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CHAPTER - II

Hankel Type transform of Distributions

2.1 Introduction:

The Hankel type transformation of a function /(x) is defined by

¥>
%) = V = IH (24^)f(x)dx--------(2.1.1).

0 Vx/

where JA (x) is the Bessel function of first kind and of order A.

The inversion formula for this is given by

/ \
/(x)=|- J A24^)F(y)dy

0\y
(2.1.2)

In this chapter we have studied in details the extension of this Hankel 

type transform to a class of distributions and use it to solve a distributional 

integral equation.

For a real number A and a positive integer a. we construct a testing

(y'fi / r—X
function space Ha x, which contain the kernel — J, 2 Jxy as a function on

\xj v >

0 < x < 00 for each fixed y.

The Hankel type transform F(y) of a distribution / in the dual space 

H’a A is defined by

F(y) = h\f =< /(x), — Jx (2Jxy) > for suitably restricted y.
\x) v >

%

In section 2.2, the spaces Ha . and H’aX are developed. In sec.2.3 and 

2.4, we discuss the distributional Hankel type transformation and its inversion.
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Sec.2.5 is devoted to an application to the solution of distributional integral

equation.

f + khj = g

where g is known distribution in certain space

For any real numbers, let Z+a be the space of all smooth functions

on I such that B k(0) = sup
d^_
dxl

■m <oo , k=0, 1, 2, 3-

L+c is a testing functions space such that eil e L+>a if Re s > a [26, p.90].

L+ a denotes the dual space of L+a.

If / e L+ 3, the Laplace transform of / is defined by

F(s)=< f(t),e~sl > (R&s>a )----------- (2.1.3)

If / is a locally integrable function on I and if, then / generates a regular 

generalized function in L+/1 through the definition,

<f,0>= j'f(t)</>(t)dt, (j) e L+a. 
0

2.2 The Testing Function Space Halsind its dual///:

For a> 0 and X be any real number. Let Ha X be the collection of all 

infinite differentiable functions <f>(x) defined on I, such that for every 

nonnegative integer k,

m) TkX'a{<!>)=Z e-axKj(x) < 00 (2.2.1)

^ = F Dx~mDxa T, D = — 
^ L J dx
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HaX is a linear space over the field of complex numbers. We assign to it the

topology generated by the separating countable collection {r4}“ of seminorms. 

Hence Ha x is Hausdorff locally convex topological vector space that satisfies 

the first axiom of countability. The dual space H'ai consists of all continuous 

linear functionals on HaX.

The dual is linear space to which weak topology generated by the 

multinorm } , where

4(/) = |</,# >1 and ^ varies through Hal.

Lemma 2.2.1: Ha k is complete and therefore a Frechet space

Proof: Let {<!>,, Ym=l he a Cauchy sequences in HaX. Then by equation (2.2.1) 

we have a uniform Cauchy sequence \ym }*=1 on /.

For each k,

ym{x) = e-^Jm{x) ------- (2-2-2)

By Cauchy write [y/m }”=) converges uniformly to on I for all k.

Hence by Theorem of mathematical analysis, there is a smooth function 

y(x) on / such that ym(x) y(x) uniformly on I, where y(x) = J>(x).

since wjx) is a uniformly Cauchy sequence then for each e> 0, there is 

an integer N such that

sup \ym{x)-y„{x)\ <e \/m,n>N.
0<JC«SO

Taking the limit as n -» qo .
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We get,

sup|^M(x)-^(x)|^€ ------ (2.2.3)
0<jt<oc

Thus for each k, m> N,

T^”a{<f>m -0)—>O as m —> qo .

Finally because of the uniformly of the convergence and the fact that each 

^/m(x)is bounded on I, there exist a constant Cnot depending on m such that

\Vm(.X)\<C VX

Then (2.2.3), we get

sup |^(x)| < M where M is constant.
0<x<oo

which shows that i//(x) is bounded on I.

Hence a function </>{x) which is the limit of a given sequence {$m) is a member 

of Ha X. Thus the sequence {4} converges in//fl /lto the unique limit </).

