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3. DEDEKIND DOMAINS

§ 1.INTRODUCTION.

In this chapter we study p-lattices, UFD lattices and Dedekind domains.
Also we study their characterization.

Throughout this chapter, L denotes a multiplicative lattice with 1
compact.

Before proceeding further, we need to prove following important

lemmas.

Lemma 3.1 : Leta be a weak principal elementof L ande € L withe:a=e. If
misa factorofa, then foranyc <m,cve=mdVe, forsomed € L. [3]
Proof : Assume that, misa factorofa. Thenmk =a, forsomek € L.

We first show that, forx,y € L, xk < ykimpliesx<yVe.

Let xk < yk, for some x, y. Then xmk < ymk, thatis, xa < ya. Asaisa
weak meet principal element, by proposition 2.22, we have x < yVv0:a. Butby
property 1.7, wehave0:a < e:a=e.Sowe getx <yVe.

Now assume that,c < m, forsomec € L. Thenck < mk=a. Asaisa
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3. Dedekind Domains

weak principal element, by proposition 2.22, we have ck = ad, for somed € L.
That is ck = mkd = mdk. Therefore by above argument, we have c < mdVeand
md < cVe. Hence we get cVe < mdVe < cVe. This implies that, cvVe =

mdVe. Q.E.D.

Lemma 3.2 : Let L be a join principally generated, quasi-local multiplicative

lattice. Let a be a weak principal element and q be a factor of a. Suppose that,

e:a= e, where e is a join principal elementand q= Vv x,. Ifq £ e, thenqVe =
X, Ve, for some o. [3]

Proof : Definea,=x, Ve, foreach o.. Thenby lemma 3.1, we havea, =x,Ve=
qdVe, forsomed € L. Thusqd < a,. Thatisd < a_:q, by property 1.7.So qd <
(a,:q9)q. Consequently, wehave a,=qdVe < q(a,:q) Ve. But again by property
1.7,(a,:q)q < a,. This implies that, (a :q)qVe <a,Ve=x,VeVe=x,Ve=a,
Thus, a, = (a,:q)qVe. Now note that, qvVe=( V x,)Ve=V, (X, Ve)=V a, =
Vala@q)vel= Vv, [a@gs]ve=ql Vi (a,q)] Ve.

We now show that,qVe=x_Ve, for some a..

Ifv, (a,;:q)=1,thenqVve=x Ve, forsome a.

Suppose V, (a,:q) < 1. As L is a quasi-local lattice, let m be the only
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3. Dedekind Domains

maximal element of L. Then V_(a,:q) < m. Hence, q[ V (a,:q)] < qm and
hence qVve <q[ V(a:a)le <qmVe.

Thus, qVe < gqmVe. But qm < q and hence qmVe < qVe. This gives
gmVe=qVe.

Now let b be a join principal element of L such thatb < q. Puta*=bVe.
Then a* =q(a*:q)ve=[(qVe)(a*:q)] Ve =[(gmVe)a*:q)] Ve =m(a*:q)qVve
<ma*Ve.

As b and e are principal elements and a* is a finite join of join principal
element, by theorem 2.26, we have a* < e and so b < e. Consequently, q < e,

which is a contradiction.

Therefore qve=x_,Ve, for some . Q.E.D.

§ 2. n-LATTICES.
Now we need to recall following concepts for the development of the

further theory.

Definition 3.3 : Minimal Prime Element over an element. [1]
Leta € L. Then a prime element p € L is said to be a minimal prime
element over a, if a < p and whenever there is a prime elementq € L withx <

q<p,wehavep=q.
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3. Dedekind Domains

Definition 3.4 : Minimal Prime. [1]
A prime element p € L is said to be a minimal prime element ( of L), if p

1s aminimal prime element over 0.

Definition 3.5 : Dimension. [2]
Let pbe aprime element of L. We say that, p has dimension n, if nis the
suprimum of the lengths of the chains of distinct proper primes grater than p.
Where as the dimension of L is defined as dimension of minimal prime
element of L or dimension of 0, 1f 0 1s prime.

Thus,dimL=sup {n € z7/0< Po<P; <o <p, <1, p;'s are prime

elementsinL }

Definition 3.6 : Join Irreducible Element. [1]

An element a € L is said to be join irreducible, if a = a,Va, implies

eithera=a, ora=a,.

