


CHAPTER - 11

SINGLE STEP METHODS @

2.1 Introduction :
A singlestep method for the solution of the initial

value problem

d
a{—z flt,y), y(t ) = y , telt bl (2.1

is a related first order differential equation. A general

singlestep method may be written as

y ol y + h q(t .Yj,h),j”o,lgz.-.-.,N"'l. (2-2)

it J 3

where g{(t,y,h) is a function of the argussnts ¢t,h,y and in
addition depends on f{t,y). The function gt(t,y,h) is called

the increment function. I+ vy can be determined simply by

j+e
evaluting the right hand side of (2.2), then the singelstep
method is called explicit, otherwise it is called implicit.
The local truncation error 13 given by

Tja y(tﬁﬁ)—y(t)—h g(t

j j’y(tj)'h), j-o,l’z’o..,N‘"‘- (2.3)

The largest integer p such that |h—Ln[=D(h') is called the

order of the singelstep method.



Now we determine specific forms for the increament
function g(t,y,h}.
Let the solution y(t) of equation (2.1) be expanded in
Taylor seris about the point tj and substituting tﬁtj_1 we
have

Y+hP /3y e el

) +h¥s21y° (v ;

Yt 0=yt + hy ' (t

3 3 3

Neglecting the terms of h? and higher powers, we have the

approximate solution

yj+1 = y_j + hf(tj,yj). J =0,1,2,...,N-1.

This is called Euler's method.
2.2 Runge-Kutta Methods

We first explain the principle involved in the
Runge—-Kutta methods. By the mean value theorem any solution
of equation (2.1) satisfies

yit, ) =y(t)+h y'(t+eh,y(t

+eh)), O < e < 1.
J+s

3

We put e=1/2. Euler's method with spacing h/2,

approximately given by
y(t+h/2) = y, + h/2 FlE,y).

Thus we have the approximation

10
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y, = yj + hf(tj+h/2,yj+h/24‘(tj,yj)) (2.4)

Jes

Alternatively,again using Euler method,we proceed as follows:

y'(tj+h/2) = 1/2 [y'(tj)+y'(tj+h)]

= 1/2 [f(tj,yj)+f(tj+h,yj+hfj)]

Thus we have the approximation

< £ +
Vi = Y, h/2{ (!:j.yj) f(tm.y

+hf(t (2.95)
jot ( j'yj)]

i

Either Egq.(2.4) or Eq.(2.5) can be written as

yj“ = y.i + h (averge slopm)

This is the underlying idea of the Runge—-Kutta approach.
In general,we find the slope at tj and at several other

points,average these slopes,multiply by h and add the result
to .
Y
Thus the R-K method with m slopes can be written as
k‘.ﬂ h f(tj,yj)
kz = h f(tjﬂ:ah,yj*-a:uk‘)
k. = h f(tj-!-c.h,yj-l-a“k‘-t-ankz)

k‘ = h f(tj*-c‘h,yj+a“k1+a“kz+a“k’)
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m-4
km = h f(tj-t-cmh,yj + ¥ .miki)
t=g
and
yjﬂ = yj + u‘k‘ + wzkz Fewawat umkm (2.6)

To deteraine the parasmeters in (2.6),we expand yjﬂ in powers

of h such that it agrees with the Taylors series expansion of
the solution of the differential equation upto a certain
number of terms. We explain the same for specific values of

m= 2 and m = I which follows:s

2.2.18scond grder methods

Consider the Runge-Kutta method with two slops: (m=2)
k‘ - hf(tj.yj)

k2 = hf(tji-czh,yj-&a”k’)

yjﬂ = vj + ~1k1+~zkz (2.7)

where the parameters c ,a ,w ,w are chosen to make vy,
2" 24" 1% 2 j*e

closer to y(tjﬂ). By Taylor series,

y(t ‘) = y(t) + hf(t ,y(t

. ; ) o+ hle!f'(tJ,y(t )) +

L i ]

h’/:s!f"(tj,y(tj)) +



= 2 ]
y{t) + hf(tj,y(t‘)) + h /2.(ft+ffy)‘

) f

+ hP/30 (¢ +26F +656 46 (F 466 )] +... (2.8)
t ty Yy y t b 4 tj

We aiso have

k1 - hfj

kz - hf(tj*'c:zh,yj-"az‘hfj)

= h{[f +c hf +a_ hff ] +h‘/2[c’f +2c a f +a’ £2F ) +
j. 2 b4 2 ylt 1Y 20240 ty 21

yy t
i
+...... }

i
Using k1 and k: in Eq.(2.7) we get

Y w y 4+ whf + whif+h(c f+a ff )] +
] 1) 2 i 2t 2 y Tt

Jet i

wh®/20c®6, . +2c a #F +a> ¢¢F 1 +.....
2 z tt 2 24 ty 2t Yy lj

2
- y_j + (nlﬂvaz)hfj +h ‘“2‘2‘t+“2‘21’(tj)’y’ +

3 2 2 .2
1/2h "2(c2ftt+2c2321f(t1)‘tyh‘ZIf(tJ){yy) +,...(2.9)

Comparing the equations (2.8) and (2.9) and equating the

coefficients of powers of h,we have



u1+w2 =

w2c2 = 1/2
a

21w2-1/2 (2.10)

By taking c, as an arbitrary ((non—zero) and

solving
these squations,we have

a = C

21 w

o0 W, = 1/2c2, w, = 1 - 1/2c2

G.n.rally,cz is chosen between O and 1,

By taking c., =1/2,implies w,= 0, w = 1, a = 1/2,this

2 2 21
known as imprpved tangent R-K method..

