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PARTIAL DIFFERENTIAL EQUATONS :

4.1 INTRODUCTION :
The second order partial differential equation (P.D.E

is given by 
2

LCu] s P
«?X2 2Q d u 

dx &y
-2 d u „ f du au

= o

du_
ay

(4.1
Let P,G,R be functions of x and y and G be linear function

u du &u then (4.1) is said be linear. The most genet*6x ’ ay
secon order P.D.E. in two independent variables x & y can
written as

-2 a2 «2r-> / \ » u a u . _ . . ct uP ( x , y) -----  +2Q ( x , y) ~~ -— + R ( x , y) ---
ax

+ T au
ay

ax ay

+ W u + Z = 0

+ s-
ay

au
ax

.(4.2)

The P.D.E is said to be homogeneous if Z = 0, otherwise it 
is called inhomogeneous.
A solution of Eq.(4.1) 8c (4.2) will be of the form u
u(x,y), which represents a surface in (x,y,u) space known
integral surface.On this integral surface, there exis

2 2 2
curves across which the partial derivatives ——,--- and ~a*2 ay2
are discontinuous or indeterminate. Such curves are known 
characteristics. Let the solution of (4.1) be to pa 
through a curve p whose parametric equation is

x = x(r) , y = y(r) , u = u(r) ...(4,
Also assume that at each point (x,y,u) of p the parti
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du duderivative ——& —— are known . As solution will be of dx dy

•form u u(x,y) at each point of p , we have

du
"dr"

du
dx

dx
dr

du dy 
dy dr (4.4)

Let us denote, 

We have
dA
dr

du
dx

dA
dx

= A(x,y)

dx
dr

du
~&Y

dA
dy

B< x,y),

dy
dr

d2u
dx

dx
dr

d2u______ dy
dx dy dr

Similarly

dB
dr

d2u dx
dx dy dy

d2u
dy

dy
dr .(4.6)

As P,Q,R,G, dx dy . dA,a,b, and dB
dr fdr ’“'“’ dr ~ dr 

are all known at each point of p. Then Eq. (4.1),(4.5)

(4.6) are treated as three simultaneous equations for th

The solutunknown, at .ach point, of rdx2 dy2 dx dy

of these equations exists and unique if

P 2Q R
dx dy -
dr dr
0 dx dy

dr dr

0
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Which implies

p )2 -2QC^) - Cp— ) + RC?^-}2 = Ov dr J vdr vdr ' vdr J
Dr p(_|V_ )2 —2Q C-^ ) + R = 0 

dx dx

or- dy
dx

2Q £ V^a -4 PR
2p

a .e. dy
dx Q £ Vq -PR

i.e. We have two equations

dy
dx M Q + Vq - PR

& dy
dx = [ Q - Va2 -PR J (4.7

(x , y) = a , ( x , y) = ft
whose solution can be represented by

__ (4.8
where a,ft are constants.
Thus there are two curves given by (4.8) on which second orde 
partial derivatives will not be calculated in a definite ar 
finite manner. These curves are known as characteristics ar 
these are either real and distinct or real & equal c 
imaginary according as
Q2 -PR > 0 , Q2-PR = 0 , Q2 -PR < 0 respectively.

If in the xy—plane, exists two real and distinct familie 
of characteristics or Q2 -PR > 0 , then P.D.E. (4.1) or (4.2

is said to be hyperbolic. If there exists real an:
conicident family of characteristics or Q -PR = 0,-PR ther



8H

2parabolic and if no real characteristics exists or □ -PR < 0, 
then el1iptic type.

Throughout our discussion assume that the mathematical 
prolbems are well posed i.e. If solution exists, then it is 
unique and depends continuously on the given data. The
method of solution of P.D.E. is the finite difference method. 
The numerical solution of P.D.E was implimented in 1950 with 
the advent of automatic digital computers. Now a days b> 
means of modern high performance computers, the numerical solr 
of P.D.E. is carried out extensively and often on a very large 
scale for problems in physics, engineering and other fields oi 

applied analysis, in order to obtain approximate solution o-i 
rigorous equations or to simulate real phenomena by means o-f 
numerical experiments.
Generally, in the solution of P.D.E.the region of integration 
is covered with a net, usually of square or recta- ngular mesh 
and values of the dependent variables are deter mined at nodes 
of this net. The partial derivatives in the P.D.E. are 
replaced by suitable difference quotients, conver— ting 
differential equation to a difference equation at each nodal 
point. Usually the mesh lengths are sufficiently small for 
the higher difference terms to be neglected, although they are 
sometimes included in the integration proces. The network
and nodes are shown in Fig. (4.1).
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FT|. 4*1 1la- fiyi'or? R An4 N^e. ftiVtfr.



