CHAPTER - III

On a subclass of univalent functions

ABSTRACT

In this third chapter of dissertation, we have introduced a new subfamily $D_{n}(\alpha, \beta, \gamma)$ of class S, of normalized univalent functions f in the unit disk $U=\{z:|z|<1\}$, having Taylor's series expansion of the form

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{\prime}
$$

The main theme of the present chapter is to study various properties of functions in $D_{n}(\alpha, \beta, \gamma)$, having negative coefficients. We characterize the class and obtain distortion theorem, radius of convexity, closure properties and extreme points for the class $D_{n}(\alpha, \beta, \gamma)$.

Lastly by making use of known concept of neighborhood of analytic function introduced by Ruscheweyh [7], we give several inclusion relation involving $N_{\mathcal{s}}(e)$. Also we define new classes $T_{n}^{(\lambda)}(\alpha, \beta, \gamma)$ and $P_{n}^{*(\lambda)}(\alpha, \beta, \gamma)$ and determine the neighborhood for these classes $T_{n}^{(\alpha)}(\alpha, \beta, \gamma)$ and $P_{n}^{*(\lambda)}(\alpha, \beta, \gamma)$.

1. INTRODUCTION

We introduce a new subfamily of S, of normalized univalent functions f that are holomorphic in the unit disk $U=\{z:|z|<1\}$.

Definition. Let $\alpha \in[0,1), \beta \in(0,1], \gamma \in(1 / 2,1]$ and let $n \in N_{0}$, we define, the class $D_{n}(\alpha, \beta, \gamma)$ of n-starlike function of order α, type β and γ by

$$
D_{n}(\alpha, \beta, \gamma)=\left\{f \in H(U): f(0)=f^{\prime}(0)-1=0 \text { and }\left|\ell_{n}(f, \alpha, \gamma ; z)\right|<\beta, z \in U\right\}
$$

where

$$
l_{n}(f, \alpha, \gamma ; z)=\frac{\left(D^{n} f(z)\right)^{\prime}-1}{2 \gamma\left[\left(D^{n} f(z)\right)^{\prime}-\alpha\right]-\left[\left(D^{n} f(z)\right)^{\prime}-1\right]} \quad, \quad z \in U
$$

We note that $D_{0}(\alpha, \beta, \gamma)$ is class introduced and studied by Kulkarni [5] .The class $D_{0}(0, \alpha, 1)$ is the class studied by Caplinger [1]. The class $D_{0}(\alpha, 1, \beta)$ is the class of holomorphic functions discussed by Juneja and Mogra [4].

In this section we are interesting in those members of $D_{n}(\alpha, \beta, \gamma)$ having negative coefficients.

Let T denote the subclass of S consisting of functions whose non-zero coefficients, from the second on, are negative; that is, an univalent function f is in T if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=z-\sum_{j=2}^{\infty} a_{1} z^{\prime} \quad a_{1} \geq 0, \quad j=2,3, \ldots \tag{3.1.1}
\end{equation*}
$$

We define the class $P_{n}^{*}(\alpha, \beta, \gamma)$ by

$$
\begin{equation*}
P_{n}^{*}(\alpha, \beta, \gamma)=D_{n}(\alpha, \beta, \gamma) \cap T \tag{3.1.2}
\end{equation*}
$$

and obtain several interesting results for the class $P_{n}^{*}(\alpha, \beta, \gamma)$ and study basic properties, such as characterization, distortion theorems, radius of convexity and closure theorem in the line of Guta and Jain [2], Kulkarni [5], Sarangi and Uralegaddii [8].

2. CHARACTERIZATION OF CLASS $P_{n}^{*}(\alpha, \beta, \gamma)$

First we state the Characterization theorem, which completely characterizes the member of class $P_{n}^{*}(\alpha, \beta, \gamma)$.

Theorem 1. Let $\alpha \in[0,1), \beta \in(0,1], \gamma \in(1 / 2,1]$ and let $n \in N_{0}$, the function f of the form (1.1) is in $P_{n}^{*}(\alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)] a_{j} \leq 2 \beta \gamma(1-\alpha) \tag{3.2.1}
\end{equation*}
$$

The result is sharp.
Proof. We suppose that (3.2.1) holds. Then we have

$$
\begin{aligned}
\left|l_{n}(f, \alpha, \gamma ; z)\right| & =\left|\frac{\left(D^{n} f(z)\right)^{\prime}-1}{2 \gamma\left[\left(D^{n} f(z)\right)^{\prime}-\alpha\right]-\left[\left(D^{n} f(z)\right)^{\prime}-1\right]}\right| \\
& =\left|\frac{\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{\prime-1}}{2 \gamma(1-\alpha)-\sum_{j=2}^{\infty} j^{n+1} a_{j}(2 \gamma-1) z^{\prime-1}}\right|
\end{aligned}
$$