By taking ¢ = 2/3 ,implies w, = 1/4 ,w

2 1
optimal second order R-K method.

o ™ 3/4, it is the

We state the Runge-Kutta method by giving the coefficients as

follows:
C2 221
“1 "2
172} 172 2/3 2/3 1 1
o 1 1/4 3/4 1/2 1/2

Improved tangent Optimal Euler—-Cauchy
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2.2.2 Thired order ssthod
Taking m=3 in Eq.(2.6) ,we have

Yiet - Yj + “lkl + uzkz + u3k3 (2.11)
where k1 = hfj
k2 = hf(tj+c2h.yj+121kl)
= hf(tj+c2h,yj+a21hfj)
=h C(Lf,+c_hf, +a_ héf 1.+ 1/2'Cc2h?f, +2c_a_. h2ff
J 2 ¢t 21 vy t : 2 tt 2 21 ty
2 ,2.2
+a21h 2 fyy]tj+...)
mhé, +holc f +a,. £ .3
3 2t 21y 3] tj
3,02 2 ,2
+ h /2.[czftt+2c2a214fty+a214 fyy]tj + ...
k3 - hf(tj+c3h,a31k1+132k2+yj)
= . 2
hf[tj-ﬂ:sh,a:slhfj + asz(hfj+h (czft+5214yfj)*...)+yj]
m hf, + holc f +(a, +a, )6 . 1 + holc a, f.§f +a_ . a, FF2 +
J It 31 32 3y 2732ty 2132 'y

2
1/2c3ftt + 1/2(a31+a32) fj ‘YY + c3(a31+a32)ffty}+...
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Using these valuse in Eq.(2.11) we have

+w hf +w_C(h¢ +h2(c f . +a_ . . ¢ )+

Yjar™ Yy T T VRN 27e¢ 21757y
X 2 2 2
h /2(:2 {tt*zcz'ZIfJ‘ty+.21‘1'yy’} +
w_ {h¢f +h2£c £, _+( + ) ¥ f‘]+h3[¢ ¥ € +a__a ff2+
Psth?y sTetiagtagy )yt 28327 Ty 2125277,
c2/2¢,  +1/2(a, +va. ) 262 +c e .+ ) f £, 1)+
3 tt 31 "32 Jyy 3 731 32" "5 ty T
2
yj+l = yj + (wl+w2+w3)hfj + h (uzczﬂv‘scs)ft +
2 3 2 2
h (u2a21+u3a31+w3a32)ffy + h 12(u2c2+u3c3)¥tt+
h3[u c.a.,. ff + c_w (a . *a_ )¢, ]
2°2%21 Tty 373 0317032 " ey
3 2 2 2 X
+h [1/2.21u2+1/2(a31+a32) uslfjfyy+u3c2132h ‘tfy
a ffzh3+... : (2.12)

e 303 o VXA

From Tayolar series, wﬁ have

+ h2/2!(ft+f £ )

= vy * hf iy

Y41 3

+ hOUIUCE, 4266, +EOE 46 (£ 466)) ..., (2.13)
tt ty Yy v ¢t 'y
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Comparing equations (2.12) and (2.13) for the coefficients

of powers of h, we get

wl + w2 + "3 = 1 (1)
w2c2 + w3c3 = 1/2 (11)
2 2
w2c 2 +w3c < = 1/3 (IIX)
WoloBoyy + Wl @y, + Cxd Wy = 1/3 (IV)
2 2
w3(n31+a32) + 121w2 = 1/3 (V)
w3c2a32 = 1/6
w3a21a32 = 1/6 --);21 = c2

Using in (IV),

{a_ ., +a_.) = 1/3

8py ¥ WxCxy (Bg tag,

3(:

Using in (V) ,we have

a + a = C

31 32 3 D

These gives the following six equationss

221 % Co2» 8351 ¥ 833 T Cx»
W, t W, Fowg = 1, CoW, + CxWg = 1/2,
cng + c§w3 = 1/3, C A My = 176, (2.14)

These equations are typical in R-K methods; the sum of ‘15 in

any row equals the corresponding ci,and sUm ui's squals 1.



