7,¢t) and supp ¢(x)<=[4,B], H(T,t)

is a bounded function of T on \/t~—5—\/;<T<\/t+§—\/; for all O<t<ow.

Hence choosing 6 very small, say d =4, , the first term in (2.4.6) can be made
less then —;— for all R>1.Now, fix § =min(5,,5,) .

The second term in (2.4.6) converges uniformly to zero on 0<t<ow as
R— oo,

Thus [N, (f)|<e on 0<r<w,

Since e> 0 is arbitrary, N, (1) — 0 uniformly on 0<f< as R — .

-6
Now consider P,(f)=eV,(t)=¢™ j Ly (x,0)¢, (x)dx

0
Fort-6<4, P,()=0
Now consider the range ¢-J>4 and using the asymptotic expressions as
R—>wm.

We obtain

A1 A1
1 ™nB0) ("2"2) (“E'Z] sin(2v/xR - 2VIR)
Py(t) =—
(1) e 1{1 #) (X)x t N dx
min( B ,1~§) A1V ( A1
__:;e—at J‘ ¢k(x)x(2 4)1( 2 4) COS(Z\/’;C%++2\\//;§_Z”)dx (247)
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First note that a > 0,e™ is abounded function for t -6 > 4.
Similarly, the quantity

33 [5-1) sin@VxR 24iR) _

ol 14 cos2VFT 4 2R - 1)

¢ x(
NEEN A NE

is bounded on the domain.
T={(x,t):A<t—5, A<t <min(B,t-95) }

we integrate by parts the first term in the (2.4.7)

(32 [575) cos@VxR +2ViR ~ a)

~fcx Jx +4/t
L N Sin(2\/xR + 2R — Am)dx ----(2.4.8
+E J x[¢K(x)—;—:/? ] in(2v xR +2NtR — Am) "“'( 4. )

The lower limit term is zero. So is the upper limit term if B<¢-§ .

On the other hand, if7 - § < B, the upper limit term is bounded by

1 4l
— sup |x* ‘g, (x)
5 A<x<B

Consequently, this upper limit term converges uniformly to zero for 4<¢-6 as
R—> o,

i1

54)
Moreover D, EANRCAC)) is also bounded on the domain K which

Vx4t

implies that the second term in (2.4.8) also converges uniformly to zero for
A<t-6 as.
A similar procedure of integration by parts may be applied to the second

term in (2.4.7).

31
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This proves that, as R — o, P,(f) converges uniformly to zero on0 <z <.

Consider Q,(t)=e“V,(t)=¢" Of[ L, (x,0)¢, (x)dx

+8

By the similar arguments as in [26] it can be show that Q,(r)—>0
uniformly on 0 <7< as R — .

Thus e A% [M(1)-4()] > 0 uniformly on 0<t<w as R-»o which
implies that
M (t)—>¢(t) in H,, as R — o, and the theorem is proved.
Theorem 2.4.2 Let F(y)=h,f for yeQ, and Let G(y)=h,g for yeQ,.If
F(»)=G(y) on Q,NQ,, then f =g inthe sense of equality in D'(J).

Proof: By Theorem (2.4.1), in the sense of convergence in D (1),

We have f - g = lim [[F(») —G(y)](ic-]E J,(2\Jx)dy =0.
R b y

Therefore f = g in the sense of equality in D'(1).

32



1.5 Application:

The classical problem is that of solving the integral equation

[

f(x)+k I(%) J,\xp)dy = g(x) ==-m-- (2.5.1)

where g is a prescribed function and A is real number.

(2.5.1) is equivalent to the operation equation
Fx)+kh,[f()(x)] = g(x)
1e. f+kh,f=g.
In general problem, g is a prescribed distribution from certain spaces and we

seek a distribution f such that

[k f = gnemrmeems (2.5.3)

in the sense of equality in certain space.

