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3. DEDEKIND DOMAINS

§1. INTRODUCTION.

In this chapter we study p-lattices, UFD lattices and Dedekind domains. 

Also we study their characterization.

Throughout this chapter, L denotes a multiplicative lattice with 1 

compact.

Before proceeding further, we need to prove following important 

lemmas.

Lemma 3.1 : Let a be a weak principal element of L and e E L with e:a = e. If 

mis a factor of a, then for any c < m,cve = mdve, for some d E L. [3] 

Proof: Assume that, m is a factor of a. Then mk = a, for some k E L.

We first show that, for x,y E L, xk < yk implies x<yVe.

Let xk < yk, for some x, y. Then xmk < ymk, that is, xa < ya. As a is a 

weak meet principal element, by proposition 2.22, we have x < y v0:a. But by 

property 1.7, we have 0:a < e:a = e. So we getx < y Ve.

Now assume that, c < m, for some c E L. Then ck < mk = a. As a is a
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3. Dedekind Domains

weak principal element, by proposition 2.22, we have ck = ad, for some d G L. 

That is ck = mkd = mdk. Therefore by above argument, we have c < md V e and 

md < cVe. Hence we get cVe < mdVe < cVe. This implies that, cVe = 

mdVe. Q.E.D.

Lemma 3.2 : Let L be a join principally generated, quasi-local multiplicative 

lattice. Let a be a weak principal element and q be a factor of a. Suppose that,

e:a = e, where e is a join principal element and q = Va xa. If q ^ e, then qVe = 

xaVe,forsomea. [3]

Proof: Define aa = xa V e, for each a. Then by lemma 3.1, we have aa = xa V e = 

qd Ve, for some d G L. Thus qd < aa. That is d < aa:q, by property 1.7. So qd < 

(aa:q)q. Consequently, we have aa = qd V e < q(aa:q) V e. But again by property 

1.7, (aa:q)q < aa. This implies that, (aa:q)qVe < aaVe = xaVeVe = xaVe = aa. 

Thus,aa = (aa:q)qVe.Now note that,qVe = ( Vaxa)Ve= Va(xaVe)= Vaaa = 

Va [q(aa;q) Ve] = Va Ve = q[ Va(aa:q)] Ve-

We now show that, q Ve = xa Ve, for some a.

If Va (aa:q) = 1, then q V e = xa Ve, for some a.

Suppose Va (aa:q) < 1. As L is a quasi-local lattice, let m be the only
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3. Dedekind Domains

maximal element of L. Then Va (aa:q) < m. Hence, q[ V(t(aH:q)] < qm and 

hence qVe < q[ v(a:a)]e < qmVe.

Thus, qVe < qmVe. But qm < q and hence qmVe < qVe. This gives 

qmVe^qVe.

Now let b be a join principal element of L such that b < q. Put a* = b Ve. 

Then a* = q(a*:q)Ve = [(qVe)(a*:q)] Ve = [(qmVe)(a*:q)] Ve = m(a*:q)qVe 

< ma*Ve.

As b and e are principal elements and a* is a finite join of join principal 

element, by theorem 2.26, we have a* < e and so b < e. Consequently, q < e, 

which is a contradiction.

Therefore qVe = x«ve, for some a. Q.E.D.

§ 2. Jt-LATTICES.

Now we need to recall following concepts for the development of the 

further theory.

Definition 3.3: Minimal Prime Element over an element. [ 1 ]

Let a E L. Then a prime element p E L is said to be a minimal prime 

element over a, if a < p and whenever there is a prime element q E L with x < 

q < p, wehavep = q.
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3. Dedekind Domains

Definition 3.4: Minimal Prime. [ 1 ]

A prime element p G L is said to be a minimal prime element (of L), if p 

is a minimal prime element over 0.

Definition 3.5: Dimension. [2]

Let p be a prime element of L. We say that, p has dimension n, ifn is the 

suprimum of the lengths of the chains of distinct proper primes grater than p. 

Where as the dimension of L is defined as dimension of minimal prime

element of L or dimension of 0, if 0 is prime.
+

Thus, dim L = sup { n G Z / 0 < p0 < p, <.......< pn < 1, p/s are prime

elements in L}

Definition 3.6: Join Irreducible Element. [ 1 ]

An element a G L is said to be join irreducible, if a = a,va2 implies

either a = a, ora=^a2.

Definition 3.7: Completely Join Irreducible Element. [ 1 ]

An element a G L is said to be a completely join irreducible element, if

a = Va aa implies that a = a(i, for some a.