Thus the equations

(2.14) are linear in w

solution for wzand wSif and only 1f

c2 c3 -1/2

2 2

c2 c3 1/3

O Cnrdzs -1/6
Therefore c2(2—3c2)a32 - c3(c3—c2) = 0,
(Z2.15)

c3(c3—c2)
832 T T -

i+ c3 = Q0 or c.=

> c3,then €, = 273 (For limiting caseland a

arbitrarily chosen (nonzero).By calculating wi's

€2 221
=z azy qz2
Wl W,.) w

and w

- < and have

and a

32

13
from equation (2.14) and represented in the following form:

18

is



2/3

2/3 172 1/2
273 0 2/3 3/4 0 3/4
2/8 x/8 z/8 2/9 3/9 4/9
Nystrom Nearly Optimal
1/2 172 173 173
S Pt | ~Z _2/3 0 273
1/6 4/6 1/6 1/4 0 X/4
Classical Hean
Fourth order R-K method : T he most well known formula is

classical R~K method of order four, which is given by

Yisrr = Yj + 1/6(k1+k2+k3+k

L = hECt Ly

3>

where k

x
I

2 = hECE+1/2h,y +1/2k ),

< hf(tj+1/2h,yj+1/2k2),

x
1]

~
Il

a hf(tj+h,yj+k3).

The R-K method of order four is very much popular. It is a
good choice for common purposes because it is quite accurate,
stable and easy to program. It is not necessary to go to a
higher order method because the increased accuracy is offset
by additional computational effort. If more accuracy is

required, then either a smaller step size or an adaptive

method should be used.



2.2.3 Convergence

Definition (2.1):The singlestep method (2.2) is said to be
regular if the function g(t,y,h) is defined and continuous in
the domain to £t b, ~w<y < o0 ,0 =< h =< h0 and if there

exists a constnt L such that
lgtt,y,h) — gtt,z,h)| €L |y-z| (2.16)

for every t e [to,bJ, Yz € (-0 ,0 ),h & (O,ho).

Definition 2.2: A singlestep method of the form(2.2) is said
to be consistent if qg(t,y,0) = f(t,y).

Theorem 2.1: A necessary and sufficint condition for
convergence of a regular singlestep method of order p > 1

is consistency.

We will use this theorem to state the convergence of

Runge—Kutta methods.

(a) Convergence of second order R-K method:

The R-K method of order two be
Yiseg = Y + wlk1 + wzk2 (From (2.7))

and the corresponding increament function is given by

Gty sh) = h o w ke ) (2.17)

As f(t,y) satisfies Lipschitz condition (From Theorem 1.1).



Thus kl and k2 satisfy
For kl = hf(tj,yj),
X
| ky — k1| = h |f(tj,yj) - f(tj,yj)l
X
< hi =Y .
ly;-v5l
ky = hf(tj+c2h,yj+azlk1)
| & —k‘l = h | f(t +c_h,y +a_ k I)-f(t +c_h y'+a k‘)‘
?2 2 i 2775 T2 i 27  T21
¢
«< — -
< hi [|yj+321k1 Y; 321k1]]
X X
< - -
< ht Y yj| + a,, 'kl k1|]
< hi [|y.~y‘| + a thy.myfll
i3 21 j 3
< ht |y —y‘ | C(1+a, Lh)
- I | 21
Using in (2.17) ,the increment function satisfies
| gtt, ,y.,h)i-g(t yf h) |
S R 3*7;5’

i
g

21



-1
h [wth | YoV | + szh | YV, | (1+a21Lh)J

IA

|
=L | YyTYy | [ul+u2+u212‘hL3

A

L yj~y} | t1+Lh/2] (From (2.10)

The increment function g satisfies a Lipschitz condition
and it is also continuous in h. Thus R-K msethod

consistent, hence it is convergent (by Theorsm 2.1).

{b) Convergence 0Of Thired Order R Method
The R~-K method of order three from (2.11),be

Y.

i+ =Y m‘k‘m’k:ﬂo'k.

i

and the correspondig increament function is given by

~1
q(tj,yj,h) h (n‘k‘+uzk.+u.k.)

We know that f(t,y) satisfies Lipschitz condition

k!,k:,k. also satify
k‘ = h{(tj;yﬁ

L »
ke, ~k | = hLj YV, |

22

iny

is

hence



k= hf(t J—H:zh,yj*-a”k‘)

X ¢
| keky | sLh [‘ Y7V | + 2 | ko, !]

A

b 4
Lh [| YV, | + auLh| yj--'yj |]

S Lh | vy | € o1sa th

k' = hf(t -H:’h,y

+a k +a_ k)
§ 2 4 82 2

3

' % s *
| kgkg | SLh (] vy, | +a | k& | +a_ | k-k, |

<
< Lh (1+a_Lh+a Lh(i+a Lh)) |y -y |

Therefore the increament function satisfies

|

L

= h7 | Wk dw kW k —w k —w k —w kY|
14 22 88 44 22 859

R A N RN A

1 1 3 2 2 2 2 ] 2
S h ' tw Lhj y«-y‘ [+w Lh(i+a_Lh) |y -y'[
1 i i 2 24 37

+Lhw _( 1+a_Lh+a Lh( 1+a”Lh) ) ]yj v, |2
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SL {wtw tw +(wa *wa +wa )Lh + wa a (LMD
1 2 s z 2 3 8 3 852 s 21 92

4
L v,y |
S L C1+1/2Lhe1/60Lm ™ |y —y Y| (From2.14)

Therefore the increment function ¢ satisfies a
Lipschitz condition in vy and it is also continuous in h. Thus
we conclude that the third order Runge—-Kutta method is also

convergent.

