CHAPTER I

•

PRELIMINARIES

CHAPTER - I

PRELIMINARIES

In this chapter we give some basic definitions which will be used in subsequent chapters.

1. DEFINITIONS

Def.1.1 : Partially Ordered Set or Poset [5] :Let P be a nonvoid set. Define a relation \leq on P which has following properties for all $a,b,c \in P$.

i)a ≤ a	(reflexivity)
ii) $a \le b$ and $b \le a \Longrightarrow a = b$	(antisymmetry)
iii)a ≤ b and b≤ c⇒ a ≤ c	(transitivity)

The relation satisfying above three conditions is called partial ordering relation and the set P equipped with such relation ' \leq 'is called partially ordered set or poset denoted by (p, \leq).

A Poset (P,\leq) is called as chain (or totally ordered set or linearly ordered set) if it satisfies the following condition for all $a,b \in P$

 $iv)a \le b \text{ or } b \le a$

(linearity)

Def.1.2: Upper bound [5]: Let $H \subseteq P$, $a \in p$. Then a is an upper bound of H, if $h \leq a$ for all $h \in H$.

Def.1.3 : Updirected poset [15] : A partially ordered set (P, \leq) such that for any $a, b \in P$, the set of upper bounds of $\{a, b\}$ is nonvoid is said to be up directed poset.

Def.1.4 :Zero element and Unit element of poset [5] :A zero of a poset (P, \leq) is an element $o \in P$ with $o \leq x$ for all $x \in Q$.

A Unit element of a poset (P, \leq) is an element $1 \in P$ with $x \leq 1$ for all $x \in P$.

Def 1.5: Bounded Poset [5]: A bounded Poset is one that has both 0 and 1

Def 1.6: Covering Property [5] : In a Poset (P, \leq), a covers b (in notation a >- b) if a > b and for no x in P a > x > b.

Def 1.7 : Atom [5] : An element a of poset (P, \ll) is an atom if a > 0 for $0 \le P$

Def 1.8: Meet semilattice (Λ - semilattice) as a fiser [5]:

A poset S is a Λ -semilattice if inf $\{a,b\}$ [or a Λ b] exists in S for all a,b

εS

Def 1.9: Meet -semilattice as an algebra [5]: An algebra $< S, \land >$ is called a semilattice if S is a non-void set with binary operation Λ satisfying following properties for all a,b,c $\in S$

i) $a \wedge a = a$ (idempotency)

ii) $a \wedge b = b \wedge a$ (commutativity)

iii) $(a \land b) \land c= a \land (b \land c)$ (associativity)

Def 1.10 : Join exists (V exists) [5] : Join exists (V-exists) means if sup {a,b} exists for any two elements.

Def 1.11 Relative annihilator of a in b [16] : Let S be a Λ semilattice Relative annihilator of a in b (a,b s S) is denoted by <a,b> and is defined as follows, <a,b>= $\{xsS/x \Lambda a \le b\}$

Def 1.12 Annihilator of an element [16]: Let S be a semilattice with 0. Annihilator of an element $a \in S$ is denoted by (a)* and is defined as follows, (a)* = {x \in S/a $\land x = 0$ }

2

() ()

Def 1.13 : Dense element [5] : Let S be semilattice with 0 and x ε S. An element x is said to be dense in S if $(x)^* = \{0\}$

Def.1.14 : Distributive Λ - semilattice [15]

A Λ - semilattice S is distributive if $c > a \Lambda b$ (a,b,c sS) implies the existance of a_i, b_i , s such that $a_i \ge a, b_1 \ge b$ and $a_{i\Lambda} b_{i=} c$.

Def 1.15 : Semi - ideal [15] : A semi- ideal I of a Λ - semilattice S is a non-empty subset of S such that $y \le x$ and $x \le I$ imply $y \le I$.

Def 1.16 : Ideal [15] : An ideal I of a A- semilattice S is a non - empty subset of S such that $(I_1) y \le x$ and $x \in I$ imply $y \in I$,

(12) for any x, y ε I there exists $z \varepsilon$ I such that $z \ge x$ and $z \ge y$.

Def 1.17 : Principal ideal [5] : The ideal generated by a subset H of the semilattice S, provided that $H \neq \Phi$ will be denoted by (H], and if $H = \{a\}$ we write (a) for ({a}), we shall call (a) a principal ideal. I.e. the set $\{x/x \in S, x \le a\}$

Def 1.18 : Prime ideal [5] : A proper ideal I of semilattice S (i.e. $I \neq S$) is prime if a,b $r \leq and a \wedge b \in I$ imply that $a \in I$ or $b \in I$. In other words an ideal I of S is prime if whenever two ideals I_1 and I_2 are such that $\Phi \neq I_1 \cap I_2 \subseteq I$ then I_1 or I_2 belongs to I.