4.2 DIFFERENCE METHODS FDR PARABOLIC PARTIAL DIFFERENTIAL 
EQUATIONS s
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One Space Dimention :
Here we will discuss the parabolic equation i.e

the equation of heat flow in one dimentional
£u
at

d*u

dx
.(4.9)

Consider the arbitrary region R x Co,T3 with suitable initi 
and boundary conditions, where R=(a<.x£b)&0<. t <. 
We superimpose on the region Rx Co,T3 a rectangular grid wi 
grid lines parallel to the co-ordinate axes. With spacing 
& ft in space and time directions respectively.

Let us define the grid points on corresponding region as
t. = j ft , j = 0,1,2,..... ,N.
x = i.a , 1 = 0,1,2,..... , M -

Where x - a , x = b , a =  ^ & T = N ft

Denote the solution at (x , t) by UJ and its approximate
»- J V

value by u^,the differential Eq.(4.9> becomes

( fti-) v at ) »• j

-2
V - 2 '<X ,t >

ax v i
We have

= T 109 ' 1(lt)>• j

Where d
at

C 3u
at (x .t )

«■ J

-1- log C At)
log Cl-At)

= -4r- A UJ + Oift) 
ft t i
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Similarly,

1
ft

o {ft) <4.10a)

c du
~9t »• J

1- log O-V) uj

IT \ U! * o^>
-4-<UJ-U-'"1) + 0(/3)

(5 it (4.10b)

* <£rX*.t>
*• J 2/3 6 UJ

2t L

JL_ cuJ+1-2/3 vt Up ) +o(/?2) (4.10c)

Now consider R.H.S. of Eq. (4.9) Which can be written as : 
.2 r . -2-A [

<• J
sinh 6x ]*

= _L_ sZ UJ + o(a2) (4.11)
2 XLa

Using this ,we will discuss the following different methods: 

a) Neglecting the error terms and using Eq.(4.10a) &(4.11) a 

(4.9), we have
uJ"* = (1-2X) uJ +X (uj + uJ ) (4.12)

V L L-i Lt-i
Where X =—^2— 

a

Which is known as Schmidt method. As the method gives the 

relation between the function values at the two levels (j + 1) 

& j. Thus it is called two level formula.

The schemetic form is shown in Fig (4.2)

(i,j+1) -

ft

(i-1,j > (i, j ) (i+l,j)a

(j+l)1^lev 

jth level

Fig.(4.2)
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The solution value at any point (i,j+l) on the (j + 1) th lev
is expressed in term o-f the solution values at the poin

.th level. Such method(i—l,j), <i, j )&( i + 1, j ) on the j 
called an explict method.

The truncation error TJ at the node (i,j+l) is given by
TJ= UJ+1-UJ - \ (l^ UJ ir* )i-i (4.13)

Using Taylor series expansion at each term about (x ,t.) on
the right hand side of (4.13), we get.
TJ = U(x ,t ) - U(x ,t.) - X [ UCx ,t)

»• v J+l X- J |_ x*i / 2U(Xi,t.)

U(x•-•v]

= U(X ,t) +ft U +-^i-
x j l

u

-x[ UCxL,t.
tt
2

) + aU •+•: X

a U
ttt
a

uA * w

.-U(x ,t .) i J

a a U
dx

-2UCx ,t.) + UCx ,t.) - aU +X J • X J

DCX a u O^ « a u
5! axs 6! ax*

* ■ • • ■

aUX
2+ ° uXX

3a a6_
2 * 3! ax3

rJ =X

4a a*U . 2c* a5u
4! dx 5! dx5

G -
ai uj) 

v 2a a2
f7 at 2 at2

- f z a2
1- dx2 uj

V
4+ a12

a a*U

dy.

a
UJ a a1

uj + *
at*

uJ

a'
ax 360 * = ax

uJ

uj
at x

ft a

a
ax2
,4

Ut } ft2 a2
at
- uJ2 X

jr
b

ja

a
12 ax

- uJ -4 x
fta a~
360 ax

uJ

— uJ 
at2 1
. . .(4.14)

