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1. MULTIPLICATIVE LATTICES

§ 1. INTRODUCTION.

The study of abstract commutative ideal theory is recently the principal 

incentive of new research in commutative algebra. Morgan Ward and R. R 

Dilworth began a study of the ideal theory of commutative ring in abstract 

form in 1937. As their intension was to treat it as purely ideal theoretic, they 

chose the algebraic system viz., a multiplicative lattice with commutative 

multiplication.

Lattice theory has its own beauty with the extremely simplest concepts 

viz., partial order, infimum, supremum, which has been made more marvelous 

by adding a new binary operation called multiplication. During the study of 

abstract formulation of the ideal theory of commutative rings, the classical 

notion of a multiplicative lattice was first introduced by M. Ward and R. P. 

Dilworth [21] in 1938.

Now we recall the some basic concepts.
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1. Multiplicative lattices

Definition 1.1: Complete Lattice. [7]

A complete lattice Lis defined as, for any nonempty subsets of L, l.u. 

b. ofS = VSe L, g. 1.b. ofS = AS e L.

As L c L, we have 0 = AL is the least element and 1 = vL is the greatest 

element of the lattice L.

Example 1.2:

(i) Let X be a non-empty set. Let the power set, i. e., the set of all subsets 

of X be p(X). Then < p(X), U, n > is a complete lattice with respect to the 

set inclusion relation Q.

Note that, in this case, 0=0 and 1 = X.

(ii) Every finite lattice ( i. e., the lattice containing finite number of 

elements) is a complete lattice.

(iii) Define for real numbers a, b such that a < b, the open interval

L = (a, b) = { x / x is a real number such that a < x < b }.

Define, with respect to the partial order relation <, for a nonempty 

subsets of L,

AS = g.l.b.S and vS = l.u.b.S.

Then Lisa lattice, but it is not a complete lattice, since for example, the 

g.l.b.(a,b) = a£ L.
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1. Multiplicative lattices

Definition 1.3: Multiplicative Lattice. [9]

Let L= < L;V, A > be a complete lattice with the least element 'O'and 

greatest element T. The lattice L is said to be a multiplicative lattice, if there is

defined a binary operation “ . ” called multiplication on L which satisfies the 

following axioms:

(1) ab = ba,

(2) a(bc) = (ab)c,

(3) a(vaba)= va (aba),

(4) a. 1 = a.

The element 1 is thus known as the multiplicative identity element.

Further, a°= 1 and for a positive integer n, an = a.a.a.... n times.

The classical notion of residuation was first introduced by Dedekind in 

the theory of modules. As an abstract version of residual of ideals of 

commutative ring, Ward and Dilworth [21 ] were able to introduce the concept 

of the residuation of element in the multiplicative lattices, which is very 

important basic concept in the development of the theory of the multiplicative 

lattices. Basically, Ward-Dilworth [21] implemented this concept as binary 

operation with certain axioms in a lattice and they call the lattice with this 

binary operation as residuated lattice. Here follows the beautiful concepts.
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]. Multiplicative lattices

Definition 1.4: Residuation of Elements. [21 ]

Suppose L is a multiplicative lattice and a, b EL. The residuation of &

by b is denoted by a:b and given by a:b = V {x e L / xb < a}.

If every a:b is in L, the lattice is known as residuated lattice.

Naturally, as every multiplicative lattice is a complete lattice, we have 

a:b E L, for all a, b EL. Therefore, every multiplicative lattice is a residuated 

lattice.

Basically, the main intension behind the development of multiplicative 

lattice theory is to get abstract version of ideal theory of commutative rings. 

So naturally we have the following obvious but important example.

Example 1.5 : Let R be a commutative ring with unity. Let S2R. Then (S) is 

the smallest ideal containing S, called the ideal generated by S.

For ideals I and J, we know that InJ and I + J = (lUJ) = {i+j e R / i e I, 

je J } are ideals of R.

For a 6 R, the ideal generated by a or the smallest ideal containing a is 

denoted by (a) and such ideal is known as principal ideal of R.

For a, b e R, we have (a, b) = (a) + (b).
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1. Multiplicative lattices

Let L = L(R) be the set of all ideals of R. Then L is a multiplicative 

lattice with

lAJ = lnJ, I v j = i+j

IJ = {^flniteaibiER/a^LbjG J} and I:J= { xe R/xJ c I}. [22]

§ 2. RADICAL ELEMENTS.

Now we have another concept which is abstraction of the concept of 

radical of ideal, as follows:

Definition 1.6: Radical of an Element. [9 ]

Let L be the multiplicative lattice. The radical of a e L is the element, is 

given by

Va= V{xg L/xn<a,forsomenG Z+}.