Hence Ha X is a countably multinormed space which is complete.

Therefore HaX is a Frechet space.

Lemma 2.2.2: Ha X is Testing function space.

Proof: Clearly, Ha A satisfies the first two conditions of testing functions space.

We shall prove the third condition.

Let {^{converges in HaXto zero.

In view of equation (2.2.2) and the seminorm defined by (2.2.1) it 

follows that by an induction on k, that for each k, converges uniformly

to zero function. Therefore Ha k is Testing function space.
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We now list some properties of Ha. spaces:

i) . HaX is sequentially complete space hence H’aX is also complete [26].

ii) . Let X > , for fixed complex number y belonging to the strip Q

Q = {y: Im y[y | < ^ , y * 0 or a negative number}

then
<x)

Jx{2^y)eHaA..................(2.2.4).

ry\h
\x)

Indeed, by analyticity of z iJ!L(z),z*0 it follows that 

is smooth on o<x< <x> .Also in view of the property

J&fv)--------- (2.2.5)A.x [z]
A

2 JA2y/xy) =(-l )V 'A
Kx)

and the fact 

quantities

e ojr(2^JxyyzJx(2yfxy)\ is bounded for 0<x<oo, yeO [9], the

->A,a

A

\x )
Jx{ljxy) are finite for all k=0, 1, 2, 3—

Therefore f — Jx(2j^)eHaX

iii. LetO < b < a, Then Hh x <= Ha X and the topology of Hh x is stronger than the 

topology induced on it by Ha X .This follows from the equality 

for <f>e Ha l.

Let 0 <b < a
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Let 0 < e~ax < e~hx on /.

Then \e~ax k\j{x)\<\e-hx&kxJ{x)\

So that TkA,a(0) < TkAJ’(0) for </>eHaX.

Hence the restriction of / e HaX to Hh x is in Hbx.

iv. D(J) a HaX, and the topology of D(I) is stronger than that induced on it by 

HaX. Hence, the restriction of /eHaX to D(I) is in £>'(/).Thus members of 

H'aX are distributions in Zemanian’s sense [26].

v. Let /(x) be locally integrable function on 0<x<oo and such that

Je flJC |/(x)| dx< oo, then / generates a regular generalized function in H'a x

defined by

< /,<(>>= J/ {x)<j>{x)dx---------(2.2.6)

which shows that (2.2.6) truly defines a functional /on HaX.

This functional is clearly a linear one.

Moreover, if | converges in Ha X to zero, then Trf'a{<f>m) -> 0 so that

|< fA >| -> 0.
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Thus / is also continuous on HaX.

Hence / generates a regular generalized function in H'aX.

2.3 The distributional Hankel Type Transformation:

Let ~^<X<<x>, a > 0. In view of note iii (sec. 2.2), for every / e HaX

there exists a unique real af > 0 (possibly cr/. = co) such that / e Hh x if h < a,

and f &H'hx if b > af

For / e Ha x and X > ~, We define the Xth order Hankel type

(v\Vi .
transform hj of / as the application of / to the kernel — Jx [2^/xyj.

\xj

( „\
i.e. F(y) = HJ=</(*),£ ---------  (2.3.1)

\XJ v 1

Where y e Qf. = {y: Im < -y- , y* 0 or a negative number}.

The right hand side (2.3.1) has a sense because, by note ii, 

Jx (2 ■Jxy^J e Hbx for every b < af and ye.£lf.
\X

If f (x) satisfies the conditions of note v. sec (2.2) for every a < cr,, then

we may write

X

F{y) = (hxf)(y) = f - Jx(2jxy)f(x)dx, y € Qf 
0\XJ
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Theorem 2.3.1: For / e Ha l and X > —^, Let F(y) be defined by

(
F(y) = h'J{y)=<f(x), ^ jAlJxy\>

\x) v '

Then F(y) is analytic function of y on Q, and

/ \ — j

DF(y)=<f(x),D[\^\ Jx(2^)]> where D = -~.
Kx) dy

Proof: Let y be an arbitrary but fixed point in Qf.