From (4.9)
a j au = --- -at x -.2

Similarly. a‘
at
„2

at ax at’
a

ax
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Using in<4.14) we have

n

o?ft

4 -4->-£r uiox

c X —i->— Uj6 _ 4 tdx

a

ex* ft

C X- 1
60

c^- 1

)—---- UJ
dx* v

60 UJdx° v
Thus the Method (4.12) ,i.e. Schmidt method is of order

(/? + a ) When X =- , the method is of order (a4 + /?2).
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(b) Now neglecting the error terms and using Eq.(4.10b) fc 
(4.11) in (4.9), we have

-X uj + (1 +2X) uJ -X uJ * uj_1 (4.15)
i-i v i+i v

This method is called Laasonen method. In this the
solution value at any point (i,j+l) on the (j + l)th level is 
dependent on the same level and one value on jth level. As
solution values at (j + l)th level are evaluated implicitly, 

the method (4.15) is called an implicit method. It is also 
a two level method. This method can be expressed in
schemetic form given in Fig (4.3)

|<i,j+l)|<i+l,j+1) lh
------ o-------- O------- o-------  (j + 1) level

a | <i,J>
.lh . .j level

Fig.(4.3)

The truncation error T^ at the node (i,j+l) is given by
(4.16)T = -X uJ + (1 +2X) uJ —XU - uJi v-l i+1 v+i i

Expanding each term on right hand side by Taylor series
about (x ,t ) and simplifying we get 

>• J

o j- . - ... it —at i ax < ) u
at

- (f -2— 'uJ
ax2 at *•

a2 ft
12

„4 _ _4a j i a j
4 t 2 ' ^2 2ax ax at
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Using Eq. C 4. 95 , we have 

-o-1 T-J - ft it: - a
oz WJ

JU 2 icrt &>* &L

u> ) -2* _jC u>

‘J 12 '
Thus method C4.155 is of order dft + a*5

Cc5 First converting methods C4.125 and C4.155 into same

t W th
function values at Cj+15 and j level and then averaging 

these methods, we have

1
2

X uJ -X u} - X ( uJ + UJ ) + C2 + 2X5 u
i-i t+i i-i j-m. t

C 2-2X5 uJ

j+i

i . e.
■X j+i
-=r- u2 i-i

X j*i
~~5T--- U +s C1+X5 u
2 i*l i

j+i

4- uj -*—4“ uj +Cl-X5uJ
2 i-l 2 i+1 t

C4. 175

which can be expressed as 

X[* -i-<) “T* ■ C 4. 1852 x | i I 2

The method C4.175 or C4.185 is called Crank-Nicol son method. 

The Schematic representaiton. is shown in Fig C4.45

C j+15thlevel
Ci-1 , j+15 J[

£ i , j +15 , ,Ci+l . j+15

1__________t \_____________t *____________
Ci-1.J5 C1-Ji iCi^-J3

j1h 1evel

Fig. C4. 45

The truncation error is given by

T* U' uJ —4 - 2Uj + Uj +IT1 -2UJ+1+UJ+1 1 
i i-i i-i i 1*1 J
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= ft uj9t i &x

u: ] *4- p*-fc £_ uj —51
dt v 2dx

uJ

£L£ _£l uj
12 . •* v<7X dx2«»t2

UJ

Using C4.93, we find 
= OCftZ+ aZD

L
Cd3 Use Eq. C4. !Oc3 & C4.113 in C4. 05 , & neglecting the error

terms, we have
j+i j-iu = ui i +2X C uJ - 2uJ + uJ ) C4. 195

This is an explicit three level method. It is called

Richardson method. The Schematic representation of this

meth od is in FigC4.53
|Ci , J+13
r\

......r
\

\_________ rv._._________ ._r\....
-1 , j3 ci, j:

t

d +i, j:

s ....
Ci , j-13

C j +15 1 hl evel

j1h 1evel

C j -13 1 h 1 evel

Fig. C4. 55

Taking the average of uJ^ & u^"1 and replacing this for

u in C4.195, we have i
J-M. J-lU = U i 1 + 2X fc. + up) +ul]

uJ-*-!
l

1-2X j-i 2X , i
ttst u* ttsk u

This is also three level an explicit method, 

as DuFort and Frankel method. The schematic 

is shown in Fig C4.65

C4. 205

It is known 

representation
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t ,Ci . J+1D

r \ /
.J3

r
Ci +1 , JD

Ci , J-1D

CJ+lDlh level 

j 1 h 1 evel 

Cj-lDth level

Fig. C4. 6D

The truncation error of this method is given by

C 4. 21D

Expanding every term in Taylor series, the errors in C4.21D

TJ = Cl +2XW** - C1-2XW1 -2X (uJ + uJ )
i l l t-i V4-1

about the point Cx , t ) , we have
v j

-C1 -2XD

-2X

K ‘ cl*2x:> [“' < *-TT < *...... ]

