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1.1 INTRODUCTION
Numerical integration is one of the most important

jand basic topic in numerical analysis. It deals witlj the 
study of how the numeric value of an integral can be l|ound. 
The methods of numerical integration were familiar long

i1before to Archimedes, who tried to calculate the area jof a 
circle. The nature of numerical integration is paradoxically

iboth simple as well as difficult. The study of numerical 
integration requires, sometimes, a deep knowledge of various 
branches of pure and applied mathematics. There are so many 
integration formulae which are simple to use and have much 
practical value.
Why Numerical Integration Needed ?

There are so many reasons for the need of 
numerical integration. We discuss some of them here. Usually 
numerical integration is used when analytic techniques fail. 
Even, if analytic techniques do work, these may not be 
sometimes useful, for example, very often the process of 
integration leads to new transcendental functions like ^dx/x 
which gives the logarithmic function. Also indefinite 
integration of a function cannot be expressed in finite 
terms containing algebraic,logarithmic, or exponential 
functions. Another important reason is that in many 
situations, we are confronted with the problem of 
integrating experimental data, in which case the theoretical
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devices may be wholly inapplicable.
However, it should be noted that the numerical 

integration is only complementary analysis to analytic 
techniques and not a substitute for it. Numerical 
integration gives the best results if we select the proper 
formula and corresponding error bounds are taken into the 
consideration.

Since the computers are now available, these 
formulae can be easily worked out with greater accuracy and 
high speed. Some of the integration methods are 
discussed in this dissertation and computer programs in 'C ' 
for some of these methods are given.
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1.2 THE METHOD OF APPROXIMATE INTEGRATION
Many methods of numerical integration have

been devised since the sixteenth century. One of them
is of prime importance which is the method of
approximate integration. The main concept involved here is
as follows:

Suppose we want to find a definite integral, 

bJf(x)dx ...(1.1)
a

where, f(x) is a function of x. Then we find a
function, say g(x), that is both a suitable approximation
of f(x) and also simple to integrate formally. Thus, we can
find the value of (1.1) by estimating,

b
Jg(x)dx ...(1.2)
a

Now, our goal is to obtain such function
g(x). For this purpose we consider the interpolating
polynomials P^(x) because several times these produce
adequate approximations and also these are simple to 
integrate. Due to these characteristics the great emphasis 
is given to polynomials throughout large portion of 
numerical mathematics. The following figure (FIG. 1.1)
illustrates the approximation of f(x) by the polynomial
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Here, the fourth degree polynomial P«(x)
interpolates a function f(x) at five points, namely
Xo,X*,X*,X*,X4. The true value of the definite integral,

x4
J f(x)dx 
xo

is given by the area under the solid curve f(x), whereas 
the approximated value,

x4
J p^(x)dx 

x0

is given by the area under the dotted curve. The difference 
between these two values may be small, even when P*(x) is 
not a particularly good approximation, if the difference 
between F«(x) and f(x) differs in sign on various segments 
of the interval of integration. In this situation, positive 
errors in one segment tend to cancel negative errors in 
others.Hence many times integration is termed a$ a 
"smoothing process."



1.3 THE CONCEPT OF THE DIVIDED DIFFERENCES
Consider a function £(x) whose (n+1) values are 

given at the given points lying within the interval (a,b). 
These points may be denoted by x^,x„,...,x and the values 
of function corresponding to these points by 
f(x 1,f(xf(x ). Let us denote the value of the 
function f(x) at the point x by [x]. Thus,we get 
Cxc] = f(x0), [x4] = f(x4), . ..,[xn] = f(xn).
Further by Cx0xt] we denote the division of the differences, 
[x0] - [x4] by x0 - x4.

Cxo3-Cxt] f(xo) - f(xt)
i • e • [ X0X4 3 " y ^ y " “y _ y*o Ai *o *1

Here [x0x43 is called first divided difference. Other such 
first divided differences are given as follows:

U4xa] =
[x43-[x23
X1 " X2

Cx23-Cx#3
» Cx,x.3 = x - x,2 3 [X 3-[x 3n* s n

Cxn_4xfS3=“7-•n-4- x.

