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CHAFTER- 1V

PARTIAL DIFFERENTIAL EQUATONS :

4.1 INTRODUCTION :

The second order partial differential equation (P.D.E

is given by

2 2 2
4 u 8" u " u du du Su O

Lful = P e + 20 e + R~ G[x,y,u, . .
axz IRy Oyz Ix ox” 8y

= 0 (4.1
et F,G,R be functions of x and y and G be linear function
u,g% . g%- then (4.1) is said be linear. The most gene!

secon order FP.D.E. in two independent variables »x & y can

written as

2 2 2
P(x,y) —-‘35-‘3— +28 (x,y) -5%‘-;1— + Rix,y) 2% s-%“—-
I oy> "
du
+ T2+ Wu+2Z=0 e (4.2)
3y

The P.D.E is said to be homogeneous if Z = 0, otherwise it

is called inhomogeneous.
A splution of Eq.(4.1) & (4.2) will be of the form u

ulx,y), which represents a surface in (x,y,u) space known

integral surface.On this integral surface, there exics
a%u 8%u 8%
curves across which the partial derivatives —,—— and ——
2 2 Iné
o= 8y
are discontinuous or indeterminate. Such curves are known
characteristics. Let the solution of (4.1) be to pe

through a curve [ whose parametric equation is
¥ = x(r) , vy =vy(r) , u=ulr) S

Also assume that at each point (x,y,u) of the parta
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derivative 22—& 22— are known . As solution will be of -

ox oy

+orm u = ul{x,y) at each point of [ s« we have

du _ du dx du dy
ar ~ 3 ar < @8y adr -e - (4.8
éu du
Let us denote, F v = A(x,y),—3; = Bix,y),
We have
dA - M dx + aA dy
dr ax dr oy dr
< azu‘ dx + ozu dy (e
axz dr axdy dr
Similarly ,
dB - 62u dx . azu dy (4.85)
dr ax d 2 dr tEm
dy dy ay
dx dy dA dB
As P,G,R,B,—a?— ,a-F— ,a,b, d—r—- and a—‘:—-—

are all known at each point of . Then Eq. (4.1),(4.5)

(4.6) are treated as three simultaneous equations for th

ozu 2%u a%u
unknowns re & % By at each points of . The solut

I 8y

of these equations exists and unique 1if

P 2aQ R
dx dy
dr “ar ° =0
0 dx dy
dr dr
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Which implies

d 2 dx d dx (2
P (g )" -20(G0 - GGF— ) * R = 0

or P(-GX-)* -20 (X >+ R =0

20 + V3a -3 PR

dy =
Or—ax 2P
. dy 1 S S
- - = -+ -
i.e e 3 [ G + Va PR ]

i.e. We have two eguations

dy _ 1 2
- "B [ Q@ + Va PR ]
dy _ 1 - 2
& T = P [ a Va PR ] e=(8.7

whose solution can be represented by
Vl(x,y) = o , Vz (x,y) = .e=(4.8
where «,f3 are constants.
Thus there are two curves given by (4.8B) on which second orde
partial derivatives will not be calculated in a definite ar
finite manner. These curves are known as characteristics ar
tpese are either real and distinct or real & equal ¢

imaginary according as

2 2

@* -PR >0 ., G°-PR=0, B° -PR < O respectively.
If in the xy—-plane, exists two real and distinct familie

of characteristics or @° -PR > 0 , then P.D.E. (4.1) or (4.2

is said to be hyperbolic. I+ there exists real an-

2

conicident family of characteristics or @ -PR = O, ther



parabolic and if no real characteristics exists or @® -PR < o,

then elliptic type.

Throughout our discussion assume that the mathematical
prolbems are well posed i1.e. If solution exists, then it i«
unique and depends continuously on the given data. The
method of solution of F.D.E. is the finite difference method.
The numerical solution of P.D.E was implimented in 1950 witt
the advent of automatic digital computers. Now a days b
means of modern high performance computers, the numerical solr
of P.D.E. is carried out extensively and often on a very large
scale for problems in physics, engineering and other fields o4
applied analysis, in order to obtain approximate solution ot
rigorous equations or to simulate real phenomena by means of
numerical experiments.