Qf = jy: |lm ^fy | < , y * 0 Ora negative number }

Let C denote the circle whose centre is at y and whose radius is rx. Restrict rx 

still further by requiring that C lie entirely with inO/.

Finally, let Ay be a nonzero complex increment such that

|Ay|<r and Im^/y + Ay < °7

Consider EklMzIM _ < f (x)j d
Ay dy

y
\x.

Jx{2^xy) >=< f(x),y/h {x) >

-(2.3.2)

Vt»
_1_

Ay
^ y + AyN 
, x ,

(y>
A

2 Jx(24xy) d
7

A
2 i~—~—.

Jx(24*y)
\XJ dy

Our theorem will be proven when we show that (2.3.2) converges to 

zero as | Ay| -» 0.
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This can be done by showing that f//,v.(x) converges in Ha X to zero as

H-+o,

Using the fact that

xX,x

X
(y\2
[x,

Jx(2^xy) f y}
\XJ

= (-l)V - -----(2.3.3)

and

Ak- jy&y(x) can be written as a closed interval on C by using

Cauchy’s integral formulas. 

This gives

Al[(-if S* (j J JzQ-Jxy)S'
Ay

f 1 1
.S-y-^y S-y) (s-y)

Ay r w______
2xi* (g-yf(£-y-Ay)

-dS

Next for all £ e C and 0 < x < oo,

We may write e ajAX xi// ,(x)
H)kSk

X

-T
UJ

A .V V * .. (2*Jxy)

2nil it-ynt-y-Ay) -dS

< N
2 n \

( ^\2
\XJ

<?* ±

(C-yf(4-y-Ay)

< N
2n •

Jti2ie-“(2^xy1Jx(24^)
(S-ym-y-Ay)
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< 4v K

Moreover, \^-y\ = r] and|^-y-Ay| >rx-r >0.

Thus ls.kXxif/hy{x)\ -» 0 as |Ay| —>■ 0.

This proves that i//Ay(x) converges in Hal to zero as|Ay| 0.

Consequently, < f(x),ipAy(x)>^> 0 as |Ay|->0.

Using equation (2.3.2), we say that F(y) is analytic.

Theorem2.3.2 Let F(y) be the distributional Hankel type transform of / e HaX 

as defined by (2.3.1) then, F(y) satisfies the inequality

\F(y)\<[ky* 0 < y < 1

kyp 1 < y < oo

where p is a sufficiently large real number and k is chosen appropriately.

Proof: In view of a general result [26, Theorem 1.8.1], there exists a constant 

c > 0 and non negative integer r such that

By (2.2.3), the right hand side is equal to

= max Sup
0£k&r ml
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max Sup
0sk^r xsl

Since for all y > 0,

where Aa is constant with respect to x andy, the theorem follows.

Inversion Theorem for the Distributional Hankel type transform

This section is devoted to prove an inversion formula for distributional 

Hankel type transformation. This inversion formula determines the restrictions 

to D(I) of any h. transformable generalized function from its Hankel type 

transform. Form this we will obtain an incomplete version of a uniqueness 

theorem, which states that two hx transformable generalized functions having 

the same transform must have the same restriction to D(I).

Theorem 2.4 Let / e Ha . and Let F(y) be the distributional Hankel type 

transform of/ defined by

Let X > —. 
2

Then for each (j> € £>(/),
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* ^i.e. f{x) = lim - Jx{2^xy)dy
~>0° o W

-(2.4.1)

Proof: Let^e D(I).

Choose a real number a such that 0 < a < a,.