Similarly [x0x4x23, [x4x2xa3 » • • • » [xn_2xn_4xn3 denote second 
divided differences and are defined as

[^oX(X|3 -
Cx0x43-Cx4x#]
xA - x_ o s

Cx4x23-Cx2x83
, [x4xaxa3 =

and so on. We write above expression in terms of 
x0,x4,...,xn and the values f(x0),f(x4), . ..,£(xn) of the 
function using first divided differences.



Thus, f(x ) - f(x ) f(x ) - f(x )O 1 1 2
[X6X4]-[X4X,]

[x0x4x.] X0“ x4 X4- xa
X0 - X, X - x_O 2

(X,-X2) {f(X0)-f(X1)} - (X0-X.) { f(x1)-f(xz) }

(x0-xt) (xt-xa) (x0-xa)

f(x0) f(xt) f(x2)
(X0-Xi)(X0-X2) (x1-x0)(x1-xa) (xa-x0)(xa-x4)

In this way we obtain third divided differences, 
fourth divided differences and so on. In general, we 
can write n-th divided differences [x^x x„. . .x ] as0 12 n

f(xc)
[x0x1...x„l = (x0-xt)(x0-xI)...(x0-xn) +

f{x1)
+ (xt-xa)...(X1-xn>+ ' +

f(Xn)
+ (x -x„)(x -x ). . . (x -x )' r> O' ' r> i ' n n- i '

[x xO 1 x ] - [x ...X ]n-1 1 n
or [x0x4...xj = xn -O n



1.4 FORWARD DIFFERENCES
Suppose values of f(x) at equidistant points, 

x^, = x +h, X, = x +2h, ... , x = x +nh010 z o n o
are given. Then, the first order forward differences denoted 
by /^fU^, Z\f(xt), ... ,Z\f(xn_t) are defined as

Z\f(x0) = f(x4)-f(x0), Z\f(x4) = f(x2)-f(xt), ... ,
/\t(x .) = f(x ) - fU 4).n-i n n-i

Similarly, the second order forward difference for 
x0 is denoted by ZX*f(x0) and is defined as

Z\.2f(x ) = Z\f(x +h)-Zlf(x ) = f(x +2h) - 2f(x +h) + f(x ). o o o o o o

In general, the (r+l)^n order forward difference 
for x0 is denoted by Z\. f(x0) and is defined as

Z\.r+1f(x ) = Zlrf(x ) - Zlrf(x ). o i o

If (n+1) values of f(x) are given then the nth 

order forward difference is constant.
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1.5 TRUNCATION AND ROUNDING ERRORS
Generally, the process of solving physical 

problems can be roughly divided into three phases. In the 
first phase, the construction of mathematical model for the 
given physical problem is done . In many cases we can not 
solve this mathematical model analytically and hence we 
require a numerical solution. Construction of an appropriate 
numerical model is done in the second phase. And, the 
actual implementation and solution of the numerical model is 
done in the third phase.

In the second phase, if the mathematical model is 
identical to the numerical model,that is, we can solve the 
mathematical model. in a finite number of arithmetic 
operations then there is no truncation error. However, in 
most cases numerical model is an approximation to the 
mathematical model and can't be solved in a finite number 
of steps. Here error arises, called the truncation error. 
This error, of course, depends on the mathematical model.

In the third phase, there are actual numerical 
computations. Here error occurs due to the finite precision 
with which the calculations can be carried out. Such errors 
are called the roundoff errors. Here the numbers are usually 
rounded off to a finite accuracy during the calculation, 
hence the name is given.
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1.0 RELATED DEFINITIONS

This function involves two variables x and t

.il_S2B£i2222§_E222£±22§:
Let f(x) be a function which is defined for all 

real numbers x in an interval [a,b]. We say that f(x) is 
continuous at a point x0 if for given any « > 0 (however 
small), we can find a positive number d so that

I f(x) - f(xQ) I < « whenever I x-x0l < <5.