51



3. Dedekind Domains

We know that, a ring is said to be a Tt-ring, if every principal ideal is a 

product of prime ideals.

We now see an abstraction of this concept.

Definition 3.8: ru-Lattice. [ 1 ]

L is said to be a 7t-lattice, if there exists a set S of elements of L (not 

necessarily of principal elements) which generate L under joins such that 

every element of S is a finite product of prime elements of L.

The concept of 7i-lattices is first introduced in multiplicative lattices by 

D. D. Anderson [ 1 ] in 1976.

Obviously, every 7i-ring is an example of 7t-lattice.

Further, let N = < N, +,. > be the semi-ring of nonnegative integers. Let 

L be the lattice of semi-ring ideals of N and S be the set of principal ideals of

N. ThenN is a non-modularquasi-local Tt-lattice. [3]

Now we turn to the following important result.

Theorem 3.9 : Let L be a quasi-local weak r-lattice with maximal element m. 

If L is art-lattice, then either L is a domain or L has only finitely many minimal
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prime elements and every prime element is the join of the minimal prime 

elements contained in it. [3]

Proof: If dim L = 0, then we have nothing to prove.

Assume that, dim L > 0.

Then L contains a finite number of minimal primes P„ P2,...., Pn such

that mg Pt, P2, —, Pn. Note that, as L is a 7t-lattice, there exists a set S of

elements of L which generates L under joins such that every element of S is a 

finite product of prime elements. Thus, ifx G L is a principal element, then we 

have x = vaxa, xae s. If x is completely join irreducible, then obviously x =

xa for some xa G S. Consequently, x itself is a product of primes. Thus every

principal element which is completely join irreducible is a product of primes. 

Hence further note that, each p, is a principal element.

Suppose L is not a domain.

Let q be a prime element ofL and let p,,p2,—,pm <q (1 < m < n).

We show that q = V jm=, ,

Suppose, if possible V|m=i Pi < q- As L is principally generated, there 

exists a principal element a < q such that a g pj for each j = 1,2, —, m. Define

53
BARR. BAtASAHEB KHARDEKAR LIBRARY

SHIVAJi iiMiVERSHY, KOLHAPUR.



3. Dedekind Domains

e = pj A—Apm. Then we have e:a = (p, A—Apm):a = p,:aA — Apm:a, by 

property 1.7. Note that for each j = we havepji a = pj. Since, ifx < pj: a,

we have xa <pj and hence x < p^asa^ pj. This shows that pj : a <pj. That is

pj:a=pj, by property 1.7. Hence, e: a=p, A p2 A— Apm = e.

Now assume that, a = qj...qk for some prime elements q,,—,qk EL. As 

a<q and q is a prime element, we have qj< q, for some i, say q, < q. Now as p/s 

are the only finite number of minimal prime elements, and q2 is prime, we have 

Pj < q, for some j = 1,2, —, n. Again for the sake of convenience, say p, < q, 

Also note that e < p, and hence p, = p, v e.

Now by lemma 2,1, we have pj = p, Ve = q,dVe, for some dE L. Thus 

qxd< pr Also note that, pj <q,. Since, if pj = q1? we have a< qj = p1? which is a

contradiction to the fact that a< pr Thus, qjd<pj and px<q, i.e., qj £ pj. As p, 

is prime, we have d<p, and hence p,= qjdVe < qjPjVe. Therefore by

Theorem 2.26, we have p, < e. As e = pj A-----Apm< p1? we get p, = e. Thus,

p, = e = e:a = p,: a. But p,:a = a. Thus, p, = a < q. This shows that q contains 

only one minimal prime element. Let us say it is nothing but p,. Hence by 

lemma 2.2, q,= q, Vp, = xa Vp„ for some principal element xa < q,.
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We now claim that, q, = xa.

As L is a 7i-lattice, xa = s,s2 sr, for some prime elements s„ —, sr E L.

Since q, = xa Vp„ we have xa < q,. As q, is prime, we have s8 < q, for some i,

says, < q,. Butp, is the only minimal prime element contained in q,. It follows 

that, p, < s, and hence q, = xuVp, < s. Vs, = s,. This implies that q, = s,.

Therefore, xa = s,...... s, =q,s2...... sr = q,d, for some d E L. Again, as q, =

xaVp, =q,dvp,, and q. >Pi, by theorem 2.39, we have d = 1. This shows that, 

q,=x.