Generally, in the solution of P.D.E.the region of integration
is covered with a net, usually of square or recta— nqular mesth
and values of the dependent variables are deter mined at nodecs
of this net. The partial derivatives in the P.D.E. are
replaced by suitable difference quotients, conver- ting
differential egquation to a difference equation at each nodal
point. Usually the mesh lengths are sufficiently small for
the higher difference terms to be neglected, although they are
sometimes included in the integration proces. The network

and nodes are shown in Fig. (4.1).
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4.2 DIFFERENCE METHODS FOR PARABOLIC PARTIAL DIFFERENTIAL
EQUATIONS

One Space Dimention :
Here we will discuss the parabolic equation i.e

the equation of heat flow in one dimentional,
su_ _ d%u
at ax’

e (4.9)

Consider the arbitrary region R x [0,T] with suitable initi.

and boundary conditions, where R = (a £ » { b) & 0 { t

7N

We superimpose on the region Rx [o,T] a rectangular grid wi-
grid lines parallel to the co-ordinate axes. With spacing
& 3 in space and time directions respectively.

Let us define the grid points on corresponding region as

t, =i, i=0,1,2,.....,N.
x = oL, i= 0,1,2,c000.,M.
= = _b-a =
Where X, = a5, X, = b, a= - & T =N

Denote the solution at (x‘L ,tP by Ui and its approximate

value by uf,the differential Eq.{(4.9) becomes

2

8u d u
B2y = 2200
(A ax Lo
We have
ou _ 1 J
Bty T 109 (IR
J
Where S log ( 1+ At)
3t - @ S
-1
= ~— lo 1-At
5 g ( )

8u 1 ;
oG © 5] AUl + OB
i
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1 ; P |
= — fb#ﬂ R 1) ...(4.10a)
N i
Similarly,
< 8u -1 _ j
(¢ )h%Aﬁ = 5 1es (-V) y
- ~—1 j
= —"-,;;—- Vt Ui + o(f3)
= -%r<u§¢q“) + 0B (4.10b)
8u _ 1 B
& (Ot )(XU%) B 203 62&%
=-%-ﬁ (Uf"— u_f" Y +a() (4.10c)

Now consider R.H.S. of EqQ.(4.9) Which can be written as :

2 4 .
(2] =2 [ 2] o
A (xi.tJ_) o “ v

=1 2 oD (4.11)
2 x T

o

Using this .we will discuss the following different methods:
a) Neglecting the error terms and using Eq.(4.10a) &(4.11) i

(4.9), we have

W = (1m0 W e ! o+ ud ) (4.12)
1Y 1 1~-4 (R 2
Where A\ =—E§~
o
Which is known as Schmidt method. As the method gives the

relation between the function values at the two levels (3+1)

& 3. Thus it is called two level formula.

The schemetic form is shown in Fig (4.2)

(1,3%1) G+ tMev

Fe;

th
3 jevel

(i-1,3) o {1,3) (i+1,.3)

Fig.(4.2)
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The solution value at any point (i,3+1) on the (J""l')th lev:

is expressed in term of the solution values at the poin

(i-1,3), t1,3)&(i+1,3) on the Jt level. Such a method
called an explict method.

The truncation error Ti at the node (i,j+1) is given by

Ti= uf‘~u? N O (4.13)

v v [ 33 v [T}
Using Taylor series expaneion at each term about (x .t) on
vt

the right hand side of (4.13), we get.
I - , - . -
TL = U(x_t,tjﬂ) U()‘L’tj) A [ U(.x,w‘,tj) 2U(>:,L,tj)

+ U(x,‘_‘ s tJ)]

e A°
= U(Xi.’tj) U = U, 37 Y +"'-U(Xt’tj)
o o’
-)\[ U(Xi.’tj) * aUx + 2! Uxx * 3! Uxxx
Lot ety & %u | % 8%y |
] [ v 1 =
4 ax4 St axs 6! axo
o @ o
_2U(xi’t_;). + U(xi.’tj) - aUx+ 2¢ Uxx Y ax
. ot a‘u . o’ o u . a° 2°u ]
3T =T i R
4! 0)(‘ S ‘ 6)(5 6! 0):6
awd) 2 2 a s
T =p 5 + b AN R “6 S W+ ...
t < atz L Ots i
2 P < . ) ) .
“a[ e e g S g Sk
axz t ax4 t 6)(5 t
. 2 2 2 _ 3 s
zﬁ[?‘g—u?“azu?]-’-g aZU_“+£ g"zu?
Yot atc ! at* '
p o’ 8t pat  8° ;
- U’ — ——— 18 ) ..-(8.1484)
12 4 i 360 s i
ax . ax
From (4.9)
2 J = o u
at atz
2 2 2 © .
Similarly_ . = a‘ , 2 =2 +
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Using in{(4.14) we have