If f(x) is continuous at all points in an interval 
[a,b] then we say that f(x) is continuous in [a,b]. The 
class of all functions which are continuous in [a,b] is 
denoted by C[a,b]. Similarly, the class of all functions 
which are continuous in [a,b] and whose first klh 

derivatives are also continuous in [a,b] is denoted by 
Ck[a,b].

If f(x) is continuous at all points in an
interval [a *b], except perhaps at a finite number of
points, then we say that f(x) is piecewise continuous in
[a,b].
P2li?_The_|unction_ix-t)k :

Let x and t be two real numbers and k be a 
non-negative integer. We define

H
*H

*
Hj

Hi
X

X
 

A 
IV

 
c+
c+IIX I t+ +

9



Defi3_P9lZ29®i§i§:
A function Pn(x) defined by

P (x) = a xn + a xnl + . . . +a x + a , (arg*0)
n f> H"! AO r»

is called a polynomial of degree n in x. The constants 
ao,ai,...,an are called the coefficients of Pn(x). We always 
assume a £ 0.n

If for some value x . P (xj = 0 then x, is calledi' n' t' a

a root or a zero of P (x). If x, is a root of P (x) thenn 1 n
(x-x ) is a factor of P (x) and we can writel n

Pn(x) = (x-xt) Qn_t(x)

where Q „(x) is a polynomial of degree n-1. Every 
polynomial of degree n has exactly n roots. The class of all 
polynomials of degree n in x is denoted by p (x).

Def _L4_Interpolating_polynomials:
Suppose a function f(x) is defined on the real 

line and we are given any n distinct points 
xo,x4,xa> . . . .x^. Then there exists a unique polynomial 
of degree n which has the same value as f(x) at each of 
these points, that is, Pn(x) satisfies

pn(xk) = f(xk), k = 0,1,2,...,n.
I

This unique polynomial P (x) is said to interpolate to then
function f(x) at the points x ,x ,...,x .
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D?IL§_lB5®3:_l?£2duct_of_two_f unctions:
Let w(x) * 0 be a fixed weight function defined on

[a,b]. Let f(x) and g(x) be two continuous functions defined -
on [a,b]. Then the integral 

b
J w(x) f(x) g(x) dx.
a

is known as the inner product of the functions f(x)l and g(x) 
over the interval [a,b] with respect to the weight w(x). We 
denote the inner product by (f,g).

?2li§_Q?^b2S2S§l_B2iX22®i§l§:
Two polynomials gn(x) and gm(x) taken from a

family of related polynomials gk(x) are said ! to be
orthogonal with respect to a weight function w (x) on the

interval [a,b] if their inner product

<g„U),g„U)) = {®(n) M " *: l

In general, c depends on n. If such relationship holds for 
all n, the family of polynomials {gk(x)} is said to 

constitute a set of orthogonal polynomials. Some common 

families of orthogonal functions are the sets {sin kx> and 

{cos kx}.

Further by multiplying each g (x) by an

appropriate constant we can form a set of polynomials 
${g (x)} which is said to be orthonormal, where
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The zeros of (real) orthogonal polynomials are 
real, simple and located in the interior of [a,b]. The 
proof of this statement is given by Stroud [10, pp 130 ].

Def^l_Rieraann_Suras_and_pefinite_Integrals:
Let a function f(x) be defined for all x in the 

finite interval [a,b]. Take (n+1) arbitrary points ? 
j=0,l.... n, in this interval such that

j."

a = ? < ? < ? <...<? < ? = b.0,n N i.n 2,n ^ n-i,n n.n

We take further a point x. in the interval £? . „ ?. ] 
for all j=l,2,...,n. Then we define the Riemann Sum for f(x) 
based on the points ?. , j=0,l,2,...,n and x. ,

it** Jr"

j = l,2,...,n as

Sn(f) = <0.n> fCx ) + al.rt 2,n

+ ...+« - f . ) fCx >n.n n-i,n n.n

EC? - ? . > fCx. >. v.n t-i,n v.nv =1
Further, let Ln denote the maximum length of the 

subintervals. If liia S (f) exists and is independent of then~ > 00 n
choice of the points ?. , x. and assuming only thatJ#n i

liigi^L^ = 0 then we define

b
J

<X
x)dx = Ufco Sn<f>

\%



?®li§_?§S?§®_9l_E?§9i§i25_:
If a quadrature formula gives exact results when

f(x) is an arbitrary polynomial of degree r or less, but 
fails to give exact results for at least one polynomial of 
degree (r+1), then the quadrature formula is said to possess 
a degree of precision equal to r.

