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2. WEAK NOETHER LATTICES

§ 1. INTRODUCTION.

In this chapter we study the concept of weak Noether lattices and some 

equivalent condition for.

The concept of weak Noether lattices is introduced by D. D. Anderson 

and C. Jayaram in [3] in 1993, of course, as a generalization of the concept of 

Noether lattices. Using this concept we study some equivalent conditions for a 

weak Noether lattice to be a principal element lattice. Before proceeding 

further let us familiar with some more basic facts, those we needed in the 

development of the study. We define some concept.

Definition 2.1. Factor of an element. [3]

Let L be a multiplicative lattice. An element x E L is said to be a factor 

of an element a E L, if there exists an element y E L such that a = xy.

Now we prove an important result.
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2. Weak Noether Lattices

Lemma 2.2. Let x be a principal element of L and 0:x = 0. Then any factor of x 

is a principal element of L. [3]

Proof: Assume that, m is a factor of x. Then x = mk, for some k 6 L.

We first show that, m is a join principal element.

Let a, b E L. As (amvb):m < (amvb):m, we have [(amvb):m]m < 

amVb. So we have [(amvb):m]x = [(amvb):m]mk < (amvb)k = amkvbk 

= axvbk.

As [(amVb):m]x = [(amb):m]x, we have by (vii) of property 1.7,

(am Vb):m = [(amVb):m] x:x < (ax Vbk):x. As Lis a join principal element, 

wehave(amVb):m < (axVbk):x = aV(bk):x = aVbk:mk, asx = mk.

Before proceeding further, we first prove that k is a weak join principal 

element. For that we need to prove:

Claim 1. For any y E L,y = yk:k

Letz< y. Thenzk< yk and hence z< yk:k. This gives that 

y < yk:k.

Conversely, let z < yk:k. Then we have zk < yk. That is zmk 

< ymk and hence zx < yx. That is z< yx:x = y V0:x, as x is a join 

principal element. Thus as 0:x = 0, we have z < y.

This implies that, y = yk:k.

Butasx = mk< kand0:x = 0, we have by property 1.7 that 0:k < Oix^ 

0 and hence y V 0:k = y V 0 = y = yk:k. Thus k is a weak join principal element.
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2, Weak Noether Lattices

Now we claim the following.

Claim 2. bk:mk = b:m.

Let z < b:m. Then zm < b and hence zmk < bk. This 

gives that z < bk:mk. Therefore b:m < bk:mk.

Now let z < bk:mk. Then zmk < bk. As k is a weak join 

principal element, we have zm < bk:k = bvO:k = bvO = b and 

hence z < b:m.Thus, bk:mk=b:m.

Consequently, we now have (amVb):m < av(bk:mk) = avb:m. But, 

trivially, avb:m < (am vb):m. Thus, (am Vb):m = aVb:m. This implies that, 

m is a join principal element.

Now we show that, m is a meet principal element.

Let a, b e L, Then by property 1.7 we have (aAmb)k < akAmkb = 

akAxb < [(ak:x)Ab]x = [(ak:x)Ab]mk. Thus aAmk < [(ak:x)Ab]mk:k = 

[(ak:x) Ab]m, by above claim (1).

Thus, by claim (2) we have a Amb < [ak:mk Ab]m = [(a:m) Ab]m.

Obviously, we have the converse. Hence, we get a A mb = (a:m A b)m.

Q.E.D,

Now we turn a generalisation of the concept of Noether lattices, by 

dropping one axiom from the definition of Noether lattice.
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2. Weak Noether Lattices

§2.r-LATTICES.

Now here follows the special type of compactly generated 

multiplicative lattice, called r-lattice, which just an abstraction of the lattice of 

ideals of a commutative ring.

Definition 2.3. r-lattice. [ 1 ]

A multiplicative lattice L is called an r-lattice, if it is modular, 

principally generated, compactly generated with 1 compact.