Now we recall following most important fundamental facts 

multiplicative lattices which are obviously useful constantly in the study of 

multiplicative lattice. Most of these basic facts are pointed out by R. P. 

Dilworth.

We can observe at a glance that, many of the following results are 

nothing but the abstract version of results of commutative ideal theory.
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]. Multiplicative lattices

Property 1.7: Let L be multiplicative lattice with a, b, c e L. Then [9]

i) ab<aAb<a, b.

ii) a < b implies ac < be.

iii) a < b implies a:c < b:c.

iv) a<bimpliesc:a>c:b or c:b<c:a.

v) (a:b)b<a.

vi) c<a:b iff eb<a.

vii) a:b = 1 iff b<a.

viii) (aAb):c= a:cAb:c.

ix) a:(bc) = (a:b):c.

x) a<a:b.

xi) a: 1 =a.

xii) a<ab:b.

xiii) (aVb):c>a:cVb:c.

xiv) (a Ab) c < ac Abe.

xv) (aAb):b=a:b.

xvi) a:(aVb) = a:b.

xvii) a:(bVc) = a:b Aa:c. 

xviii)aVc = bVc= 1 implies abVc= 1.
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i. Multiplicative lattices

xix) aVe = 1 implies (aAb)Vc = bVc.

xx) a<Va.

xxi) a < b implies V a < Vb.

§3. COMPACTLY GENERATED LATTICES.

We now study a very important stronger concept. The development of 

multiplicative lattice theory is largely depending upon this strong concept.

Definition 1.8: Compact Element. [7]

Let S be a lattice. An element a of S is compact, if a < V u aa implies that

a< Vj^iacq, where aaie {aM} and n is a positive integer.

Example 1.9: We recall the very well known but important example 1.6. Note 

that, every principal ideal is compact in L = L(R), where R is a commutative 

ring with unity.

Since, if a ER and {Ia} is a family of ideals of R such that (a) E va Ia, 

then as 1 E R, we have a E (a) and so we have a e U; „ ij s v k"=, Ij, for some 

finite number of ideals Ij E {Ia} andn E Z+. Thus (a) £ Uj"=1 Ij, as the ideal
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1. Multiplicative lattices

(a) is the smallest ideal generated by x in R.

This shows that, each principal ideal (element) is compact in L(R).

Notation 1.10: The Set of Compact Elements (L*). [2]

L* = { x 6 L / x is a compact element in L }.

Defmitionl.il: Compactly Generated Lattice or Algebraic Lattice. [2]

A lattice L is said to be compactly generated or algebraic, if for every 

ae L, there exists xa e L* such that a=vaxa. [8]

That is a lattice is said to be compactly generated, if every element of it 

is a join of compact elements.

It should be noted that, in a compactly generated multiplicative lattice 

L, the radical of a e L is given as,

Va= v{xe L*/x"<a,forsomene Z+}. [2]

Example 1.12 : Recalling the above example 1.6. The lattice L = L(R) is 

compactly generated. For, if I is an ideal, then we have 1= UxeI(x)cIxgI(x)

= Vxe , (x). This implies that I = vx6, (x). This shows that, I is join of compact 

elements, as each (x) is a compact.

9



1. Multiplicative lattices

Property 1.13: If L is a compactly generated multiplicative lattice, then

i)VVa = Va, ii)VaAb = VaAVb = v/ab. [16]

§ 4. PRINCIPAL ELEMENTS.

Historically, the basic intension behind the development of 

multiplicative lattice theory was to formulate the beautiful results of ideal 

theory of a commutative ring in abstract form. Consequently, many concepts 

of ring theory were abstracted in multiplicative lattice theory. For example, 

residuation of ideals of a commutative ring R as residuation of elements in 

L(R), the lattice of ideals of R, radical of ideal of R as radical of element in 

L(R) and so many.

But always it was/is not possible very easily to get abstract version of 

concepts of commutative ring theory in multiplicative lattice theory. The main 

but very strong problem was arose with the abstract formulation of the concept 

of principal ideal as principal element in multiplicative lattice theory.

For suitably defined multiplicative lattices, Ward and Dilworth [21] 

extended the Noether decomposition theory of commutative ideal theory. But 

further development was however almost impossible; the essential difficulty 

was a proper concept of principal elements as an abstraction of principal 

ideals. The old concept of principal elements was:
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1. Multiplicative lattices

Definition 1.14: “ An element q of a multiplicative lattice is principal, if for 

any b with q> b implies there exists an element c such that qc -b". [24]

This concept was sufficient for the development of multiplicative 

lattice theory up to very limited extend. For, this concept of principal element 

sufficed for the abstract version of the some results like the decomposition 

theorems in primaries.