2.2.4 GTARILITY ANALYSIS

Now we discuss the stability of R-K methods.
First, consider the first order differsntial equation
Yy = Ay, y(to) = y° (2.18)
where A is a constant.
It has the exact solution, given by

y{t) = y(to) ek(t—to)

which at sz t°+jh, becomes

Ajh Ah,j
y(tﬁ = y(to) e = Ye (e )

But applying a singlestep method on equation (2.19),

Qives a difference equation with solution of the form

yj = a [E()\h)]j



25

where a is a constant to be determined from initial condition

and E(Ah) is an approximation to CXh.

Definition(2.3):A singelstep method is absolutely stable if
| E€Ah) | £ 1 and relatively stable if |E(Ah)| =< QXh-
We will apply the Euler-Cauchy second order R-K method
(From 2.2.1) to equation(2.18) and we get
k1 = h f(tj,yj) = Ah yj
k, = h f(ti+h,yj+k‘)

= Ah [14Ah] y, = LM+ (AL ] v,

Yy =y + 1/2 [w‘+w2]

s

§
= [14\h+1/2(0n) 2] Y,

Thus, the growth factor for the second order msethod is
E(Ah) = 1 + Ah + 1720007

and for this exact solution is .Ah‘

Ah

Also @' = 1 + Ah + (ANR)372' + /314,

I+ Ah>0, then 'E(kh)] < exh; s o0 that the second order R-K

method is always relatively stable.
I¥f \h < O, then consider the following table to find the
interval of absolute stability.

Ah [n) - 0.5 -1.0 -1.3 -2.0

Exh){ 1 0.623 0.5 0.523 |



From the above table and Fig.(2.1). the interval of absolute

stability is -2 < Ah < O.

Similarly, apply the classical thired order R-K method to the

equation(2.18)and we will get
k1 = thj,

= +
kz h *(t5¥1/2h,yj 1/2k1)

= fAh+1/2000) %) Y,

k’ = h f(t{+h,y{~k‘+2k2)

= L+ Z+Oum?s v,

+
Viee = V) + 1760k 48K +k )

= [14Ah+1/72000) 34176 %2 v,

with growth factor of thired order R-K method is
E{A\h) = 1+Kh+1/2(kh)2+1/6(xh)‘.

I+ Ah > O, then E(M\h) = exh hence the thired order R-K method

is also relatively stable.



27

If AXh € 0, then from Fig.(2.1) the interval of absolute
atability is -2.5 < Ah < O,

Also apply on Eq.(2.18) the fourth order method, we have the
growth factor

E(Ah) = 14Ah+1/2002+1/73  Oam+178' O S,

Therfore fourth order R-K method is also relatively stable
and from Fig.(2.1), the interval of absolute stability is
-2.78 < Ah < 0.

The existance of rounding errors in R-K methods,
will depend in some way on the coefficints of the method. The
negative signs appearing amongst the coefficients of the
method, especially WisWop oo "y is a sign of trouble.
Many high order methods where negative signs occur have large

values for some |a and this will 1lead to 1loss of

is!

accuracy through cancelation of significant digits.
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If \h < 0, then from Fig.(2.1) the interval of absolute
atability is -2.5 < Ah < O.

Also apply on Eq.(2.18)the fourth order method, we have the
growth factor

E(Ah) = 14Ah+1/7200M)3+173' O 2+ 178 (am ®.

Therfore fourth order R-K method is also relatively stable
and from Fig.(2.1), the interval of absolute astability is
-2.78 < Axh < 0.

The existance of rounding errors in R-K methods,
will depend in some way on the coefficints of the method. The
negative signs appearing amongst the coefficients of the
method, especially WisWoson- sW is a aign of trouble.
Many high order methods where negative signs occur have large

values for some ‘aij‘ and this will lead to loss of

acguracy through cancelation of significant digits.

Second | + ehd -/
order IE(M\)I /

— —
T - o —— - ———— — —— — —— - — — o —

1.0

Fourth order

“—1-.-—-_’—""

1 L

8

- 2.5 -2.0 =-1.5 - 1.0 -0.9 0 hA 1

Fig. 2.1 Stability of Runge-Kutta method

.0



2.3 Higher order differential equations:

The higher order differential equations can be solved
by taking system of equivalent first order equations. Now
we will form direct singelstep methods to solve higher order
equations.