The concept of r-lattices was first introduced by D. D. Anderson [1] in 

1976 as an extension of the concept of Noether lattices. In fact, a Noether

lattice is just an r-lattice satisfying the ascending chain condition (ACC).
»- #■

w . According to [1], if R is a commutative ring, then the lattice of ideals of 

Rf^R) is an r-lattice. More generally, if R is a graded ring over a torsionless 

grading monoid, then L0(R), the lattice of graded ideals of R, is an r-lattice. In

the same paper [ 1 ], it is proved further that, L(S), the lattice of ideals of an r- 

semigroup is also an r-lattice.

An important property of r-lattices is that they can be localized at sub- 

multiplicatively closed sets. The concept of localization was first introduced 

in multiplicative lattice by R. R Dilworth [9] using primary decomposition.

We first study this concept.
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2. Weak Noether Lattices

Definition 2.4: Multiplicatively Closed Set. [ 1 ]

Let L be a multiplicative lattice and S be a nonempty subset of L. Then S 

is said to be a multiplicatively closed set, if ab G S, for every pair a, b G S.

Definition 2.5: Sub-multiplieatively Closed Set. [ 1 ]

Let L be a multiplicative lattice and S be a nonempty subset of L. Then S 

is said to be a multiplicatively closed set, if for every pair a, b G S, there exists 

c G S such that c < ab.

Thus every multiplicatively closed set is a sub-muliplicatively closed 

set. Now we turn to the concept of localization.

Definition 2.6: The Concept of Localization in r-lattices. [ 1 ]

Let L be an r-lattice and S be a sub-multiplieatively closed set of L. 

Define a < b (S) for a, b G S, if for every principal element x < a, there exists 

tG S such that tx < b.

Further,a = b(S)iffa < b(S)andb < a(S).

According to D. D. Anderson [1], using the fact that S is a sub- 

multiplicatively closed (and hence consists of compact elements), the relation 

"= (S)" is an equivalence relation.

27
mm. mnm* khv dek $ library

SHIVAJl UMiVthiLlY, KOLHAPUR.



2. Weak Noether Lattices

Thus for a E L, define as = { z E L / z = a (S)} and

Ls = { as / a E L } is the set of all equivalence classes of elements of L.

Furthermore, Ls is a partially order set with the partial order relation:

as < bs iff a < b(S).

Now we study the concept of weak r-lattice which is a generalisation of 

the concept of r-lattice, obviously.

Definition 2.7: Weak r-lattice. [2]

A multiplicative lattice L is said to be a weak r-lattice, if it is principally 

generated, compactly generated and has the greatest element 1 compact.

Thus a weak r-lattice is an r-lattice iff it is a modular lattice.

If N is the semiring of all non-negative integers under usual addition 

and multiplication, then the lattice L(N) of ideals ofN is a weak r-lattice. But it 

is not an r-lattice, as L(N) is not a modular lattice (See [2]).

In [ 1 ], the concept of r-lattice is strongly introduced and studied well. 

The results established therein are mainly concerned with r-lattices. Note that, 

the difference between r-lattices and weak r-lattices is nothing but 

"modularity". In fact, many of the results proved in [1] don't require the
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2. Weak Noether Lattices

condition of modularity and thus they can be carried over without any change 

to weak r-lattice. This fact is pointed out by D. D. Anderson himself with C. 

Jayaram in [1].

Thus, in this study these results will be called for directly to weak r- 

lattices without referring this fact.

Accordingly, the process of localization as given in section 2 of [1] 

(here, see section 2.6 ) for r-lattices is applicable without no harm to weak r- 

lattices which is used freely here in this study.

Throughout this chapter L represents a weak r-Iattices unless 

otherwise stated.

Thus, now we recall the following result from [1]. Also we recall some 

basic concepts whenever we require.

Proposition 2.8 : Let S be a sub-multiplicatevely closed subset of L. Then we 

have,

(i) foranyset{aa}£L,(va aa)s=Va aaS

(ii) (a j A..... Aan)s = al S A.........AanS’ f°r any fin'te subset of L.

(iii) the product asb§ = (ab)s makes Ls a multiplicative lattice.

(iv) for a, c € L with c compact, (a:c)s = as:cs.
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2. Weak Noether Lattices

(v) m principal in L implies ms principal in Lg.