H - <*-*:< *-£^*1 *■■■■]
u at J

[a2 4 *4l► -1
2uJ a2 ------- uJ +—rW ---------- UJ + . . . . 1

v .. 2 i 12 4 i Idx dx J

f d j _2 <?Z j 2 tf2 j Xa^d4 j "1
I—sr- u +2X (T--------- u -2X a --------- -------------------------u +. . .L ^ 1 ^ 2 . v Av2 1 6dx4 v Jat «

and ft-1 T* = 2

2 (-£L)2 -i- «.

dx

JL uJ —*L
* 1 ax2

.4

•J]
j a

6
0 j------- u

4 t

Thus w© have the following cases.

ID If (tf/o -> 0 as a -> O then /9-1 TJ -> 0

& -4- ^at t
0 j ------- u

2 Ldx

This shows that the difference scheme C4.20D is consistent

with differential equation C4.QD.

method is /?2 + a2 +(^_)2
ot

In this case the order of
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115 If' JL
a

-> c as a -> O, then /? 1 T1 -> 0

a -Jrat v
52 J
--- u2 i

2 <9 j _•+ c ---- u2 v = O,
&x~ <*t

This shows that the method C4. 20D approximates the hyper-

bol i c equation “*t C2
<9 2 u

<9t

S2U

9x
0.
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4.3 STABILITY AMD CONVERGENCE ANALYSIS j

Let us denote that the analytic solution of differential 
equation by ufx^t.), difference solution of difference 
equation by u^ and the numerical solution by u|, These are 
related by

uCx ■V ~ui uCxt, t > u (4.22)

In practice, we require the to have left hand side of (4.22) 
to be snail. But this depends on two terns, the first value 
of R.H.S. arises because the differential equation is 
replaced by difference equation and it is called local 
truncation error. By convergence of difference schene, this 
truncation error converges to zero when a & ft both tend to 
zero. Other tern on R.H.S. of (4.22) is the nunerical 
error. This arises because in actual calculation we cannot 
solve the difference equation exactly because of round-off 
errors. If the difference schene is stable, then the second 
tern in (4.22) is practically equal to zero.

4.3. 1 MATRIX STABILITY ANALYSIS :
Osing the given boundary conditions every two level 

difference method for solving Eq.(4.9), can be written as 
Ao uJ+1 = Aauj + BJ , j = 0,1,2...... (4.23)

hwhere B contains the boundary conditions & |A0| * 0.
For Aq= I , the difference scheme (4.23) is called explicit 

scheme, otherwise it is an implicit scheme. The stability 
of difference scheme (4.23) so that |V | for all v, where
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X are eigen values o-f A^A^. Let us discuss the stabilit\ 

o-f some of the above methods.

I) Consider -first Crank-Nicolson method (4.17)
Expressing this into matrix -form (2.23), we can

write this as,
A uJ+i = A uJ+BJ 
o 1

Where

Ao

A = o

P

f

& A *l

1+X -X/2 0 . . .____ 0 0 0
—X/2 1+X -X/2___ 0 0
0 0 0 -X/2 1+X -X/2
0 0 0 0 -X/2 1+X

1—X X/2 0 __ 0 0 0
X/2 1 —X X/2 ... 0 0 0
0 0 0 X/2 1—X X/2
0 0 0 O X/2 1 —X

A = I X.
2 P

Where
-1 o

— 1
0 0 0'

0 0 0
0 0 0 
0 0 0

-1 2
0 -1

-1
2 J

Let X be the eigen values and V<J> be thej
vectors of the matrix P. Then

X = 4 sm C—) , q * 1,2,.