Lemma 2.5.1 Let 0<b<l, /1>—-12- and letfeH, NL,,. If hf is a

distributional Hankel type transform of fdefined by (2.3.1).Then &, f
generates a regular generalized function in L, , and the distributional Laplace

transform of 4, f is given by
i 1
L[hlf](p)zp A IF(;] ________ (2.5.4)

where F(P)=< f(x),e™> for b<Rep <~;— is the distributional Laplace

transform of /.
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Proof: In the view of theorem (2.3.2)
N < B’ 0<y<l

ky” l<y<ow
where k& and p are suitably chosen real numbers.

00

Hence, when 5> 0, _[e“’y |k, (f)(»)|dy < which shows that 4,(f) generates a

0

regular generalized function in L,, and therefore, if Rep>b, the Laplace

transform of #,(f) is given by

L (HN)(P) = [ f)(p)e ™ dy

A
o

= f< f(x),(—i-:-Jz J,2Jxp) > e Py

=< f(x), j(%)z J,2Jxp)e Pdy > wneme (2.5.5)

=< fx)p e > [22]

=p < fx)e ">
| ] . 1
=pF|— if b<Rep<—
p b

Step (2.5.5) can be justified as follows:

Forany R>0, /1.>~—;-

R i
Let 4, (x) = 1(1)2 J,J)ePdy  eeemeee (2.5.6)
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By the smoothness of the integrand, we may carry operator A under the

integral sign in (2.5.6) to obtain

R

A gy ()| =2 [ ) T2y e P dy

0

R
<24, [y"rePdy
0

<
where A, is a constant bound on e’“x(Z\/;c;)“’lJlQ\/—Jé;) for 0<x<w
O<y<R.

This shows thatg,(x)e H,_ .

Also for each p, b<Rep<%,

A

#(x) = j(—i—) Jy2\xp)e ”dy

=pler 2]
isin H_,. In view of Theorem (2.3.1) and Theorem (2.3.2), and the fact that

e” e H,,, the left hand side of (2.5.5) can be written as

i A
R 7 Yy £ =
f< 7). ?i)z J,2\x) > ey + < f(x),(i)2 J,(2Jxy) > e Pdy-—(2.5.7)
0 X R X
Moreover, given any e> 0, there exist R, such that, for all R > R,, the second

term in (2.5.7) is bounded in magnitude by -i- The right hand side of (2.5.7) is

equal to
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Using the Riemann sum technique, we can show that

J< f(x),(%)z J, ) > e dy =< f(x), j(i’-)z J, e Pdy > ----(2.5.9)

i
For each R, j[z)z Jﬂ(z\[)_c;)e‘”y €eH,, and
X
R

o

4 w
eEA, I[{;] J,@x)edy = (1) 2" [e™ 2\fxy) " T, )y e P dy

R R

which tend to zero uniformly on 0<x<w. Hence, there is R, such that the
second term in (2.5.8) is bounded by § Thus, by (2.5.9) the difference

between the two side of (2.5.5) is less than €. Since >0 is arbitrary, equality

in (2.5.5) follows.

Now we use these facts to solve the distributional integral equation
f+khf=g = (2.5.10)
in the space H,,NL,, where 0<b<1, a>0 and g is a known distribution in
H,,NL,, and k=-1.

By applying the distributional Laplace transformation L (2.5.10) can be

rewritten as
L(f)+ kL[, f = L(g)

Using (2.5.4), we get
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L Xp)+hp™ 7 L(f) G’J =L(g)p) if b<Rep <'Il; —--~(2.5.11)
Replacing p by 1 in (2.5.11), we have
p

L(f)('l')+lq9+l+1L(f)(p)=L(g) l),b<Rep <% since 0 <b <1----(2.5.12)
p p

Therefore, eliminating L( f)(-_l— from (2.5.11) and (2.5.12),
p

We get Z(/)(p) = [L(g)(f’) L) GH

i [L(g)(p)~kL(h,g)p)] using (2.5.4).

ie L(f) =(—1—}P-)L[g-kh&f]

1

which implies that f = _

(g—-khl(g)) .
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