1.7 LAGRANGE* S INTERPOLATION FORMULA
Given (xl,yt), i = 0, . . . ,n where xc may or may not 

be equally spaced, suppose we have to obtain an n degree 
polynomial Ln(x) that passes through all the points 
(x^, y^).This polynomial is an approximation to the function 
f(x), which coincides with the polynomial at each

Let the n-th degree polynomials Pk(x), k=0,l,...,n 
be

Pk(x) = (x-x0)(x-xt). . , (x-xk 4)(x-xk^). . . (x-xn)

" A u-vi jAe
Then the coefficient Ak in the equation,

L (x) = £ AkPk(x) ...(1.3)u lc =o
can be determined so that equation (1.3) is satisfied by 
each (x^.y^. For, if x = xk then equation (1.3) gives

n
AkPk(xk)* k =o

Therefore, yfe = AkPk(xk) [since Pk(xi)=0, if i * k ]
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Therefore, K = Pk(xk)

Using these values in equations (1.3), we get

ykPk(x)
L_(x) = E

** lc*0 V*k>
This gives the required n''” degree polynomial. This equation 
is called the Lagrange's interpolation formula.
This formula can be put in the form

n yfcP (x)
“lx> \Fo <x-xt)P'(xk) •

where P(x) = n (x-xi) = (x-xk)Pk(x),
1 =o

P'(x) = (x-xk)P;(x)+P,,(x)

(x - X )4or hn(x) = E £(xj n------------n «.-o j»c (X - x )
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1.8 SPLINE
For the Interpolation of (n+1) data points, 

usually we use n-th order polynomial. But in many cases 
these higher order polynomials tend to swing through wild 
osoillations in a very small interval. Therefore, another 
approach is to apply lower order polynomials to subsets of 
data points. Such connecting polynomials are called SPLINES. 
Splines provide superior approximations to the functions- 
The formal definition of spline is as follows:

Let the interval [ a, b 3 be divided into n 
subintervals,

a=x^ < x < ... < x^ < x =b
not necessarily of equal length. By a spline S(x) of degree 
m we shall mean a function defined on [a,b] which
(a) Coincides with a polynomial of class p on each

subinterval, Zit= [ xlt xt3 , i=l,2,...,n.
m-1

(b) is of class C [a,b].
A spline of degree three is called a cubic spline. A spline 
S(x) is said to interpolate to the data points 
(x6,y0),...,(xn,yn) if

S(x.) = yt, i = 0,1,2, . . .n.
A cubic spline is called periodic { of period (b - a) >, if 

S(a*) = S(b~), S’(a*) = S’(b'), S” (a+) = S’’(b~).
A cubic spline with end conditions, S’'(a) = S’’(b) = 0, is 
called the natural spline.
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1.9 RELATED THEOREMS
We shall use the following theorems for the 

purpose of further, discussion.

Thm_11_Integral.mean^-_value_theorem .
If two functions,f(x) and g(x), are continuous for 

a 2s x ^ b and g(x) is of constant sign for a < x < b, then

b - bJ f(x) g(x) dx = f(?)J g(x) dx, 
a a

where a < K < b.

IiM^?i_Ik®_N®i®£§££?§§_Agproximatlon_Thegrem
Let f(x) be continuous function on a finite 

interval [a,b]. Given any * > 0, there exists an integer 
N = N («) and a polynomial P„(x) of this degree so that

| f(x) - PN(X) I < e

for all x in [a,b].
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