& V<j> = ["sin .sin - sin ...
I 2H M M

corresponding eigen

, li—i.

sin (M—1> qn
M
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From this we can write eigen values of
A = I + X P as

, ^ X . . 2, qrr . 1 + — 4 sin ( ) 1 + 2X sin2 qn2M

and that of A_1A = A-1 (I - P)o i o 2

= A *[ I + —
O JL

m A-1 [ A - XP] o o
= I - XA_1P o

P - XP ]

>. . . 2 qn
as 1 - X-A *xn ~2n

1+2X sin2qn 
2M

& \(j I < 11 <t1

1-2X sin 2 qn
2M

1+2X sin2 -c,n2M
= F

This is possible for all positive X. Hence Crank-Nicolson 
method is unconditionally stable.

II) Now we will discuss the stability of Schmidt method (4.12 
We can express this method into matrix form 

A uJ + 1 = A uj+Bj

Where A I. A
1-2X
X

& A A = I o t

0
0

I - XP 
- XP.

X
1-2X

0
X

o
o

o
o

0
o

, -1Thus the eigen values u of A A areq o 1

X
o

0
0
1-2X
X

0 
0
X

1-2X

1 - 4X sin2 qn2M 1,2,.... M—1 .
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Hence the condition -for tr stability of this me.nod is

2 qn ,•1 < 1—4X sin 2M ~

Hence if 0 < X <_ ^ , then the method is unconditional
- 2

stable.

4.3.2 CONVERGENCE ANALYSIS :

It the solution of the difference equation tends to the 

solution of differential equation as a —> 0 ,ft —> 0 then 

the difference equation is said to be convergent.

(I) Let us discuss the convergence of Schmidt method <4.12). 

The exact solution satisfies.

u (x , t ) = u£x , t) - 2X u{x , t.) +X
v j+i 1. J <• j

,t.)
l-l J

+ u Cx -O 1
J

+0 C(f+aZ-y .<4.24)

Define E^ = ufx , t ) — u^ & E-* * max I E^ |
V I j v 1 v '

Substracting <4.12) from <4»24), we get

E^1 = <1 —2X) EJ+ X ( EJ +EJ ) +M (ft2 + ftoi2)
V V l-.. l+J

where N is a constant independent of a.

When X <- the coefficients are positive and

Max I EJ+i | < < 1—2X + X +X)“"'<EJ> + M (ft+ftcf)t * i. ■ v
Hence EJ+1 < EJ + M< (f + ftc"'

< EJ_1 + 2M < ft — fta)

.M-ix.-j.

< E <j + l) K f fta )



As t = (j + 1)/? and E = 0. we have 
j+i

-j+i < t M( /? + a). “ j-**
As a -> 0, ft —> 0 , we get 

EJ*1 -> O
and uJ —> u(x ,t )V j
Hence the method is convergent for 0<X. < -3,. ,

JL.

II) Now we will see the convergence of 

Crank—Nicolson method (4.17).

Using EJ =» u(x ,t ) - uJ in (4.17)
V V J t

For we will express into matrix form

A u o
J-*-1 _ A uJ + BJ

as £ I +-|- P J uJ+1 = £ I—P Juj + BJ

0,1

Where

&
- [ Ei E> 

ri - [ t; t*
.... EL]

0 (.ft** pa')
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(4.25)

The initial condition gives E =0. The expression (4.25) 

can be written as

EJ+1 = H EJ + o'4 ... (4.26)

j= 0,1,2,---

Where H = (I +~ P)”1 Cl —5- P)



<yJ= (1+ | P)_1 TJ

Applying (4.26) reccursively, we obtion 

EJ = HJ E° + £ HJ_1

98

II EJ|| < ||H||J | |E° | | eiihii_1ii 01 < ihir
II E°|| Max0<k<j-l J

As the matrix P is symmetric, hence the matrix H. Using 
spectral norm. || H|| = Max | tr | ,
where u are the eigen values of H (j = 1 to M-l)J
The eigen values of matrix H are given by 

= ( 1 +-A- Xj )"* C Xj )

Where X^ are eigen values of P,

& X =4 sinZ-4£- , 1 < j < M-l.
j 2P1

, ~ . 2 JTT1 — 2X sxn
j 1+2X sin2 2M

Hence ||Hj| = ||u^|| < 1, for X > 0.

iie'iu ii e°ii -L <ak I'jli11i-1 |H| | 1° ^ k ^ J 1

we also have j | T* | J = c(/?2+a2), 

where c is a constant independent of ft & a. . Hence ,we have
II EJ|I < II E°|| + c: (.1?* c2)
Hence we conclude that there is conditional convergence as

ft —> 0, a —> 0.