2 < 4 y.]
j 1 ] j a 1 é
T! =r3[ 2 ——) ul o+ ¢ x- p) u’ +]
1 2 6 ax4 L ) 60 axo i
2 Y3 4 .
_ap _ 1 Lo i o 3 2_ 1 @ 3
2 Cx 6) 4UL + & O 60 7 6U¥+....
O I

Thus the method (4.12) .i.e. Schmidt method is of order

(3 + o°) when A =-Z—- , the method is of order (o* + 3°).
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(b) Now neglecting the error terms and using Eq.(4.10b) &

(4.11) in (4.9), we have

2w o+ el Al = (4.15)
r—1 A9 1+4 2 S
This method is called Laasonen method. In this the

solution value at any point (i,j+1) on the (j+1)th level is
dependent on the same level and one value on jth level. As
solution values at (j+1)Lh level are evaluated implicitly,

the method (4.13) is called an implicit method. It is also

a two level method. This method can be expressed in
schemetic form given in Fig (4.3)

(i~1,j+1)| J+1)|(1+1 J+1) h
0O (3j+1) level

| ¢4
4 Q \r
B I
2 th

3 level

| (i,3)
Fig.(4.3)

The truncation error Ti at the node (i,j+1) is given by

T o= W™+ o0 O T ui (4.16)

i -2 L+l ieg

Expanding each term on right hand side by Taylor series
about (xi,tJ) and simplifying we get

2 2

S a i_ @ 3 1 4 J
=8 [ ot % z % ] 3 7 z
o, at
a a*p a* ;i 1 a &* i
- ﬂz U, 12 “ UL — 2 2 uu-
‘ot ax < et
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Using Eq.(4.8), we have

. 2 , s ‘ 2 <
ﬁ—l T =~g [ —2; ul - —ég— u’ ] -—?5 9 u o+
L m L o){ m L 0)(4 1
Thus method (4.18) is of order (3 + o>
Ccd First converting methods (4.12) and (4.1%5) into same

function values at (3+1)th and jth level and then averaging

these methods, we have

2 [ —Aa T Al oAl s ) 2 20l
2 [ R § [R2 3 -1 1 t
- Ccz2-20 ui ] = 0
PP S L R S R I T
b= i-1 2 L+4 i
N N S N R T C4.17>
2 -1 a 1+4 L

which can be expressed as

_ A 2 A . A 2 b
[ 1 S 6x ] u ( 1 +—--é—--6M ] u €4.18D

The method (4.17) or (4.18) is called Crank~Nicolson method.

The Schematic representaiton. is shown in Fig (4. 4D

Ci-1,j+1> Ci, j+1> Ci+1, j+1D

cj+1> Plevel

P () e

ci-I Pl <3] Oci i3 it level
|

Fig. (4.4
The truncation error is given by

i L 1 2 L1 L+

¥ =yt -y A Pﬂ -z2v + U +U”‘—2UV%U”‘]
L+4 i [ R § 1



D
-

_ ¥. ] i _ @ 3 1 a 8 i _ 8 j
_B[Ot.ux e U'x}*aﬂzm[aui o)(zux]
2 P s P
_ a3 i _ 3 L J
12 Y, 4 2 2 U
a*t ot oot t

Using (4.9), we find
AT = ocpie o
t
(d> Use Eq.(4.10cd & (4.113 in (4.68>, & neglecting the error

terms, we have

utt = W san (W - 2d 4 U ) C4.19D

1 1 t—-1 19 1+4
This is an explicit three level method. It is called
Richardson method. The Schematic representation of this

meth od is in Fig(4.95D

| Ci, j+1> |
) th
G Cj+1d> level
0 ' o ,th
CiTiy 3> c:L._jI Ci+1,33 3 level
Cj—l)"h level
TCi »yJ—12
Fig.(4.8>
Taking the average of ugﬁ & uid and replacing this for
u'_j in C4.183, we have
O =TT 2 [u_j R SR T Ty ]
L L t—-1 L L 1+
1 _ 1-2x -1 2A i i
YT ek W meex (M UL €4.200
This is alsoc three level an explicit method. It is known
as DuFort and Frankel method. The schematic representation

is shown in Fig (4.63
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gei- 1o cj+1>'" level
L A .t h
Ci-177J> 1ci+1, o J - level
oo _— t h
Y75 Cj~1> level
Fig.C4.6