Now as p, < q| and q, is a weak meet principal element, we get p, =

p, Aq, = qj(pt:q,). But p,:q, = q,. Hence we have pt =q,p,. Consequently, by

2.26, we have p, — 0. This implies that, 0 is a prime element.

Thus, whenever ab = 0, we have either a = 0 or b = 0. Which shows that, 

0:x = 0, for every x in L. That is L is a domain. Which contradicts to the fact 

that, L is not a domain.

Thus, q = V "= , pj. Thus every prime element is the join of minimal 

prime elements.

Thus, now we have following obvious corollary.
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Corollary 3.10 : Let L be a quasi-local weak r-lattice. If L is a n-lattice, then L 

is either a domain or L has only finitely many prime elements and every prime 

element is compact.

Proof: In virtue of theorem 3.9, we have either L is a domain or L has only 

finitely many minimal prime elements and every prime element is the finite 

join of the minimal prime elements which are principal elements (refer to the 

proof of the above theorem). But by 2.17, each principal element is compact, 

as L is compactly generated.

Consequently, every prime element is compact, as every finite join of 

compact elements is compact.

§3. UFD LATTICE.

Now we study the concept of UFD lattices.

Definition 3.11: UFD Lattice.

A principally generated multiplicative lattice domain is said to be a 

UFD lattice, if every principal element product of principal primes.

The concept of a UFD Lattice is introduced by D. D. Anderson [1 ] in 

1976, as an abstract concept of the lattice of ideals of UFD ring (by UFD we 

mean Unique Factorization Domain).
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According to [1], if R is a commutattive domain ring, then the lattice 

L(R) of ideals of R can be UFD without R being a UFD.

For example, for any Dedekind domain R, L(R) is a UFD lattice. In fact,

L(R) is a UFD if R is aft-domain.

Many results on UFD lattices are discussed in [1], of which some of 

them we need recall here.

The following theorem has already been proved by D. D. Anderson in 

[1] but in r-lattice. As pointed out by D. D. Anderson and C. Jayaram in [3] 

(see 2.7), this result is also valid in weak r-lattices, as it does not require the 

condition of modularity. Let us study this result.

But, before proceeding further we need to recall following result form 

[1], which is proved by D. D. Anderson in 1976, but in r-lattices. Later on the 

generalisation of this result is given by N. K. Thakare, C. S. Manjarekar and S. 

Maeda [16] in 1988, but in compactly generated multiplicative lattices. This 

generalisation is now very famous by the name "Separation Lemma". We 

recall here the result from [ 1 ].

Theorem 3.12 : Let L be an r-lattice and let S be a sub-multiplicatively closed 

subset of L. Suppose a G L and t ^ a, for every t G S. Then there exists an
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3, Dedekind Domains

element bia maximal with respect to the property that t £ b, for every t G S. 

Further, any such b is a prime element. [ 1 ]

As pointed out by D. D. Anderson and C. Jayaram in [3], this result still 

holds good in weak r-lattices, as it does not require the condition that the 

lattice to be modular.

Theorem 3.13 : Let L be a weak r-lattice. Then L is a UFD iff every non-zero 

prime of L contains a non-zero principal prime. [3 ]

Proof: Assume that, L is a UFD lattice. Let p be a non-zero prime element. As 

L is generated by principal elements, there exists a non-zero principal element 

x G L such that x< p. As L is UFD, x = p,p2 .... pn where p/s are nonzero 

principal prime elements.

Thus, as p is prime, p;< p, for some i. This shows that, every non-zero 

prime of L contains a non-zero principal prime.

Conversely, assume that, every non-zero prime of L contains a non­

zero principal prime.

Define, S={0*xGL/xisa product of principal primes}.

As L is a domain, S £ 0 and we have S is a multiplicatively closed set.
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Obviously 0 $ S. Thus by Theorem 3.12, there exists a prime element p

maximal with respect to t :£ p, for each t E S.

By assumption, if p is a nonzero prime element, then p must contain a

non-zero principal prime element, which contradicts to the fact that p f S. 

Therefore p = 0.

Thus, 0(= p) is such a largest element. This implies that, if x > 0 is a 

principal element, then x must contain a nonzero principal element yES such 

that y is a product of principal primes.

Let xEL be non-zero principal element. Then x >p,p2.... pn, where p/s

are principal prime elements. Now as x is weak meet principal, by proposition 

2.22, we have xa = p, ....pn for some aE L.