Definition 3.7 : Completely Join Irreducible Element. [1]

Anelementa € L is said to be a completely join irreducible element, if

a=V,_a,impliesthata=a, , for someq.

(644
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3. Dedekind Domains

We know that, a ring is said to be a n-ring, if every principal ideal is a

product of prime ideals.

We now see an abstraction of this concept.

Definition 3.8 : m-Lattice. [1]

L is said to be a m-lattice, if there exists a set S of elements of L (not

necessarily of principal elements) which generate L under joins such that

every element of S is a finite product of prime elements of L.

The concept of m-lattices is first introduced in multiplicative lattices by
D.D. Anderson[1]in 1976.
Obviously, every m-ring is an example of t-lattice.

Further, let N=<N, +, . > be the semi-ring of nonnegative integers. Let

L be the lattice of semi-ring ideals of N and S be the set of principal ideals of

N. Then N is a non-modular quasi-local 7-lattice. [3]

Now we turn to the following important result.

Theorem 3.9 : Let L be a quasi-local weak r-lattice with maximal element m.

If L is amt-lattice, then either L is a domain or L has only finitely many minimal
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prime elements and every prime element is the join of the minimal prime
elements contained in it. [3]
Proof: If dim L =0, then we have nothing to prove.

Assume that, dim L > 0.

Then L contains a finite number of minimal primes P,, P,, ...., P, such

that m £ P,, P,, ---, P,. Note that, as L is a n-lattice, there exists a set S of

elements of L which generates L under joins such that every element of Sis a
finite product of prime elements. Thus, if X € L is a principal element, then we

have x=V_x,, X, € S.Ifx is completely join irreducible, then obviously x =

X, for some x, € S. Consequently, x itselfis a product of primes. Thus every

principal element which is completely join irreducible is a product of primes.

Hence further note that, each p, is a principal element.

Suppose L is not a domain.

Letqbe aprime elementof L and letp,, p,, -, p. <q (I<m < n).
We show thatq= Vv im=1 ;-

Suppose, if possible \/im,1 p; <q. As L is principally generated, there

exists a principal element a < qsuch thata £ p; foreachj=1,2, --, m. Define
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3. Dedekind Domains

e = p;A---Ap,, Then we have e:a = (p,A---Ap,):a = p,:aA ---- Ap_:a, by

property 1.7. Note that foreachj =1, --,n, we have p;: a=p;. Since, ifx < p;: a,

we have xa <p; and hence x < p;, asa£ p;. This shows thatp; : a <p,. Thatis
p;:a=p;, by property 1.7. Hence,e:a=p,A p, A--- Ap,,=e.

Now assume that, a=q,...q, for some prime elements q,, ---,q, €L. As
a<qand q1s a prime element, we have q;< q, for some 1, say q, < q. Now as p;'s
are the only finite number of minimal prime elements, and q, is prime, we have
p; < q, forsomej=1,2,---, n. Again for the sake of convenience, say p,< g,

Alsonotethate< p,and hence p,=p, Ve.

Now by lemma 2.1, we have p, =p, Ve =q,d Ve, for some d€ L. Thus

q,d=< p,. Also note that, p, <q,. Since, if p, = q,, we have a< q, =p,, which is a

contradiction to the fact thata£ p,. Thus, q,d<p, and p;<q, i.e., q; £ p;. Asp,

is prime, we have d<p, and hence p,= q,dVve < q,p,Ve. Therefore by
Theorem 2.26, we have p, < e. Ase=p;A ----- A Py, < Dy, We getp, =e. Thus,
p, =e=e¢:a=p,: a. But p,;:a=a. Thus, p, =a < q. This shows that q contains
only one minimal prime element. Let us say it is nothing but p,. Hence by

lemma2.2,q,=q, Vp,=x, Vp,, for some principal element x , < q,.
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We now claim that, g, = x,,.

AsL isamn-lattice, X, =55,.....s,, for some prime elements s, ---,s. € L.
Since q, =x, Vp,, we have x, < q,. As q, 1s prime, we have s, < q, for some 1,
say s, < q,. Butp, is the only minimal prime element contained in q,. It follows
that,p, <s,and hence q, =x,Vp, <s,Vs,=s,. Thisimpliesthatq, =s,.

Therefore, x,=s,....... $,=q,S,......5,=q,d, forsomed € L. Again,asq, =
X, VP, =q,dVp,andq, >p,, by theorem 2.39, we have d = 1. This shows that,
q=x

Now as p, <q, and q, is a weak meet principal element, we get p, =
p,Aq, = q,(p,:q,)- But p;:q, = q,. Hence we have p,=q,p,. Consequently, by
2.26, we have p, =0. This implies that, 0 is a prime element.