The truncation error of this method is given by

T =c1 +ax>uf" - c1-20u™

i

-2 (ul_+ ) C4.21

L 1 Leg

Expanding every term in Taylor series, the errors in (4.212

about the point Cxi.t,j) , we have

R . . 2 2 R
T = c1+200 [uJ ST B AR AT O ]
L L at L = 2 %
at
R R 2 2 .
—c1—2x>[u?—ﬁ;L o+ L2 +]
" oL v = 2 v
at
. 2 4 4
—ax[au.’+a —0—2-u_’+:‘2 6‘u+ ]
Ix * ¢ v

. 2 . 2 R 4 4 .
a2n =[-i- u? +2>\ﬁ202 ul -2x a"'”z B B, N A +]
1

at at . I i 58)(‘ i
' o i 8
and (?'-" T.j-= 2 [ 3T uf’ - uf‘ ]
L v axz L
2 . 2 4 ,
+ 2 (._ﬂ..... 2 .._‘2__ u..l - g 9 u? -+
[+3 mz 1 OX‘ 1

Thus we have the following cases.

I> If fBra => O as a —> O then 3 ' 'r: -> 0

& _%C—UJ __.32 Ujj
4 ax +

This shows that the difference scheme (4.20) is consistent
with differential equation (4.8, In this case the order of

method is f?z + o +(§—)2



IID> If-—-—ﬁ—-— -> ¢ as « -> O, then 3 ' 1:’ -> 0

& & z

& e u’ - Lx"<l>c2‘,uj = 0,
at axz i &2 1

, ) du 2 8 u 8 u _
bolic equation -3 + c = 2 = O.

o
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4.3 STABILITY AND CONVERGENCE ANALYSIS :

Let us denote that the analytic solution of differential

equation by u(xlg%), difference solution of difference

equation by ui and the numerical solution by Ef, These are
related by
u(xi.t.j} —u:J| < 'u(xi,tj)-— uil + ’ uf-ﬁt‘i! (4.22)

In practice, we require the to have left hand side of (4.22)
to be small. But this depends on two terms, the first value
of R.H.S. arises because the differential equation is
replaced by difference equation and it is called 1local
truncation error. By convergence of difference schewe, this
truncation error converges to zero when o« & 3 both +tend to
zero. Other term on R.H.S. of (4.22) is +the numerical
error. This arises because in actual calculation we cannot
solve the difference equation exactly because of round-off
errors. If the difference scheme is stable, then the second

term in (4.22) is practically equal to zero.

4.3.1 MATRIX STABILITY ANALYSIS :

Using the given boundary conditions every two level
difference method for solving Eq.(4.9), can be written as
A uw™ = au + B, §=0,1,2,,.... (4.23)
where B contains the boundary conditions & lajl = o.
For Aoz I , the difference scheme (4.23) is called explicit
scheme, otherwise it is an implicit scheme. The stability

of difference scheme (4.23) so that |A | < 1 for all i, where
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A are eigen values of A:A1< Let us discuss the stabilit:
19

of some of the above methods.

1) Consider first Crank—-Nicolson method (4.17)

Expressing this into matrix form (2.23), we can

write this as,

. o
A u” = Alul-'-B“

o
1+A -A/2 0O ceaee..0 0] o
-A\N/2 1+ AN/ 2eencenn O ¢ 0
Where A = e eesssesemmsamEnesesnannoasenanaavanas
0 e} 0 -A/2 1+x  =A/2
O Q 0 (@] ~A/2  1+X
A
Ao = I‘+~§- P
1-A A2 0 - O Q 0
& 91= r/2 1—-A A/2 ... 0 Q (0]
o) 0 0] -wn A2 1=-n AN/2
0 O O -wa 0 A2 1-A
A
A: = I -5 P
2 -1 8] csesenoa O &) 0
- - —
Where P = 1 2 1 cenavenas 0 (0] 0
0 0 (0] asesensa -1 2 -1
0] 4] 0 cemaases o -1 2

Let KJ be. the eigen.values and \fﬁ be the corresponding eigen

vectors of the matrix P. Then
X, =4 sin® GI), q = 1,2,...,M1.
G5 _ . qn . 2qmn . 3qn : . (M-1)gn
& V [sxn M .8in ™ sin M cee-Sin —p— .
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From this we can write eigen values of

A =1 *~§~ P as
(e <
A . 2, qrm _ .z Qn
1 + -5 4 gin ( —EE-) = 1 + 2A sin T
and that of A'A = AT (1 - = F)
o 1 o 2

AT T+ = P - AP ]

)
<

b
- Qo[ Ao AP ]

=1 - AP
o
.2 qn _ .2 qm
as 1 - A-4 sin ~SM _ 1-2) sin SH -,
1+2x sin’gn 142X sin -3 a
& <1
o ] <
This 1s possible for all positive . Hence Crank—-Nicolson

method is unconditionally stable.