Def 1.19 : Maximal ideal [15] : Let S be a semilattice. A proper ideal I of S (i.e. $I \neq S$) is maximal if the only ideal strictly containing 1 in S.

Def 1.20 : Minimal prime ideal [5] : A prime ideal P of S is called minimal if there is no prime ideal Q with $Q \subset P$.

Def 1.21 : Dual ideal [15] : A dual ideal of a semilattice S is a non-emply subset D of S such that $a \wedge b \in D$ if and only if $a \in D$ and $b \in D$

Def 1.22 : Principal dnal ideal [5] : The dual ideal generated by a subset H of semilattice provided that $H \neq \Phi$ will be denoted by [H) and if $H = \{a\}$ we write [a) for

[{a}), we shall call [a) a principal dual ideal i.e. the set $\{x / x \in S, x \ge a\}$

Def 1.23 : Prime dual ideal [15] : A dual ideal D of semilattice S, is prime if whenever two dual ideals D_1 and D_2 are such that $\Phi \neq D_1 \cap D_2 \subseteq D$ then D_1 or D_2 belongs to D.

Def 1.24 : Maximal dual ideal [15] : A proper dual ideal D of semilattice S (i.e. $D \neq S$) is maximal if the only dual ideal strictly containing D in S.

Def 1.25 : Complement of an element [5] : Let S be a semilattice with 0 and 1 and a be any element of S. An element b s S is called a complement of a if a Λ b = 0 and avb exist and is 1.

We denote the complement of a by a'.

Def: 1.26: Topological space [10]By a topology on a set X, we mean a class T of subsets of X satisfying

- i) Φ, X εT
- ii) ${Gi/i\epsilon\Delta} \subseteq T \Longrightarrow UGi \epsilon T$ is Δ

iii) $G_1, G_2 \in T \Longrightarrow G_1 \cap G_2 \in T$

The pair (X,T) is called a topological space. The members of X are called points and members of T are called open sets.

A subset C of X is called closed if X-C is open.

When there is no ambiguity, we simply say that X is a topological space with out specifically mentioning the topology on it.

Def 1.27 : Base for open sets [10] : A family of non void sets $B \subseteq T$ is a base for open sets if every open sets is a union of members of B.

Def: 1.28: Subbase for open sets [10]: A family of non-void sets $C \subseteq T$ is a subbase for open sets if the finite intersection of members of C form a base for open sets.

Def: 1.29: Closure of a set [10]: Let X be a topological space and let $A \subseteq X$. Then there exists a smallest closed set \overline{A} containing A, \overline{A} is the closure of A.

De 1.30 : To space [10] : A topological space X is said to be To space if $\{x\} = \{y\} \Longrightarrow x = y$, for x,y s X.

Def 1.31 : T_1 - space [10]: A topological space X is called T_1 - space if for given any pair of distinct points each has a neighborhood nor containing the other.

3

Def 1.32 : Housdorff's space or T_2 -space [10] : A Housdorff's space or T_2 -space is a topological space in which each pair of distinct points can be separated by open sets.

Def 1.33 : T_1 - point [10] : Let X be a topological space. A point p of X is said to be T_1 if f does not belong to closure of p for any point f of X other than p.

Def 1.34 : Anti T_1 - point [10] : A point of X is said to be anti T_1 point if p does not belong to closure of f for any point f of X other than p.

Def. 1.35 : Compact space [10] : A compact space is a topological space in which every open cover has a finite subcover.

Def 1.36 : Π_0 - space [10] : A topological space X is said to be Π_0 if every non empty open set of X contains a non empty closed set

Def. 1.37 : Normal space [10] : A topological space is normal space if it is T_1 - space and if every pair of disjoint closed sets is separated by disjoint open sets.

f: X \rightarrow Y then f is said be continuous if \vec{f} (O) is open in X, for every open set O in Y.

Def .1.39 : Homeomorphism [10] :Let X and Y be any two topological spaces. A function $f: X \rightarrow Y$ is said to be homeomerphism if both f and \vec{f} are continuous.

Def 1.40 : Weakly sparable [10] :Let X be any topological space and A, B be any two disjoints subsets of X. A is said to be weakly sparable from B if there exist an open set in X containing A and disjoint with B.

Def.1.41 : Retraction [10] : A subspace A of a topological space B is said to be retraction of B, if there exists a continuous map $f: B \to A$ such that f(a) = a for all $a \in A$.