Thus, whenever ab =0, we have eithera=0 orb=0. Which shows that,
0:x =0, for every x in L. That is L is a domain. Which contradicts to the fact

that, L is not a domain.

Thus,q=V i"= . P Thus every prime element is the join of minimal

prime elements.

Thus, now we have following obvious corollary.
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Corollary 3.10 : Let L be a quasi-local weak r-lattice. [f L is a mt-lattice, then L

is either a domain or L has only finitely many prime elements and every prime
element is compact.
Proof : In virtue of theorem 3.9, we have either L is a domain or L has only
finitely many minimal prime elements and every prime element is the finite
join of the minimal prime elements which are principal elements (refer to the
proof of the above theorem). But by 2.17, each principal element is compact,
as L 1s compactly generated.

Consequently, every prime element is compact, as every finite join of

compact elements is compact.

§3. UFD LATTICE.

Now we study the concept of UFD lattices.

Definition 3.11 : UFD Lattice.
A principally generated multiplicative lattice domain is said to be a

UFD lattice, if every principal element )ﬂ‘g product of principal primes.

The concept of a UFD Lattice is introduced by D. D. Anderson [1] in
1976, as an abstract concept of the lattice of ideals of UFD ring (by UFD we

mean Unique Factorization Domain).
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3. Dedekind Domains

According to [1], if R is a commutattive domain ring, then the lattice
L(R) ofideals of R can be UFD without R being a UFD.

For example, for any Dedekind domain R, L(R) is a UFD lattice. In fact,
L(R)isaUFDifR is an-domain.

Many results on UFD lattices are discussed in [1], of which some of

them we need recall here.

The following theorem has already been proved by D. D. Anderson in
[1] but in r-lattice. As pointed out by D. D. Anderson and C. Jayaram in [3]
(see 2.7), this result is also valid in weak r-lattices, as it does not require the
condition of modularity. Let us study this result.

But, before proceeding further we need to recall following result form
[1], which is proved by D. D. Anderson in 1976, but in r-lattices. Later on the
generalisation of this result is given by N. K. Thakare, C. S. Manjarekar and S.
Maeda [16] in 1988, but in compactly generated multiplicative lattices. This
generalisation is now very famous by the name "Separation Lemma". We

recall here the result from [1].

Theorem 3.12 : Let L be an r-lattice and let S be a sub-multiplicatively closed

subset of L. Suppose a € L and t £ a, for every t € S. Then there exists an
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element b £ a maximal with respect to the property thatt £ b, foreveryt € S.

Further, any such b is a prime element. [1]

As pointed out by D. D. Anderson and C. Jayaram in [3], this result still
holds good in weak r-lattices, as it does not require the condition that the

lattice to be modular.

Theorem 3.13 : Let L be a weak r-lattice. Then L 1s a UFD iff every non-zero
prime of L contains a non-zero principal prime. [3]
Proof : Assume that, L is a UFD lattice. Let p be a non-zero prime element. As
L is generated by principal elements, there exists a non-zero principal element
x € L such that x< p. As L is UFD, x = p,p, .... p, Where p,'s are nonzero
principal prime elements.

Thus, as p is prime, p,< p, for some 1. This shows that, every non-zero
prime of L contains a non-zero principal prime.

Conversely, assume that, every non-zero prime of L contains a non-
zero principal prime.

Define, S={0=#x € L/x1saproductofprincipal primes }.

As L is adomain, S # & and we have S is a multiplicatively closed set.
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Obviously 0 ¢ S. Thus by Theorem 3.12, there exists a prime element p

maximal withrespecttot £ p, foreacht € S.

By assumption, if p is a nonzero prime element, then p must contain a

non-zero principal prime element, which contradicts to the fact that p ¢ S.

Therefore p=0.

Thus, 0(= p) is such a largest element. This implies that, if x > 0 is a
principal element, then x must contain a nonzero principal element y&€S such
thaty is a product of principal primes.

Let x€L be non-zero principal element. Then x 2p,p, ..... p,, where p,'s

are principal prime elements. Now as x is weak meet principal, by proposition

2.22,wehavexa=p,....p,forsomeac L.