II) Now we will discuss the stability of Schmidt method (4.12

We can express this method into matrix {form

A LTt = A ueE
o 1
1-2x A 0 ... 0 o0 0
N 1-2xn A o o 0
Where Ao = I, A1 =] hesensmsmccwacnnennsansensnensoas -

0 0 0 ... A 1-27 A
0 0 0 ... 0 1-2)

=1 - AP

& A'A =1 - AP.
0 1

Thus the eigen values Hy of A; A are

2 qrt

1 - 4x sin—-é—ﬁ—--— . q=1,2,...., M-1.
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Hence the condition for t+ stapility of this mecnod 1s
-1 < 1- in2.97_
1 { 1-4X sin SH = -
Hence if 0 < X £ —l—, then the method 1is unconditionaly

2
stable.

4.3.2 CONVERGENCE ANALYSIS :

If the solution of the difference eguation tends to the
solution of differential egu&tion as ¢ —> 0 ,3 —> O then

the difference equation 1is said to be convergent.

(I) Let us discuss the convergence of Schmidt method (4.12).

The exact solution satisfies.

- - -— 2 ¢ .
u ()‘i’tgﬂ) u(xi,tj) ' ub‘;’tj) +A [u()\-z’tj)

+u(x ) -3 +0 (3PraD e..(4.28)

Define E! = u(x .t) - u’ & = = max | E?[
1 i} t i

Substracting (4.12) from (4£.24), we get

I*a i i J 2 2
E: = (1 =2X) E+ A (E +E ) +M (37 + Ra’)
T v -, [ 228

where M is a constant indeszndent of «.

When A <—%—, the coefficient: are positive and

"i‘" | B < (1-2a + a +x>"‘f“"‘(ei> + M (5F+pad)
1 8 ~
Hence E""'1 < Ej-+ M( ﬁg + ﬁcﬁi
< BT s 2m £ gy

> * @ 8 s @8 s 8 eeseET 2 AN~

< E® + G+ N i - pe®)



So
~I

As t . - (3+1)73 and E° = 0, we have
A d

EY <t M+ .

]+
As a ~> 0, B -> 0 , we get
11

E -> 0

and ul => ulx ,t)
1 |8 B ]
Hence the method is convergent for O<A <~%~.

I1) Now we will see the convergence of

Crank—~Nicolson method (4.17).

Using E? = u(x ,t) - u? in (4.17)
t 1 ] T
For we will express into matrix form

oy , .
a o= A:ﬁ + B’

o]
as [ I +—%— P ] u’* = { I~—%— F ]uj‘+ B’
[ I +_g, P ] A [ I —.%_ P )Ej-+ 73 ...(4.25)

J = 0,1,2,....

. . . . T
Where E = [ ele! .... E? ]
T 2 m—-1
. . . . T
& T = [ ) SR P 3
1 2 m=-1
& T =0 @+ pad)
The initial condition gives E® = o. The expression (4.25)
can be written as
g9 =HE + o .. (8.26)

i= 0,1,2,....

Where H = ( I +—%¥ M ‘“%- P)
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i Aoy
4 (I+ > P)

Applying (4.26) reccursively, we obtion

1Tj

B = W E® + p HITE S
i=1

. ] . ° J . - .

or || E'] < I HET + £ BT o7 < HHEY
=1

) Eo + 1—-HiH } Max ok
1 E I <At (o1 )
As the matrix P is symmetric, hence the matrix H. Using
spectral norm. || H|| = Max ]uﬁ,

where u'i are the eigen values of H (3 = 1 to M-1)

The eigen values of matrix H are given by

_ A Y ] A .
HJ—(I"‘“‘:?‘—kJ) (1—5—-)\1)

Where AJ are eigen values of P,

= .. 2 Jm L M
& kj 4 sin T 1 <3 £ M1,
. 2 Jmn
_ 1 2)& sin _ff"l_
M= - veons

j 2 3m
1420 sin ——2-F—

Hence ||H|]| = Ngx !luj[] <1, for x > 0.

J
j o 1 Max || T5||
IEN < 11E - o ML
> £ 31
1-| |H]|
we also have “ Tk || = C(ﬁz*'az),

where ©c is a constant independent of 3 & o . Hence .we have
' ) 2 2
[ EfL < || EP|] + e B+ o))
Hence we conclude that there is conditional convergence as

B -> 0, a => 0.