Ifn= 1, wehavexa = p, and hence p, < x, a (by property 1.7). But asp, is 

prime, either x< p, or a —Pi* This gives either x = p, or a=p,.

If x = p„ then we are through.

Now if a = p,, then xp, = p, and hence again by proposition 2.22, we have 

1 = xVO: p,. As L is a domain, 0: p, = 0. Which gives x = 1. Which is a trivial 

case.

Thus for n = 1, the result is clear.
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Now suppose n> 1. Thenxa^p, ...p„< p, and asp, is prime, say a< p,.

Then as p, is principal, a = bp,, for some aE L. Hence p, p:...... p„ = xa = xbp,

and hence xb = p2..... pn. Thus by induction on x, we have xz = pn for some

zEL. Consequently we have the result.

Corollary 3.14: Let L be a weak r-lattice. Then Lisa UFD iff L is a 7t-domain.

[3]

Theorem 3.15 : Suppose L is a principally generated multiplicative lattice 

domain. Then L is a UFD lattice iff every principal element is a product of

prime elements of L. [3]

Proof: obvious.

Let us recall some more concepts.

Definition 3.16: Proper Element. [7]

An element a of L is said to be a proper element, if a ■*-1.

Definition 3.17: Non - Trivial Element. [3]

An element a of L is said to be a trivial element, if a ^ 0,1.
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Now we have the following result.

Theorem 3.18 : Suppose L is a principally generated. If L is a UFD and every 

non-trivial prime element is maximal, then every element is principal. [3] 

Proof : We first show that, every non-trivial prime element is a principal 

element.

Let p be a nontrivial prime element. Let a< p be a non-zero principal 

element. As L is a UFD lattice, a = p,... pn, where p,'s are principal primes. As a

is non-zero and L is a domain, we must have each p, * 0. Hence by assumption, 

each Pj is maximal.

Also note that a = p, ... p„ <p and p is prime. Hence p,< p for some i. 

Consequently, Pj = p, as p, is a maximal element. This shows that p is a 

principal element.

Let a E L. If a = 1, we have nothing to prove. Assume that, a < 1. Then 

a < m, for some maximal element m 6 L. Then m is principal and hence by 

proposition 2.22. We have a = mb, for some b EL. Q. E. D.

Theorem 3.19 : Suppose L is principally generated. If L is a domain in which 

every non-trivial principal element of L is the product of a finite number of 

maximal elements, then every element is principal. [3]

Proof : Let p be a non-trivial prime element. Then there exists a nonzero
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principal element a<p.

By hypothesis a = p, p,, where p,'s are maximal elements of L. Then

as a = p,_pn <p we must have P;< p, for some i. Consequently as P; is

maximal, p = p„ say p = p,. Thus a = p,p2... pn = p (p,... pn). That is p is a factor of 

a. Hence by Lemma 2.2, p is principal.

§ 4. DEDEKIND DOMAIN.

In this section, we study Dedekind domain. First recall the definition.

Definition 3.20: Dedekind Domain [3]

A domain L is a Dedekind domain, if every element of L is a finite 

product of prime elements.

We will see that, if L is a Dedekind domain, if every element of L is a 

finite product of prime elements.

Lemma 3.21: For i = 1,2,.., k, let p, be a weak join principal non-trivial prime 

element of a domain L. Let a = p,... pk. Then this is the only way of writing the 

element a as a product of non-trivial prime elements of L except for the order 

of the factors. [3]

Proof: Let a = q, q„ where q,'s are nontrivial prime elements of L. Without
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loss of generality, assume p2 is minimal among p2, ...pk. Since q,q2....qn< p, and 

p, is prime, we have qj <p,, for some i, say q, < p,. Since p, p2.... pk< q„ we have 

Pj <q„ for some j and hence j = 1. Thus p, = q, .Again sincep, p2---Pk = Pi£l2-"cln 

andp, is weak join principal, we get p2 ...pk = p2' ...pn'. Continuing like this we 

eventually get n=k and j <k.

Lemma 3.22 : Suppose L is principally generated. If L is a domain in which 

every nontrivial principal element of L is the product of a finite number of 

maximal elements, then every element is principal. That is L is a principal 

element lattice. [3]

Proof: Assume that, p< (p Va)2, a^p, p is prime.

Then p < (pVa)(pVa) = p2VpaVapVa2 = p2VpaVa2 = p2Va(pVa). 

Hence by property 1.7, [p2Va(pVa)]:p= 1.