Since the integral in (2.4.1) is a continuous function ofx, it generates a regular 

distribution in D(I). Hence, we have

« R

< jFOOjjJ Ji(2-jxy)dy,t(x)>= jtix)jF(y)\— JA(lJxy)dydx

Since from smoothness of F(y) and <j> is of bounded support and the integrand 

on the right hand side is a continuous function ofx and y, we can change the 

order of integration and obtain

<

R / \ j R « /

J^OO - ^(2 jxy)dy,0(x) >= Jf(>») J^(x) - Jx(2^xy)dxdy
o \y) o ov^1/

H / \ — ___ «o /

: J< /(0» - dx(2jyt) > jV(x) - JA(lfxy)dxdy —(2.4.2) 
o v t y 0 \y J

R / \y'Now, Let 0(_y) = J^(x)^—J Jx{2^)dx andMR{t) = ^(2Jit)4y

Since e-atAkXjMR(0\ e~h\,]®(y)UY

I ykeal y
U J

Jxi^^yt)^{y)dy

<
n
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For some suitable constant, MR(t) e Ha ? for eachR > 0.

Using the Riemann sum technique, (2.4.2) can be rewritten as

< fF’U’) - JA(2jxy)dy,0(x) >= J< f(t)
o \yJ o

y
\t

J x(2'[yt)>®(y)dy

- fj/w
A

t )
ji(?yl)*)dt®(y)<ty

By change the order

oo R

= RwJ0 0

A

t )
J\(?>fyi)QKy)dydt

= jf(t)MR(t)dt
0

-< f(t),MR(t) > ,R> 0.

This has sense becauseMR(t) e Ha X.

Hence now proof of the theorem will be complete, if we show that 

Mr it) -» $(t) in Ha X as R oo.

Since <t>(y) — Jx(2^yt) is smooth and^ e £)(/), we may repeatedly
v < y

differentiate under the integral sign and use the equation (2.2.3) to write

A ,[ f r J,(i4yt)]dy

A-*)' /
v1 y

— co

y.
Jl(2-<fxy)dxdy
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}(-l)V - 1 jz(2yfxy)dxdy
o \t j o \.y J

R A A

\y 2t 2Jx{24yt)\xx^{x){-\)k yk — Jx(2^xy)dxdy
V x j

R A A V Jx(2jxy) dxdy

R A » A
= p-/,(2p) p J,(2N/xy)A‘il[(#W]&^

0 0

The last equality is obtained by integrating by parts the inner integral 2k 

times and nothing that the limit terms are always equal to zero.

Now, reversing the order of integration and using the formula

A _AR

LR(x,t)~ x2t 2 jJx(2^Jxy)J;^(2^[yt)dy .................. (2.4.3)

JIx2i2
yfx-yft

We obtain,

A‘,MS(()= \L„(x,t)A\Mx)y* ------------ (2-4.4)
0

Denote A* ,[#(*)] by^(x).

Now suppose that the support of <f>{x) is contained in [A,B], where 

0 < A < B < oo. LetO <8 < A . Let us break the integral in (2.4.4) into

a1,m*(0 = ^(0+l2(0+l3(0

where V,'l)= j Ls(x,OA^.,»(*)]*
0
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QO
v,(i)= j Mx.OAUfli)]*

t+S

We shall first show that Nl( (t) = e~al [V2 (t) - A*x^(/)] converges uniformly 

to zero on 0<r<oo asi?-»oo,If 0<t + S<A or t-S>B, then V2(t) = 0 and

A*^(0 = 0.

Therefore, we need merely consider the interval A-S<t <B+8. 

Moreover, since the support of <j> is an [A,B], we can take the integral in 

(2.4.4) on (A,B). Using the asymptotic expansion of Jz(z) [8], we have for 

large R,

NR(t) =Le-°<
71

t + S
1 f

t-S

2

_(x)xK 4 V

A_l)
2 4 J sin(2\fxR -l4tR)

4x-4~t
dx

* As ylx + At

<2.4.5)

First consider the middle term. For all R > 1, the integrand is bounded on

|(x,f)j A<x <B , A-S <t < B-S }

by a constant independent of R. Therefore, given e>0, we can choose S so 

small, say 8 = 8X, that the magnitude of the middle term can be made less then

- for all R > 1.
2

Now consider the sum of the first and last term in (2.4.5). This sum can 

be written as
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* Vr+0-Vf

- f H(T,t)sm(2jRT)dT + e-alAk!ll0(t)
n

2 jR(Jt+S-yfi siny
■dy-l (2.4.6)

where H(T,t) =
e~m2<l>k[{T + 4i)2{T + 4i)^t 

T

Since H(T,t) is a continuous of (T,t) and supp $(x)<z.[A,E\, H(T,t)

is a bounded function of T on Jt-S -4t <T < 47+8 -4t for all 0 < t < oo. 