Consider a general second order equation
Yy’ = flt,y,y'), t & [to.bl (2.19)

with the initial conditions
y(to) = yo, Y (to) - yo'.
There is Runge-Kutta method, given by

3 2 1 ’
k‘ h /72! f(t:j,.yj,.yj ¥,

2
k= h/72t'¢(t +2/ + : y
2 (t.j 2 3h,yj 2/3hyj+2/3k‘,yj+4/3h ki}

= + hy' + 1/2(k +
ypa, Vj yj 172 . kz)

. . + -
y ﬁ1= ' j 1/2h (k‘+3kz)

2.3.1: Here we dicuss only second order differential equ-

ation in which, the function f is independent of y-°. We can
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construct the Runge—Kutta method in which the local truncation

error in v and vy’ is o(h*).

Consider the second order initial value differential equation

»

y = f(t,y), y(to) = Yor Y (to) = yo.

Let us define

= z 1]
k‘ h /72! 'F(tj,yj),

= 2 1 -+ .
kz h"1/2! 'Htf"zh'yj azhyj-i-auk!)
yi*i B yJ * hyj * “1k1 * “zkz’
. . L ¥
y.’ﬂ = yj + llh(u‘k‘+uzkz).

The Taylor series expansion gives

Y

2 . | 4 iv
= +hy '+ h /2!y "'+ W/3'y’ "'+ h /74! Pooase
jea YY) Y Y;j /8ty

.

2 | Iv
=y + hy' 4+ h¥/2tyrens3yVel L,
Yiw =Y Y, Y, Y;

}

h T = ,‘( =
where vy tij(tj’). fj'
y ' = (f§+f y') = Df, whare D m 8/0t+y’ 8/8y
i L Y tj j
v _ . g2
vy = U2y £yt AN

J

= D¢ + f ¢
J 1y

(2.20)

(2.21)

(2.22)
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by

Using in Eq.(2.22), we get

2 S 4 2
= y+ hy' + h/2'¥+ h /3" Df+ h /78'(D §+Ff § Y+...
Yied T Y5 j ) @F05%)

b 4 b | b 4
© = y'+ hf+ hE/20(DE I+ h/SIDIFF § Y., (2.23)
Yie = Y f j (D°F 48 3
Now ,

2 z
k, = hP/2t f(t,y) = n/214,

2 .
2/h k2 fJ + h[azft+azyjfj] +

2 2 2 . 2 , 8
h [az1l2fjfy+az/2§u+a'/2(y’) fyy-l-n‘yjfw] + o(h)

2 s .
kz = h“/ 2 fj+ h /2[n:f‘+a’yjfj}!-
Ce . 2 2, ,.2 2 ., s
h 74[a_f f +a zfuhu:(y ) fyy+2.2y fw] +o(h)

2 jy § §

= h®/2 ¢ +h%/2 a Df +h*/a(a’D* s +a_§¢ ] + o(n)).
i 2 ] 2 ] a jy

Using the values of k‘ & kz in Eq.(2.21), we have

2

- . h w. a

Yj+1 = yj + hyj + > fj(w‘ﬂwt) + 2 2
4

h 2 2
+ 'y (a;—sz £

) p

; + “z‘zt‘ jfv) +

- 2
h = T h v h a
& y' =+ vy’ + w f +tw =+ 2 2
D¢
j+e i 313 sz—.—.T.-.- ;
h® e Zp¥s + £ £) +
rgug (a0t ra, FEIF .-
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Comparing these equations with Eq.(2.23) for the

coefficients of h, h & h’, we have

w+tw =1 u‘ + u. = 2
Py 2 1 2
1 - 2
wzazs 3 wzazt 2/3
u. a = 2/3
2 2
|

Solving these set of equations,we have
a = 2/3, a = 4/9 , W =N =
2 21
- "»
w = i/72 , w, = 3/2
Thus finally the R-K method for second order initial

value problem, Eq.(2.19) becomes

h
k= 3, Flt, v),

hz
k, = 3y (£#2/30,y+ 2/3ny’ + 4/9K)

and

Yh! = yj'+ hy j + 1/2(k‘ + kz)

, - v 1
Yjﬂ Yj + §E~'CR‘+3k:) (2.24)

2.3.2 STAPILITY ANALYSIS 3

Now we will discuss the stability and the error

analysis of the Range-Kutta Method (2.24).

Let us consider the differential equations
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y ‘= Ay (2.25%)

subject to the conditions

y(to) =Yy ° y'(to) = y'o, t e [tob]

where A is a real number.

Here we discuss the three cases.

We will €ind the values of k‘,k: for the Eq. (2.25)

h?
we get k, = ;,f(}.vg

h X 2
k, =3 [ A Cy + 2/3hy; + 4/90/2 X y) ]

='§g [ (1 + 2/9h’x>yj + 2/3n0y ]
Using these values of k‘ & kz into yh‘& Yj+1’“. bhave
Ah? 2an?
Yia =Y * th + 31 Y, +(1 + —'-)y’-+2/3h Y ]
2 2. 4 ]
_ Ah A°h Ah ;
1. h*x 3\h® 2
&y PP +511 5= Y, * —5— [(1+2/9\h7) v, + 2h/3 vy 3 )
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2 2 2. 4
e u. o1 ARt 3R A*h 2
vitaR Gzt Tm s ) vyt 12y
Ah  3ah . A*R® ARS

u(—-x+4+ &)yj+(l+-2’Y3

A2n?