But abstract version of many of the natural and deeper results of ring 

theory, like Krull Intersection Theorem, Nakayama Lemma etc., was almost a 

difficult task for the mathematician.

Naturally, the essential difficulty was to get proper abstract version of 

the notion of principal element. After realizing this fact, almost all the 

mathematicians, working in this theory, tried hard to get proper abstract 

version of principal element.

Eventually, after nearly 23 years of continuous research work on this 

problem, R. R Dilworth [9] was able to introduce a new stronger notion of 

such a principal element, in 1961 and extended Krull intersection theorem, 

principal ideal theorem to Noether lattice. He divided this notion into 

following two identities. Till now this concept of principal elements seems to 

be very effective.
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1. Multiplicative lattices

Definition 1.15: Meet Principal Element. [9]

An element a e L in a multiplicative lattice L, is called meet principal, if 

xAay = (x:aAy)a, Vx,yeL.

Definition 1.16: Join Principal Element. [9]

An element a e L in a multiplicative lattice L, is called join principal, if 

xVy:a = (xaVy):a, V'x,yeL.

It is clear that, each of these two identities is obtained from the other by

interchanging the roles of “ V” and “A” and of “*”and

Definition 1.17: Principal Element. [9]

An element which is both meet and join principal element is called a 

principal element.

Definition 1.18: Join Principally Generated Lattice. [2]

A multiplicative lattice L is join principally generated, if every element 

of it is a join of join principal elements.
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1. Multiplicative lattices

Definition 1.19: Principally Generated Lattice. [2]

A multiplicative lattice L is principally generated, if every element of it 

is a join of principal elements.

Example 1.20: Obviously, we recall the example 1.5.

After defining the abstract version of principal ideal, Dilworth [9] 

naturally has shown that, for every element x of a commutative ring R with 

unity, the principal ideal (x) is a principal element of L = L(R), the lattice of 

ideals of R.

Also this lattice L is principally generated. Since, for any ideal I of R, 

we have I = Vx e l (x)-

Example 1.21 : Recall the example (i) of 1.2. Define AB = AaB. Then the 

lattice will be a multiplicative lattice such that every element of it is a principal 

element.

Thus, the lattice is principally generated and hence is join principally 

generated.

To show that the concepts of meet principal elements and join principal 

elements are independent, Johnson and Anderson [13] have given following 

examples.
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Example 1.22: Meet principal element need not be join principal element.

Let Q+ be the semi-ring of nonnegative rational numbers, x be an

indeterminate and let R = Q+[x], The ideal ( 1 + x ) of R is a meet principal 

element but it is not join principal element of L = L(R). [15]

Example 1.23: A join principal element need not be a meet principal element. 

Let (Ln, Mn) = RLn, where n = 1,2.

Let L = [ (a, b) E L,©L2 / a = m, iff b = m2 }. Then ( L, (m,, m2)) is a

multiplicative lattice in which every element is a join principal element but not 

a meet principal element. Hence it is join principally generated lattice, but not 

a principally generated lattice. [15]

§ 5. NOETHER LATTICES.

In the poset theory, 'a poset satisfying the ascending chain condition is 

known as a Notherian poset'.

The great mathematician Emmy Noether is the first to recognize the 

power of ascending chain condition and descending chain condition. These 

conditions are largely but effectively applied by Hilbert as a tool in the theory 

of ideals (see [7]). Ideal theory is concerned with the ascending chain 

condition at large, whereas the descending chain condition is too restrictive
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for many purpose. Consequently, such things happen in the theory of 

multiplicative lattices.

The weak concept of a Noether lattice as an abstraction of Noether ring 

was first introduced by M. Ward and R. R Dilworth [21] as a multiplicative 

lattice satisfying the ascending chain condition in which every meet 

irreducible element is primary, by defining well two binary operations viz., 

multiplication and residuation. Further they proved successfully that, not only 

these two operations correspond to each other but also they have the properties 

of the like-named operations in particular instances of polynomial ideal 

theory.

After defining the stronger concept of principal elements, Dilworth 

then introduced stronger formulation of Noether lattices [9].

Principal elements in multiplicative lattice are the analogue of principal 

ideals in commutative rings with unity. The theory of multiplicative lattices 

and the abstract ideal theory are largely based on principal elements. Thus 

Principal elements are the cornerstones.

The Krull intersection theorem and principal ideal theorem in a 

Noether lattice are extended to explain the concept of principle element by 

Dilworth [9].

To understand the concept of Noether lattices, first we recall the 

following concepts.
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Definition 1.24: Chain.