As p is principal, 1 = pV[a(aVp):p], Also a(aVp):p = (a2Vap):p = 

aVa2:p, due to principality of p. Therefore, we have 1 = pV[aVa2:p] = 

pVaVa2:p.

We now show that a2: p<a. Letx<a2:p. Thenxp<a2. Hence xp < a. Asa 

is weak meet principal, xp = ad, for some d E L. Thus, ad <p. But as p is prime

and d^p, we have d<p. Thus xp = ad <ap.
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That is x< ap:p. As p is a weak join principal element and x< ap:p = 

a V0:p = a VO = a, as L is a domain. This implies that a2:p < a.

Consequently, l=pVaVa2:p = pVa. Q.E.D.

Theorem 3.23 : Suppose L is principally generated. If L is a Dedekind domain 

then every non-trivial prime element of L is a maximal element.

Proof: Assume that, L is a Dedekind domain.

First we show that, every principal nontrivial prime element of L is 

maximal.

Let p be a non-trivial principal prime element.

Suppose, if possible, p is not maximal. Then p < m, for some maximal 

element m € L. As L is principally generated, there exists a principal element

a^ p such that a < m. As Lis a Dedekind domain, we have pVa = p, ...pk and

pVa2 = q,... q^, where p/s and q,'s are non-trivial prime elements of L. 

Leta=pVa=p,p2...pkV p, a2=pVa2 = q,q2...qnVp.

Note that, for x V p, y V p L/p, we have (x V p) ° (y V p) = (x V p)(y V p) V p 

= xyVxpVypVp2Vp = xyVp,asxp,yp,p2< p.

Thus, we have a = p,°p23..... °pk and a2 = q,°q2°..... °q„, where Pj = PjVp

and q, = qiVp.
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Obviously, as a^p, a ^ 6 = p. Also by Proposition 2.22 (4), we have a, a2

are weak join principal elements in L/p.

We show L/p is domain. LetxVp,yVp GL/p. Such that (xVp)°(yVp) = 

5 = p. Then p = (xVp)°(y Vp)V p = xy VxpVypVp2Vp = xy Vp. Thus xy<p. 

As p is prime either x <p or y <p. Consequently xVp = p or y Vp = p. Thus, L/p 

is a domain.

Claim: If a * 0 is a weak join principal element in a domain L, then its 

factor is weak join principal element.

Proof: Let b be factor of a. Then a = bk for some k E L.

Let x EL. We have to show xVO: b = xb : b. As L is a 

domain, we have only to show x = xb:b.

Let z<xb:b. Then zb< xb. Consequently, zkb <xkb. 

Hence za< xa. This gives, z< xa:a = xV0:a, as a is join 

principal. Thus as 0:a = 0, we have z<x. This implies that, 

xb:b<x. But by property 1.7 , x< xb : b. Hene x = xb : b. 

Hence the claim.

Therefore by afore-proved claim, each p, and each q, are weak join

principal elements. Now note that, a2 = p,2°p22° ®pk2 = q,oq2o oqn. Hence

by Lemma 3.21, n = 2k and we may number q, so that for i = 1,..., k, q^., = q* = 

p,. Thus (p V a)2 = p V a2.
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This gives, p< (pVa)2. But note that, a^p. Hence by lemma 3.22, we

have p V a = 1. Consequently, 1 = p Va< m, i.e., m = 1, which is a contradiction 

to the fact that m is a maximal element.

This shows that, every principal nontrivial prime element of L is a 

maximal element.

Now we show that, every nontrivial prime element is maximal.

Let p be a non-trivial prime element. Then there exists a nonzero 

principal element a<p. As L is a Dedekind domain a = p,.... pn, where p/s are 

nontrivial prime elements. Since L is a domain and a is a principal element, by 

Lemma 2.2, each p; is principal and hence a maximal element.

As a = p, ... pn <p, we have some p,<p. Consequently, due to 

maximality of pi5 p is maximal. Thus completes the proof. Q. E. D.

Theorem 3.24 : Suppose L is principally generated. If L is a Dedekind 

domain, then every principal element is principal. [3]

Proof: Assume that, L is a Dedekind domain. By theorem 3.23, we have every 

nontrivial prime element is a maximal element. As L is a Dedekind domain, 

every element of L is a finite product of prime elements. Hence, by theorem 

2.23, every element of L is a finite product of maximal element.

Consequently, by theorem 3.22, every element of L is a principal 

element. Q. E. D.
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