2
. Ah ,
b4 e = ( Ah + —% ) Yj + (1 + -2—-) Yj {(2.26b)

Rewriting into matrix equation form,

et ®44 fe2 Y;
- (2.27)
Y jee %24 %22 Y
2 2.4 s
Ah ATh h A
Where a b+ =5 +1g° 2 =-h*t3
2.9 Ah’
» + [ ]
.21 Ah + 2 h, a L N B

(i) case A = O, we have

Putting 1 = 0,1,2,... in last squation, we have
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Y, =Y, s Y, =Y, =Y, & so on

Y;

and from first equation

= yt‘,

. .
y!. = YO hyo

v “hv’) + . - .
Y, =Y, hv‘ = <v° hvo) by, = Yo 2hvo

and so on y, = y°+ JhY;

]
which is required result .

(ii) case A = —kz, in this case the solutions are
oscillating.

let us consider the sigen values of the amatrix represented
by Eg.(2.27).

Let oo be eigen value then characteristic equation of matrix

be
2
o—-(a + a )o—- a a = 0
11 22 12 2%
a = % fa +a + Cta +a ) +4a a J}/I]
12 11 t 33 12 24
1 2 1/2

a‘, az 2 [(.1: * az:) *r « '11+‘z:) + 4‘1:':1} ]

Using A = ~k2 in au & substituting in above result,

we have
4 4
= 1 w22, hk hk .2, o o 4 4 2, 2
a‘,az‘ 2—{2hk+r§— -_i-_[(-I—B-)(hk 36h k +432h7k
-1296) 1'%

Taking h*k? = z, 2°-362z" + 4322-1296 has one root
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approximately 4.44045 by Newton’'s Method.

4 4
1 2.2 hk hk.2 2 2
a, a =54 2-hk+—g * [(7e) (h k™ -4.44045)

(k- 2p  nikPeple P

= 15.779763 & P2 = 6.5467418

Where P1
h*k*, we find that

Calculating a & a, as functions of
the roots have unit modulus for 0 hzkzg 4.44,. Thus
stability interval of the R-K Method is
0 < h*k? < 4.44.

(1ii) case X = k* s the solution of (2.23) are sxponential

in nature and the solution canbe written in matrix form as.

1
yit) goshk(t to) K sinh k (t to) Yo

y' (t) sinh k(t-t ) coshk (t-t ) y’
o ) )

For the point t = to + nh = tn s this solution becomes

1
y(tn) cosh(nkh) 7y sinh(nkh) ] [ Yo

y'(tn) sinh(nkh) cosh (nkh) J l Y,

The maximum eigen value of the matrix is obtained by the
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characteristic equation,

cosh®Cnkh) - 2coshCnkhd o + af - sinh®Cnkhd) = O.

of-2cosh Cnkhd +1 = O

o o 2 coshCnkhd + [4cosh®Cnkhd>-41%"2
»

1 2 é
a e = coshCnkhd) + sinhCnkhd

.nkh+ .-nkh .nkh_ .—-nkh
o = cosh nkh + sinh nkh = +
1 2 2
o = .nl:h



2.4 ADAPTIVE NUMERICAL METHODS :

The numerical methods which contain arbitrary parameters
so as to tailor the numerical methods to fit the particular
problems are known as adaptive numerical methods. This is
used to stabilize the numerical methods. In this method the
start ing point s homogeneous linear form of the
givendifferenti al equation and using the analytic solution
of linear dif ferential equation, obtain a difference
equation which i{s identical to that of differential equation.

Now we study the singlestep methods, how to stabllize with a

small modificati on.

2.4.1 RUNGE-KUTTA-TREANOR METHOD : -

The first order initial value problem c2.1>
y' = fCL,yd, y(tob =Y,

can be written in the form

y' + py =0Ct,yd cz2.28d>
where JOCtL,y) = fCt,yd + py
and p > O is an arbitrary parameter to be obtain

It is assumed that Eq.(2.28) can be approximated by

dy . = —PCy— - C cr-tH?2
I £Ct,yd PCy-y) + A + BCE-tD + 5 CL-t 3% (2.20)

where Ctj.yj) is contained in appropriate interval The four
constants A,B,C & P can be evaluated by determining the

value of fCt,yd> at four polntsct,l.yl) in the interval
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[tj,tj+h] and solve the resulting squations.