Hence choosing S very small, say 8 = S2, the first term in (2.4.6) can be made

less then — for all R > 1. Now, fix 8 = min(£,,<52).

The second term in (2.4.6) converges uniformly to zero on 0</ <<» as 

R-+OO.

Thus jJV/((f)|<e on Q<t<<x>,

Since e> 0 is arbitrary, NIt (t) -> 0 uniformly on 0 < t < °o as i? -> oo.

i-S

Now consider PR(t) = e~a,V](t) = e~m J LK(x,t)0k(x)cbc
o

For t-8 <A, PR{t) = 0

Now consider the range t-8 > A and using the asymptotic expressions as 

R -» oo,

We obtain

PH(t) =—e1 -atmin(i?,t-A)

n tk(x)x
"2 n f A n
u 4 Jk '2'"4, sin(2<JxR - 2\ftR )

dx

min(5
1 -at 

---- a

4x-yft

dx—(2.4.7)
J dX + yJt
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First note that a > 0,e at is abounded function for t-S> A.

Similarly, the quantity

^ sin(2Vrf-2M) , cos(2Vrf +7M-Xn)

is bounded on the domain.

T = {(x,t):A<t-S, A <t <min(B,t-S) j 

we integrate by parts the first term in the (2.4.7)

^ JHIR4) cos(2jlR+2yfiR-Ax)
(j)X t y*'"" r—

v* + yjt

1_l----
R 1 Dx[ </>K{x)

4~X + yft
]Sin(2yfxR + ijtR -X7t)dx —(2.4.8)

The lower limit term is zero. So is the upper limit term ifB<t-S. 

On the other hand, ifr - S < B, the upper limit term is bounded by

1— sup
RS A<x<B

X2 *fa(x)

Consequently, this upper limit term converges uniformly to zero for A<t-S as 

R -»oo.

Moreover Dx

i_!
2~4

AM
■sfx + yft

is also bounded on the domain K which

implies that the second term in (2.4.8) also converges uniformly to zero for 

A<t-S as.

A similar procedure of integration by parts may be applied to the second 

term in (2.4.7).
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This proves that, as R -»co, PR (t) converges uniformly to zero on 0 < t < oo .

Consider QR(t) = e a,V3(t) = e m JLR(x,t)<f>k(x)dx

By the similar arguments as in [26] it can be show that QR(t) -> 0 

uniformly on 0 < / < oo as i? ->oo.

Thus e~°'Auniformly on 0<t <<x> as i? ->• co which 

implies that

Mr {t) -> <f>(t) in HaJ as #->•» , and the theorem is proved.

Theorem 2.4.2 Let F{y) = hxf for ye Qf and Let G(y) = hxg for yeQg.If 

F(y) = G(y) on Q; f|£\, then f -g in the sense of equality in D(I).

Proof: By Theorem (2.4.1), in the sense of convergence in D (l),

Therefore f = g in the sense of equality in £>’(/).
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1.5 Application:

The classical problem is that of solving the integral equation

oof \-y ____

/(*) + *[ - Jx(2jxy)dy = g(x) ----- (2.5.1)
i\y)

where g is a prescribed function and X is real number. 

(2.5.1) is equivalent to the operation equation

f(x) + khx[f(y)(x)] = g(x)

i.e. f + khj = g.

In general problem, g is a prescribed distribution from certain spaces and we 

seek a distribution / such that

f + Mj = g........... (2-5.3)

in the sense of equality in certain space.