In a lattice L, a family {as} £ L is an ascending (or descending) chain, 

ifa,<a2<a3<— (or a|>a2>a3> —). [6]

Definition 1.25: Ascending Chain Condition (ACC).

A lattice L is said to satisfy ACC, if for every ascending chain a, < a2< a3

< —, 3 N E Z+ such that aN = an V n > N. [6]

Example 1.26 : (i) Let Z be the ring of integers. The lattice L = L(Z) of ideals 

of Z satisfies the ACC (see [22]).

Since, every ideal of Z is a principal ideal and every integer has finite 

number of prime factors. Thus, if I is an ideal of Z, then we have I = (n), for 

some integer n. Then there exists finite number of prime factors of n, p,, p2, —

, pm in the ring Z such that n = p, p2.. ,pm and the ACC holds as follows:

I = (n) = (p|p2...pm)c(p1p2...pm_l)c(p1p2...p1n.2)c —- c(Pl).

This implies that, L satisfies ACC.

(ii) Obviously, every finite lattice satisfies ACC.

(iii) Let X be an infinite set. Then the lattice L = p(X) of subsets of X 

does not satisfy the ACC. Since, for instance, the chain of infinite subsets {an ]
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ofX has no any upper bound as {a,} c {a,,a2} c {a,,a2,a3} c—.

Definition 1.27: Modular Lattice.

AlatticeLis modular, iffora,b,ce L,aV(bAc) = (aVb)Ac, Va<c.[6]

Example 1.28 : (i) Consider the very well known example, the lattice 

structure M5 = {0, a, b, c, 1 This lattice is a modular lattice, with its lattice

structure as follows. [6]
1

a C) b 6 Oc

0

Figure 1.1: the lattice Ms.

(ii) Not every lattice is modular. For instance, the lattice N5 is non- 

modular. Since, we have

a<bandaV(cAb) = aVO = a, while(aVc)Ab = 1 Ab = b.

(iii) Recall the example 1.5. According to [7], the lattice L = L(R) is a 

modular lattice.
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Definition 1.29: Noether Lattice.

If a multiplicative lattice L is modular, satisfying ACC and principally 

generated then it is called a Noetherian lattice.

As noted before, the concept of Noether lattice is an abstraction of the 

concept of the lattice of ideals of a Noetherian ring. Thus, every lattice of 

ideals of a Noetherian ring is a Noetherian lattice. This fact is cleared well with 

the illustrations 1.14 and (iii) of example 1.22.

Now we see some more basic concepts which are generalizations of 

concept of principal element.

Definition 1.30: Weak Join Principal Element.

In a multiplicative lattice L, an element a e L is called as weak join 

principal, if xV0:a = xa:a, V xg L. [1]

Definition 1.31: Weak Meet Principal Element.

In a multiplicative lattice L, an element a e L is weak meet principal, if 

xAa = (x:a)a, VxeL. [1]
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Definition 1.32: Weak Principal Element.

An element is called weak principal, if it is both weak meet and weak 

join principal element. [ 1 ]

Definition 1.33: Weak Principally Generated Lattice.

A multiplicative lattice L is called weak principally generated, if every 

element of L is a join of weak principal elements. [ 1 ]

We can observe that, by substituting 0 and l respectively in the 

definitions of join principal and meet principal elements we get the 

aforementioned definitions.

Thus, every join principal element is a weak join principal element, 

every meet principal element is a weak meet principal element and every 

principal element is a weak principal element.

Johnson and Anderson [13] provided the following examples to 

indicate that the above concepts are independent. Just we note them here.

Example 1.34: A weak meet principal element which is not meet principal. 

Consider L = { 0, a, b, c, d, e, 1 } is a lattice with the lattice structure:

19



1

Figure 1.2

The multiplication table is as follows.

• 0 a b c d e 1

0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 a

b 0 0 0 0 0 0 b

c 0 0 0 b b a c

d 0 0 0 b b b d

e 0 0 0 a b b e

1 0 a b c d e 1

Then c is a weak principal element, but it is not a meet principal 

element. [13]
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Example 1.35: Weak join principal element does not imply join principal.

If F is a field and X; = (Xj), i = 1,2, —, n, then RLn is the sublattice,

which is generated by the power products of X,, X2, —, Xn, of the ideal lattice

ofF[x,,x2,—,x„].

In RL2/ (X,X22 V X,2X2), the maximal element is a weak join principal 

element, but not join principal. [ 13]

Example 1.36 : Recall the example 1.23. In this lattice the only elements of 

the form (a, 0) or (b, 0) are weak meet principal elements and every element 

is a weak join principal element. Thus the lattice is a weak join principally 

generated lattice.
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