Ifn=1, wehave xa=p, and hence p,< x, a (by property 1.7 ). Butasp, is
prime, either x< p, ora <p,. This gives eitherx=p, ora=p,.

If x=p,, then we are through.

Now ifa=p,, then xp, =p, and hence again by proposition 2.22, we have
1 =xVO0:p,. As L is a domain, 0: p, = 0. Which gives x = 1. Which is a trivial

case.

Thus forn=1, the result is clear.
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Now supposen> 1. Thenxa=p,...p,< p,and asp, is prime, say a< p,.
Then as p, is principal, a=bp,, for some a€ L. Hence p, p. ....... p, = xa =xbp,
and hence xb =p, ...... p.- Thus by induction on x, we have xz = p, for some

zeL. Consequently we have the result.

Corollary 3.14 : Let L be a weak r-lattice. Then L isa UFD iff L is a t-domain.

[3]
Theorem 3.15 : Suppose L is a principally generated multiplicative lattice
domain. Then L is a UFD lattice iff every principal element is a product of
prime elements of L. [3]

Proof: obvious.

Letusrecall some more concepts.

Definition 3.16 : Proper Element. [7]

Anelement aofL is said to be a proper element, ifa# 1.

Definition 3.17 : Non - Trivial Element. (3]

AnelementaofL issaidtobeatrivial element, ifa= 0, 1.
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Now we have the following result.

Theorem 3.18 : Suppose L is a principally generated. If L is a UFD and every
non-trivial prime element is maximal, then every element is principal.  [3]
Proof : We first show that, every non-trivial prime element is a principal
element.

Let p be a nontrivial prime element. Let a< p be a non-zero principal

element. As L isa UFD lattice,a=p, ... p,, where p,'s are principal primes. As a

isnon-zero and L is a domain, we must have each p, # 0. Hence by assumption,
each p, is maximal.

Also note that a =p, ... p, <p and p is prime. Hence p,< p for some 1.
Consequently, p, = p, as p, 1s a maximal element. This shows that p is a

principal element.
Let a€ L. Ifa=1, we have nothing to prove. Assume that,a< 1. Then
a < m, for some maximal element m € L. Then m is principal and hence by

proposition 2.22. We have a=mb, forsomeb €L. Q.E.D.

Theorem 3.19 : Suppose L is principally generated. If L is a domain in which
every non-trivial principal element of L is the product of a finite number of
maximal elements, then every element is principal. [3]

Proof : Let p be a non-trivial prime element. Then there exists a nonzero
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principal elementa<p.

By hypothesisa=p,..... p,, where p,'s are maximal elements of L. Then
as a =p,..p, <p we must have p,< p, for some 1. Consequently as p, is
maximal, p=p, say p=p,. Thusa=pp,...p,=p(p, ... p,)- Thatis p is a factor of

a. Hence by Lemma 2.2, p is principal.

§4. DEDEKIND DOMAIN.

In this section, we study Dedekind domain. Firstrecall the definition.

Definition 3.20 : Dedekind Domain [3]
A domain L is a Dedekind domain, if every element of L is a finite

product of prime elements.

We will see that, if L is a Dedekind domain, if every element of L is a

finite product of prime elements.

Lemma3.21:Fori=1,2,..,k, let p,be a weak join principal non-trivial prime
elementofadomain L. Leta=p, ... p,. Then this is the only way of writing the

element a as a product of non-trivial prime elements of L except for the order
ofthe factors. [3]

Proof:Leta=q, ..... q, where g's are nontrivial prime elements of L. Without
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loss of generality, assume p, is minimal among p,, ... p,. Since q,q,....q,< p, and
p, is prime, we have g, <p,, for some i, say q, < p,. Since p, p,.... p < q;, Wwe have
p; =q,, for somejand hencej=1. Thus p, =q, .Againsincep, p,...p,=pq, ---q,
and p, is weak join principal , we get p,...p,= p, ...p,. Continuing like this we

eventually getn=k andj<k.

Lemma 3.22 : Suppose L is principally generated. If L is a domain in which
every nontrivial principal element of L is the product of a finite number of
maximal elements, then every element is principal. That is L is a principal

element lattice. [3]

Proof : Assume that, p< (pVa)’,a£p, pisprime.

Then p < (pVa)(pVa) = p’VpaVapVva' = p'Vpava’ = p’Va(pVa).
Hence by property 1.7, [ p’Va(pVa)]:p=1.