Lemma 2.5.1 Let 0<b<\, A>—^ and letfeH’aXf)L+b. If hxf is a

distributional Hankel type transform of /defined by (2.3.1).Then hj 

generates a regular generalized function in L+ h and the distributional Laplace 

transform of hxf is given by

L[hzf](p) = p x-\ fp
kP.

(2.5.4)

where F(P) =< f(x),e px > for b <Rep <- is the distributional Laplace
b

transform of /.
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Proof: In the view of theorem (2.3.2)

0<y <1

ky! 1 < y < co

where k and p are suitably chosen real numbers.

Hence, when b> 0, je by \hx(f){y)\dy < oo which shows that hx (/) generates a
0

regular generalized function in L+b and therefore, if Rep>b, the Laplace 

transform of h. (/) is given by

L[h^f)(y)Yp)= \{hxf)(y)e^pydy 
o

00 / \—

f</(*), - Jx{2y[xy)>e~pydy 
o w

X

</(*), j[^] Jx(14xy)e'~pydy> ....... (2.5.5)

<f{x),p~~~ep> [22]

P~ ~ <f(x),e p >

p~x~xF
f-l_l
kPj

if b < Rep <

Step (2.5.5) can be justified as follows:

For any R > 0, A. >

b

R!

Let </>R(x) = J| y
X

Jx(2^xy)e~pydy (2.5.6)
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By the smoothness of the integrand, we may carry operator AkXx under the 

integral sign in (2.5.6) to obtain

e~at^iA(x) 2A \e-ax{2^yyxJx(24^y)yk+le-pydy

<2 AAx\ykyAepydy

<oo

where Ax is a constant bound on e lu(2-s[xy) AJx(2jxy) for 0<x<oo ,

0 < y < R.

This shows that ^ (x) e Ha

Also for each p, b < Re p < 1

A
yY2

</>(*) = j - Jx(2jxy)e~pydy 
o\x J

p-A-'e p [22]

is in HaX. In view of Theorem (2.3.1) and Theorem (2.3.2), and the fact that

e py g H3 x , the left hand side of (2.5.5) can be written as

f</(x), - Jx(2^jxy)>e~pydy+\< f(x), - Jx(2^jxy)>e~pydy—(2.5.7) 
o yxJ r W

Moreover, given any e>0, there exist Rx such that, for all R>Rl, the second

term in (2.5.7) is bounded in magnitude by —. The right hand side of (2.5.7) is

equal to
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Jx{2^[xy)e~pydy > + < f(x), (f - Jx(2y[xy)e~pydy >---- (2.5.8)
iKx)

A
“/ -.AT

< /'»= JQ\X J

Using the Riemann sum technique, we can show that

n V 12
For each R, j — Jx(2-S[xy)e"py e Ht 

n v x )

A
v ,A?

and

A

which tend to zero uniformly on 0 < x < °o. Hence, there is R2 such that the

between the two side of (2.5.5) is less than e. Since e> 0 is arbitrary, equality 

in (2.5.5) follows.

Now we use these facts to solve the distributional integral equation

f + khxf = g ------ (2.5.10)

in the space HaAC\L+h where 0 < b < 1, a > 0 and g is a known distribution in 

HaAf]L+h and k*-\.

By applying the distributional Laplace transformation L (2.5.10) can be 

rewritten as

Uf) + kL[hJ] = Ug)

Using (2.5.4), we get
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L(f)(p) + kp~ L(f)
m L(g)(p) if b < Rep --(2.5.11)

b

Replacing p by — in (2.5.11), we have 
P

L(/)l-) + kpML(fXp) = L(g){- 

\PJ KPJ
,b <Rep <— since o<b< 1—(2.5.12) 

b

(\\
Therefore, eliminating L(f) — from (2.5.11) and (2.5.12),

KPJ

We get L{f){p) i-r L(g)(p) ~ kp~ L(g)f-

\ — k
\L{g){p)-kL{hxg){p)) using (2.5.4).

i.c.L(f)
M)

Hg-khj]

which implies that / = ~-r(g - khx (g))
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