(vi) a is compact in L implies as is compact in Lg.

Now we recall the following concepts and then proceed further.

Definition 2.9: Proper Element. [7]

An element a of a lattice with 1 is said to be a proper element, if a ^ 1.

Definition 2.10: Maximal Element. [7]

A proper element m of a lattice is said to be maximal, if it is not 

contained properly in any another proper element.

Thus whenever m < x, we have either x = m or x = 1.

Result 2.11 : If S is a multiplicative lattice with 1 compact, then S contains 

maximal elements. [1]

Theorem 2.12 : Let a, b E L. Then a = b iff am = bm, for every maximal 

element m of L. [1]
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2. Weak Noether Lattices

Definition 2.13 : Prime Element.

A proper element p of a multiplicative lattice S is said to be a prime 

element of S, if fora,b E L,ab < p implies either a < porb < p. [9]

Obviously, every prime ideal of a commutative ring R is a prime 

element of L(R), the lattice of ideals of R.

In the example 1.34, the elements d and e are prime elements.

Evidently, we now have the following result which is abstract version 

of a very famous result: Every maximal ideal is a prime ideal in a commutative 

ring R with 1.

Result 2.14 : Every maximal element is a prime element, in a multiplicative 

lattice with 1 compact. [9]

Now analogous to the theorem 2.12 immediately we have the following 

result that we just note here.

Theorem 2.15 : Let a, b E L. Then a = b iff ap = bp, for every prime element p 

ofL. [1]

Obviously, converse need not be true. Since nonmaximal prime ideals
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2. Weak Noether Lattices

of a commutative ring R with unity are nonmaximal prime elements of the 

lattice L(R).

Now we recall a very important result that is useful extensively in the 

theory of multiplicative lattices. This result forms a natural abstraction of the 

result: Every principal ideal of a commutative ring R is compact. This fact is 

well discussed in the examples 1.20 and 1.9.

Result 2.16: Let L be a multiplicative lattice in which 1 is compact. Suppose a 

is a weak principal element of L. Then a va aa implies that a =

att|V.....Vaa , for some finite subset {a,,...... ,an}. [1]

This result implies directly the following fact that:

Result 2.17 : If L is compactly generated multiplicative lattice with 1 

compact, then every weak principal element and hence every principal 

element is compact in L. [1]

All these basic results lead us to the following important result.
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2. Weak Noether Lathees

Lemma 2.18: An element a E L is principal iff a is compact and ap is principal

in Lp, for every prime element p of L. [3]

Proof : Assume that, a is a principal element. Then by result 2.17, a is a 

principal element. Hence by proposition 2.8, for any x, we have (x:a) = xp:ap.

Consequently, by theorem 2.15, it immediately follows that, a satisfies the 

meet and join principal laws in L iff ap satisfies the same in L , for every prime

element p of L. Q. E. D.

Now we need to recall another result from [1] to prove a next result. 

This is the only simplest result which gives characterization of weak meet and 

weak join principal elements. Interestingly, under quite mild hypothesis weak 

principal elements are principal elements. First recall some basic concepts.

Definition 2.19: Interval.

In a lattice L, if a, b e L such that a < b, the interval a to b is the set a/b = 

[a,b]= { xe L/a<x<b }. [7]

Definition 2.20: Sublattice L/a. [9 ]

For any lattice L, the set L/a = {xeL/x>a}=[a, 1], is a lattice with 

respect to the binary operations defined on L and hence it is a sublattice of L.
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2. Weak Noether Lattices

Definition 2.21: Multiplicative Lattice L/a.

For a multiplicative lattice L, the lattice L/a is a multiplicative lattice 

with multiplication x°y = xyV a. [9]

If R is commutative ring with unity, then the lattice L = L(R) is a 

multiplicative lattice. Furthermore, if I is an ideal of the ring R, then the lattice 

of the quotient ring R/I is nothing but the quotient lattice L/I. Now we the 

following result.

Proposition 2.22: Let S be a multiplicative lattice and a E L. Then

(i) a is a meet (join) principal element implies a is a weak meet (join) 

principal element.