We select classical Range -Kutta nodes tj .tj+h/2, tj+h/2
and tj+h and putting, we have

k, = hé(t,y)

kz = hf(t:j + h/2,z‘) . z = yj + 1/2k‘
ka = hf(tj+h/2, zz) . z = yj +1/2kz
k‘ = hf(!:j + h,z.) . z - yj + k'
The four equations are
k = Ah
1
25 L
ka +phz‘ = phy), + Ah +1/2h +1/8h ¢ (2.30a)
k, + phz, = phy + ah + 1/2h°B + 1/8h°c (2.30b)
k, + phz_ = phy, + Ah +h’B +1/2h° (2.30c)
Solving these equations :
hA = k
1 §
ka - kz
ph = - <% From(2.30a & 2.30b)
2 1

2
h'B = [“3"‘1*‘”’“’5) + 2(k2 +phz‘)+2(k.+phz’) (k‘+phz’)]

I
hC=4 [(k:phyj) (kz-v-phz‘) (k;l-phz.) O(k‘i-phz.)] (2.31)

On integrating (2.29) between the limits tj and t i.e.

j+1

on solving Linear differential equation.



} J P tj
pt pt P t
% [(t-t ¥ e -ty T . 2% ] b
n P n 2 3
P p t
]
p(tjm) |:$t:j
Yieg ® v e = (P TRY ) QPli(ePP-y)
o)
ptt +h) pt ph_
+ B[ he” ; e ) Cel -1 ]
p 2

c 2 ptt +h) pt
*3 [" 2 i - YL e ]

2
P p P
ph_ A+py ph_, ph _
Vid ® Y, = [ i ] e®-0) + B [phﬂ (p 1) ]
p 2
p
+ S—-—;,— [h¥p?eP"- 2ph e + 2¢e®™- 1) )
2p
- PP ¢ 1—a—Ph
Vi =y + hA (1-a ) + h'B [ph—-(1 I’ )]
. ! P {ph)
. h%c  [np® - 2hp+ 201-a"P" ) )
2 (ph)'
2 »
Y =Y, thA F 4+ NBF 4+ hecF (2.32)



-ph -ph
whe ol -1 - —-ph+1
re Fs = ~({ph) ? Fz = £ ™
(—-ph)
-ph ]
& F = % —1/2(ph) "~ +ph—1
* 3
{—-ph)
1
F -—
F = '
n+t n(-pl"l" . n = 3.4

Using (2.31) in (2.32), we have

Yy = y'i + k‘F‘ + Fz[ —-3(k‘ +phy

i 3

+2(k8 +phzz) - (k‘+ phz.) ]

+4F.[(k‘+phyj) - (kz+ phz‘)-(k'+ phz.) + (k‘+phz‘)

which is known as Runge-Kutta-Treanor Method.

) +2(k.+phz‘)

(2.33)

(2.34)

Using the values of z‘,zz,z’ from (2.30) into the equation

(2.34), we have

1
Y =Y ¥ g (kg 2k, + 2k + kD

2
(ph)® (k= k) F o+ (k= 8k + 2k +k ) F_

-4 (k- k- k + k) F_]

The value of P is given by

(2.35)
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. In the squation (2.35), the first part is due to the fourth
order Runge-Kutta msethod and the resaining part is fifth
order and higher in h. Thus when equation(2.34) is used to
integrate over an interval where ph is ssall, the result will
be identical with Runge—-Kutta. I¥f ph is large, then
equation (2.34) gives a far superior solution.

As the value of P is evaluated by the difference of two
values of kl,i.e.the difference of two values of f(,it may
happens that the significant figures in calculation of p loses,
i¥ the change in ki is very small. It may possibhle to get
negative value of p. Thus in practical use the sign of p
should be tested and if it is negative,it should be set zero,

s0 that Eq.(2.34) reverts to R—K method.

2.4.2 RUNGE-KUTTA-NYSTROM-TREANOR METHOD 13

Consider second order differential equations
V% = f(t,y), y(to) =Yg Y (to) = yo.
We develop singlestep methods of the form

. 2
Y, y; * hy, + hg (t,y

P yh),

3

Y =V, + h¢z(tj-y o h) (2.36)

i

to obtain a numerical solution of the above differential

equation. Here ¢§tijj’h) and ¢;(tj,yj.h) are increment
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functions. Let us apply method (2.36) to the initial value

problem

v,

V' = Ay, A0, y(to) = Yo y'(to) - yo'.

and assume that it can be written in the form

y _ y
bt ] = AV [ ’}

v v

where A(VAh) is a 2 x 2 matrix.
Definition (2.4) Method (2.36) is said to have interval of

periodicity (O,Hg) if, for a1l W2

e (o,ng, H = VX h, h being
the step length, all the eigen values of A(VAh) are complex

and lie on the unit circle.

Definition (2.93) The single step method defined by (2.36) is

sald to be p-stable if its interval of periodicity is (O,m).

tet us consider adaptive numerical method for the initial value
problem
\'% =f(t,y),ygto) Yo * Y (to) - yo
we write this in the form

y' ' + py = g(t,y) (2.%7)

where gt(t,y) = f(t,y) + py and P>0 is an arbitrary parameter

to be obtained.

tet us write equation (2.37) as

Y= flt,y) =mply-y)) 4 A+ Blt-t) + % (t~tﬁz



denote
Pty = py, + A+ Blt-t) + S(t-t)* (2.38)
y.. + py = ¢(t) (2.39)
where ¢(t) is an approximation of g(t,y). The general

solution of (2.39) will consist of a complementary function
and a par ticular integral.

herefore y(t) = C.F. + P.1.