As p is principal, 1 = pV[a(aVp):p]. Also a(aVp):p = (a’Vap)p =
ava’:p, due to principality of p. Therefore, we have 1 = pV[ava’p] =
pVava’p.

We now show thata’: p<a.Letx<a’:p. Thenxp<a’ Hencexp < a.Asa

is weak meet principal, xp =ad, forsome d € L. Thus, ad <p. Butas p is prime

andd£p, wehaved<p. Thus xp=ad <ap.
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That is x< ap:p. As p is a weak join principal element and x< ap:;p =
aV0:p=aV0=a,asLisadomain. This implies thata’:p< a.

Consequently, 1 =pVaVva’p=pVa. Q.E.D.

Theorem 3.23 : Suppose L is principally generated. If L is a Dedekind domain
then every non-trivial prime element of L is a maximal element.
Proof: Assume that, L is a Dedekind domain.

First we show that, every principal nontrivial prime element of L is
maximal.

Let p be a non-trivial principal prime element.

Suppose, if possible, p is not maximal. Then p < m, for some maximal

elementm € L. As L is principally generated, there exists a principal element

a £ psuchthata < m. AsLisaDedekind domain, wehavepVva=p,...p,and

pva'=q,...q,, where p,'s and q,'s are non-trivial prime elements of L.
Leti=pVa=p,p,...p,V p, ¥=pVa’'=q,q,..q,V p.
Note that, forxv p; yVpL/p,wehave (xVp)e(yVp)=(xVpXyVp) Vp

=Xy VXpVypVp Vp=XyVp,asxp,yp,p'< p.

Thus, we have @ =9,0p,> ......op, and 8*=q,0q,0.....0q9 , where p,=p,Vp

and 4,=q,Vp.

64



3. Dedekind Domains

Obviously, asa£p, d#0=p. Also by Proposition 2.22 (4), we have 3, 3

are weak join principal elements in L/p.

We show L/p is domain. LetxVp,yVp €L/p. Suchthat(xVp)e(yVp)=
&=p. Thenp = (xVp)e(yVp)V p=xyVxpVypVp'Vp=xyVp. Thus xy<p.
As p is prime either x<p or y<p. Consequently xVp=poryVp=p. Thus, L/p
is adomain.

Claim: Ifa# 0 isaweak join principal element in a domain L, then its

factor is weak join principal element.
Proof: Let bbefactorofa. Thena=bk forsomek €L.

Let x €L. We have to show xvV0: b=xb :b. AsLisa
domain, we have only to show x =xb:b.

Let z<xb:b. Then zb< xb. Consequently, zkb <xkb.
Hence za< xa. This gives, z< xa:a = xV0:a, as a is join
principal. Thus as 0:a = 0, we have z<x. This implies that,
xb:b<x. But by property 1.7, x< xb : b. Hene x = xb : b.
Hence the claim.

Therefore by afore-proved claim, each p, and each q; are weak join
principal elements. Now note that, 42 = p,20p,%0 ...... op,2=79,04,0.....0q . Hence
by Lemma 3.21, n =2k and we may number q;so thatfori=1, ...k, q,,, =q, =
p. Thus (pVa)’ =pVva’.
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This gives, p< (pVa)’. But note that, a£p. Hence by lemma 3.22, we

havepVva=1.Consequently, | =pVa<m, i.e.,m= 1, whichis a contradiction
to the fact that m is a maximal element.

This shows that, every principal nontrivial prime element of L is a
maximal element.

Now we show that, every nontrivial prime element is maximal.

Let p be a non-trivial prime element. Then there exists a nonzero

principal element a<p. As L is a Dedekind domaina=p, .... p,, where p;'s are

nontrivial prime elements. Since L is a domain and a 1s a principal element, by

Lemma 2.2, each p, is principal and hence a maximal element.
As a = p, ... p, <p, we have some p,<p. Consequently, due to

maximality of p, p is maximal. Thus completes the proof. Q.E.D.

Theorem 3.24 : Suppose L is principally generated. If L i1s a Dedekind
domain, then every principal element is principal. [3]
Proof : Assume that, L is a Dedekind domain. By theorem 3.23, we have every
nontrivial prime element is a maximal element. As L is a Dedekind domain,
every element of L is a finite product of prime elements. Hence, by theorem
2.23, every element of L is a finite product of maximal element.

Consequently, by theorem 3.22, every element of L is a principal

element. Q.E.D.
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