(ii) a is a weak meet principal element iff x < a implies x = ay, for some 

y€L.

(iii) a is a weak join principal element iff ax < ay implies that x < 

y V0:a, for some x,y E L.

(iv) a is join principal, then a is (weak) meet principal implies ax is 

(weak) principal in L/x.

(v) If L is a modular lattice, then a is principal iff a is weak principal.

[1]
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2. Weak Noether Lattices

Lemma 2.23 : Let S be a multiplicative lattice with 1 compact. Suppose d is a 

finite join of join principal elements in S. If d < bVcd, then cVb:d = 1. Hence 

ifd = cd,thencVO:d= 1. [2]

Lemma 2.24 : Let S be a join principally generated multiplicative lattice with 

1 compact. If every maximal element of S is a weak meet principal element, 

then every non-maximal prime element which is a finite join of join principal 

elements is a weak meet principal element. [3]

Proof: Assume that, every maximal element of S is a weak meet principal 

element. Let p be a non-maximal prime element which is a finite join of join 

principal elements.

Let a <p, for some a ES. •

Weshowthat,pVO:a= 1.

Suppose, if possible, p V0:a < 1. Then there exists a maximal element 

m E S such that p V0:a < m and hence both p, 0:a < m. As p is a non-maximal 

prime element, we have p < m. Now as m is a weak meet principal element, we

have p = p Am = m(p:m). But p is prime and m ^ p. Hence p:m < p. But by (x)

of property 1.7, we have p < p:m. So p = p:m.

This implies that, p = m(p:m) = mp. Consequently, by lemma 2.23, we
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2. Weak Noether Lattices

have m V0:p = 1. As a < p, we have by (iv) of property 1.7 that, 0:p < 0:a < m.

Hence 1 =mV0:p < m. This gives m= 1. Which is a contradiction to the 

fact that, m is a maximal element. This implies that, p V 0:a = 1.

Therefore a = a. 1 = a(p V0:a) - ap V a(0:a) = ap V 0 = ap.

Thus ap implies a = ap.

Consequently, by proposition 2.22, p is a weak meet principal element. 

This completes the proof. Q. E. D.

§3. WEAK NOETHER LATTICES.

In this section, we now study the concept of weak Noether lattices 

which are natural generalisation of the concept of Noether lattices and then 

using this concepts we study some equivalent condition for a weak Noether 

lattices.

Definition 2.25: Weak Noether Lattices. [3]

L is said to be a weak Noether lattice, if L is a weak r-lattice which 

satisfies the ascending chain condition.

Thus, weak Noether lattice is a Noether lattice iff it is a modular lattice. 

According to [1], if N = (N, +, .) is the semiring of non-negative
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2. Weak Noether Lattices

integers, then the lattice L(N) of all semiring ideals of N is a weak Noether 

lattice which is not a modular lattice. The fact that, L(N) is a non-modular 

lattice, follows from [20].

This shows that, a weak Noether lattice need not be a Noether lattice. 

Now we consider some special type of multiplicative lattices which are 

abstract version of quasi-loeal rings, obviously.

Definition 2.25: Quasi-local Lattices. [ 1 ]

A multiplicative lattice with 1 compact will be a quasi-local lattice, if it 

has unique maximal element.

If m is the only maximal element of a quasi-local lattice L, then such a 

lattice is denoted by (L, m).

Let us recall one more result which gives abstract version of Nakayama 

Lamma.

Theorem 2.26 : Let (L, m) be a quasi-local multiplicative lattice and suppose 

a is a finite join of join principal elements. Then for b and d £ 1, a < bvda 

implies a < b. In particular, ad = a implies d = 0.
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2. Weak Noether Lattices

Definition 2.27: Primary Element. [2]

An element q e L is said to be a primary element, if for compact

„ +
elements x, y with xy < q implies x< q or y < q, for some ne Z .

The concept, introduced by R. R Dilworth [9], is obviously the 

abstraction of primary ideals of a commutative ring.

Consider the lattice of ideals of the ring < Zl2, +,. > in which the only

ideals are 0 = (0), 1 = (1), a = (4), b = (6), c = (2) and d = (3).