As P > 0, C.F = A cosVpt + B sinVpt.

d
& P.I = $ (t) s Where D= —
D24pP dt
1
= I sin v (=0 $) aa.
VE i
The complete sclution is given by
y(t) = A cosVpt + B sinVpt
1 b
+ — [, sinvgt-0) $3) (2.40)

V; §
Where A & B are arbitrary constants.

Differentiating (2.40) w.r.to t (using differentiation

under integral sign)

y' (t)y = “Vp Asin v;t + B Vp cosvP .
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t
1 1
¥ e f Vg cos v;(t*J) ¢(J) dJ +— (t-t)P(t) (1)

VB oYy vp

y' (t) = — A YP sin YPt + BVYP cos VPt

t
+LcosVB(t—-J) #(J) dJ (2.41)
J

calculating the value of (2.40) at t”! ’ giand (2.41) at

gjand eliminating A and B from the resulting squations we

obtain
y( t. ) = cosVYPh.y(t) w1 sinyPh y (t)
j#‘ j v5 j
1 tj+1 —
VP ft sinVP (t, -3) $(3rdJ. (2.42)

3

calculating (2.40) at ﬁjand (2.41) at t ‘,t and eliminat—

b 3
ing A and B from the resulting equations, we obtain

y' (e ) = -VP sin VYPh y(t) + cos vPh y ()

L,
+ J "eon VP(E, -3 ) $tI) di (2.43)

Y

We know the values of y(t) and y'(t) at initial point

t = ti' Thus we can obtain singlestep methods for the numer

ical integration of Eq.(2.39), by replacing ¢(J) in (2.42) &

(2.43) of an appropriate interpolating polynomial at t = tj



L _Q_; (1-cosv7Ph
PVF P
- . . sinw A Bh ch?
e = yj cos(w) + yj h-—-;‘———- "'YJ. o t—p * > YjCOSW
A . C
- cCoOsw — sinw -—-—z-(l- cosw)
p
sinw An® Bh' sin
y, =1y <+hy’ + (1-cosw)+ {1 d ]
i J J - 2 2 ol
w w
+ Ch‘[ £ - (‘”c:’“ ] ]
2w )
. <
Yoo =V, t hYF + Ath’ +Bh‘F.+t:h F, (2.44)

Similarly, using Eq.(2.44) in Eq.(2.41), we have at t=t. .
. Jr

. . 3 4
+
hy’,, =hy'F Ainzr-'1 + BRF_+ ch'F_ (2.46)

Where w = Fh, F, = cosw, F_ 3_23:.""2.'_. .

Nsz ‘—a—!"—Fm' ﬂ‘l‘D,l,z,-...

46
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we approximate (2.38) ¢(t,y) by Taycvr’'s series of degree 2
at t = t.i & putting for @¢(J) in (2.42) & (2.43),

The approximate polynimial is

(3-t »?
G = e + I -t et e CIRERE
(J-t »*?
$(3) = py, + A + (I-t) B +—0pri— C. (2.44)

Using Eq.(2.44) in Eq. (2.40), we have at t = tm

y(t ) = cas?Ph y(t) + 1_ ainvPh y (t) +
1 B 3

i

1

Y, 3

t
I jﬂsin?’ Pt ~-J) [ py. + A + B(J—-t) +-—C~ (J-—t.)] dJ
- j*s i J 2 §
i

Doy it
Let I =—— [ ™ gin At -3) $(I) dJ
ot

# T

3

—-cosW(t., =J)
Jr1
..ﬁ'

‘___1__[ (py+ A + a(J—t_>+9,2-(J-t.>’) [
ﬁ 3 J p]

—-sin/P(t.  -J) osYp(t. -J) ot
j+s - j+s
Jecf- ]
L

—(B + C(J—t.)].[ < =
J (vF) —F )

ch? |1 (py +A) -
= [py.i + A+ Bh +p }— 5 cos{hvp)
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STABILITY :
Applying the single step method developed above to the
equation

y ‘= =iy, X D> O, ylt ) =y , y (t )=y’ (2.47)

when P is chosen as the square of the frequency of the
solution of the linear homogeneous problem in (2.37), Here
P =X,
¢ = f ey,
==Xy, * PV,
= 0, for i = 1,2,3,4.

and 80 comparing with Eq.{(2,44), we have

sinw

. = y COSW + hy ———
yJﬂ y.) yJ w
hy’ . = -y weinw + hy cosw

\4 1 Y, YJ

which can be written as
cosw —§i2!~
. —-w Sinw cCOSwW .

hyj#t Yj

The characteristic equation of the method is
o -2 cosw a + 1 =0

The roots are

+ v

a = e

|« | =1

The eigen values are complex and of unit modulii and hence

by the definition (2.5), the method is P-stable.