The element a is a primary element. But, 0 is not a primary element,

since ad = 0 but neither a = 0 nor d" = 0, for any positive integer n. Note that, a 

and d are both idempotent elements in L.

From the definition of prime element, it is obvious that every prime 

element is a primary element. Converse need not be true. Since in the example 

1.26, a is primary element, but it is not a prime element

Further, if q is a primary element, then Vq is a prime element. Because,

for compact elements x and y such that xy < Vq, then x' y" = (xy)" < Vq, for

+■ . . n n m nm
some n G Z . As q is a primary element, either x < q or (y ) = y < q, tor 

some m G Z+. Consequently, x < Vq or y < Vq. Thus, Vq is a prime element.
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2. Weak Noether Lattices

From this it can be easily observed that, the condition x, y to be compact is 

necessary in the definition 2.27 of primary elements, which is not required in 

the definition of prime elements.

Definition 2.28: p-Primary Element. [2]

An element q 6 L is said to be p-primary element, if q is primary and Vq 

= p is a prime element.

In the above discussed example, the ideal (4) is a (2)-prime element, 

whereas 0 is not so.

Lemma 2.29 : Let L be a weak Noether lattice in which m is the only prime

oo n
element. Then for any proper elements a, c 6 L. A n =1(a V c) = c. In particular,

An~=1an = 0. [3]

oo n

Proof : Let b = An =1(a Vc). We first show that, b < cVcb. As m is the only

prime element, m must be the only maximal element, as every maximal 

element is a prime element. Thus L is a quasi-local lattice and every element of 

L is a m-primary element.

Now as L is a weak Noether lattice, we have a, b are compact elements
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2. Weak Noether Lattices

and hence they are finite join of join principal elements. Since ab < cVab and 

c V ab is a primary element, it follows that b < c V ab or a"<c V ab, for some n E

Z+. Hence, b < a” V c < c V ab. Thus, we have b < c V ab. Therefore by theorem

2.26, we have b < c. Of course, c < b. This gives that, b=c.

In particular, if we put c = 0, we have b = 0. This completes the proof of 

the theorem. Q.E.D.

We note the following important lemmas which we need.

Lemma 2.30: Let L be a multiplicative lattice and a, b E L. Then

(i) if a, b are join principal, then ab is so.

(ii) if a, b are meet principal, then ab is so.

(iii) if a, b are principal, then ab is so. [9]

°o n
Lemma 2.31: Let p be a non-maximal principal element of L and q = A n =1 p .

Then (i) q is prime, (ii) pq = q and (iii) any prime element properly contained in 

p is contained in q. [3]

These results leads us to understand the following important lemma.
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2. Weak Noether Lattices

Lemma 2.32 : Let L be a quasi-local weak Noether lattice. If the maximal 

element m of L is a principal element, then every non-zero element is a power

mk (k > 0) of m.

Proof: Assume that, the only maximal element m of L is a principal element

do n
of L. We first show that, An =1 m = 0. If m is the only prime element, then

oo n
directly by lemma 2.29, we have An =1 m =0. Suppose there exists some

prime elements in L which are different from the maximal element m. Then m 

is a non-maximal principal prime element of L. Consequently, by lemma 1.4,

oo n n
we have m(An =1m ) = m .

As L is the quasi-local weak Noether lattice, every element is a finite 

join of join principal elements and hence by theorem 2.26, we have

o® nAn =1m =0.

oo n
Thus, in any case, we have An =1m =0.

oo n n
Now let a * 0 € L. Then An =1 m < a. This implies that, a < m but

n*b 1 “f- n
a^m , forsomenGZ . Now as m is a principal element, we have m is also 

a principal element, by result 2.30. Consequently, m" is a weak meet principal
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2. Weak Noether Lattices

element and hence a = a A m" = mn(a:mn). Obviously, aim" = 1, since if a: m" < 1, 

then aim" < m, as (L, m) is a quasi-local lattice. This in turn implies that, a < 

m"+1, by property 1.7. But this is a contradiction. Thus aim" =1 and hence we

have a = m"(a:m") = m". 1 m
n

§4. PRINCIPAL ELEMENT LATTICES.

In this section, we study an equivalent condition for L to be a principal 

element lattice.

Definition 2.33: Principal Element Lattices.

A multiplicative lattice is said to be a principal element lattice, if every 

element of it is a principal element.

The lattice in the example 1.2 (i) is a principal element lattice.

We know that, each ideal of the ring of integers Z is a principal ideal. 

Thus, the lattice L(Z) of ideals of Z is an example of a principal element lattice.

However it is obvious that, the lattice in the example 1.34 is not a 

principal element lattices.

The following theorem gives an equivalent condition for L to be a 

principal element lattices. But for this we need to recall following result.
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2. Weak Noether Lattices

Result 2.34 : Let L be a compactly generated multiplicative lattice in which 

finite product of compact elements is compact. If L is join principally 

generated weak meet principal primes. Then Lisa principal element lattices.

Theorem 2.35 : L is a principal element lattice iff L is a weak Noether lattice 

in which every maximal element is a weak meet principal element. [3] 

Proof: Suppose L is a weak Noether lattice in which every maximal element 

is a weak meet principal element. Then by lemma 2.24, every non-maximal 

prime element which is a finite join of join principal elements is a weak meet 

principal element. Consequently, by result 2.34, L is a principal element 

lattice. Q.E.D.

Before proceeding further we now recall the following concepts, that 

we need in the study.

Definition 2.36: Divisors of Zero or Zero Divisor. [1]

Let L be a multiplicative lattice and a E L. Then a is called divisor of 

zero, if there exists a non-zero element b in L such that ab = 0.
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2. Weak Noether Lattices

Definition 2.37: Zero Annihilator. [ 1 ]

An element of a multiplicative lattice L is said to have zero annihilator, 

if0:a = 0.

Thus, an element a is said to have zero annihilator, if it is not a divisor of

zero.

Definition 2.38: Domain.

Let L be a multiplicative lattice. Then L is called a domain, if it is 

without divisors of zero. [ 1 ]

Obviously, the lattice L(Z) of the ideals of the ring of integers Z is a 

domain. Whereas the lattice L(Z,2) of ideals of Z12 is not a domain, as it

contains divisors of zero e. g., (4). (3) = 0.

It should be noted carefully that, if a multiplicative lattice L is a domain, 

then the element 0 is a prime element and 0:x = 0, for each x. Since whenever 

we have ab = 0 in a domain we have either a = 0 or b = 0.

Now we recall the following theorem from [ 1 ].

Theorem 2.39 : Let (L, m) be a quasi-local multiplicative lattice and suppose 

a is a join principal element in L and a finite join of principal elements each of 

which has zero annihilator. Then a is principal.
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2. Weak Noether Lattices

In particular, if a is a join principal and is finite join of principal 

elements, then a vp is principal in L/p, for every prime p of L. [ 1 ]

The following theorem is an extension of theorem 2 of [ 15 ].

Theorem 2.40: Suppose L is a domain and for every prime element p of L, Lp

is a weak Noether lattice. If every maximal element is compact and join 

principal, then every element is principal, i. e., L is a principal element lattice.

[3]

Proof : By theorem 2.39, it follows that every maximal element is locally 

principal and hence a principal element.

By lemma 2.32, it is clear that every prime element is nothing but a 

maximal element. Consequently, every prime element is a principal element.

Thus, every element is a principal element, since again by lemma 2.32, 

each element is a power of maximal element containing it and finite product of 

principal element is again a principal element, (see 2.30).

The following is an obvious corollary follows from the facts that, if 0 is 

a prime element, then no element of L is a zero divisor and hence L is a 

domain.

Secondly, if L is a weak Noether lattice, it satisfies the ascending chain
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2. Weak Noether Lattices

condition and consequently, each element of L is compact. Thus, the 

following corollary follows:

Corollary 2.41: If L is a weak Noether lattice in which 0 is a prime element 

and every maximal element is a join principal element. Then every element of 

Lisa principal element or L is a principal element lattice. [3]
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