Let $|z|=1$, then

$$
\begin{aligned}
& \left|\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{j-1}\right|-\beta\left|2 \gamma(1-\alpha)-\sum_{j=2}^{\infty} j^{n+1} a_{j}(2 \gamma-1) z^{j-1}\right| \\
& \leq \sum_{j=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)] a_{j}-2 \beta \gamma(1-\alpha) \leq 0
\end{aligned}
$$

where we used (3.2.1).
From the last inequality we deduce

$$
\left|l_{n}(f, \alpha, \gamma ; z)\right| \leq \beta \quad,|z|=1 .
$$

Hence

$$
\left|l_{n}(f, \alpha, \gamma ; z)\right|<\beta \quad, z \in U \quad \text { and } \quad f \in P_{n}^{*}(\alpha, \beta, \gamma) .
$$

Conversely, we assume that $f \in P_{n}^{*}(\alpha, \beta, \gamma)$.Then

$$
\begin{equation*}
\left|l_{n}(f, \alpha, \gamma ; z)\right|<\beta \quad, z \in U \tag{3.2.2}
\end{equation*}
$$

For $z \in[0,1)$ the inequality (3.2.2) can be written

$$
\begin{equation*}
-\beta<\frac{\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{j-1}}{2 \gamma(1-\alpha)-\sum_{j=2}^{\infty} j^{n+1}(2 \gamma-1) a_{j} z^{j-1}}<\beta \tag{3.2.3}
\end{equation*}
$$

We note that $\quad E(z)=2 \gamma(1-\alpha)-\sum_{j=2}^{\infty} j^{n+1}(2 \gamma-1) a_{j} z^{j-1}>0 \quad z \in[0,1)$, because $E(z) \neq 0$ for $z \in[0,1)$ and $E(0)=2 \gamma(1-\alpha)>0$. Upon clearing the denominator in (3.2.3) and letting $z \rightarrow 1$ through real values, we deduce

$$
\sum_{j=2}^{\infty} j^{n+1} a_{j} \leq 2 \beta \gamma(1-\alpha)-\beta \sum_{j=2}^{\infty} j^{n+1}(2 \gamma-1) a_{j}
$$

Thus

$$
\sum_{j=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)] a_{j} \leq 2 \beta \gamma(1-\alpha)
$$

The extremal functions are

$$
\begin{equation*}
f_{i}(z)=z-\frac{2 \beta \gamma(1-\alpha)}{j^{n+1}[1+\beta(2 \gamma-1)]} z^{j} \quad j=2,3, \ldots \tag{3.2.4}
\end{equation*}
$$

Corollary 1. If $f \in P_{n}^{*}(\alpha, \beta, \gamma)$ then

$$
a_{j} \leq \frac{2 \beta \gamma(1-\alpha)}{j^{n+1}[1+\beta(2 \gamma-1)]} \quad j=2,3, \ldots .
$$

The result is sharp and the extremal functions are given by (3.2.4).

We state following particular cases for Theorem 1.

Corollary 2. A function of the form (3.1.1) is in $P_{0}^{*}(0, \alpha, 1)$, if and only if

$$
\sum_{j=2}^{\infty} j(1+\alpha) a_{j} \leq 2 \alpha \gamma
$$

This result is sharp. This result is due to Caplinger [1].

Next is the similar characterization for the class of univalent functions studied by Juneja and Mogra [4] having negative coefficients.

Corollary 3. A function of the form (3.1.1) is in $P_{0}^{*}(\alpha, 1, \beta)$, if and only if

$$
\sum_{j=2}^{\infty} j a_{j} \leq(1-\alpha)
$$

This result is sharp.

In the same vein we also have a corresponding result for univalent function proved by Gupta and Jain [2].

Corollary 4. A function of the form (3.1.1) is in $P_{0}^{*}(\alpha, \beta, 1)$, if and only if

$$
\sum_{j=2}^{\infty} j(1+\beta) a_{j} \leq 2 \beta \gamma(1-\alpha)
$$

This result is sharp.

Next we obtain a theorem which supplies the extreme point of the class $P_{n}^{*}(\alpha, \beta, \gamma)$.

Theorem 2. Let

$$
f_{1}(z)=z
$$

and

$$
\begin{equation*}
f_{j}(z)=z-\frac{2 \gamma \beta(1-\alpha)}{j^{n+1}[1+\beta(2 \gamma-1)]} z^{\prime} \tag{3.2.5}
\end{equation*}
$$

Then $f \in P_{n}^{*}(\alpha, \beta, \gamma)$ if it can be expressed in the form

$$
\begin{equation*}
f(z)=\lambda_{1} f_{1}(z)+\sum_{j=2}^{\infty} \lambda_{j} f_{j}(z) \tag{3.2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{j} \geq 0 \quad(j=1,2,3, \ldots) \quad \text { and } \quad \lambda_{1}+\sum_{j=2}^{\infty} \lambda_{j}=1 \tag{3.2.7}
\end{equation*}
$$

Proof. Suppose that

$$
\begin{aligned}
f(z) & =\lambda_{1} f_{1}(z)+\sum_{j=2}^{\infty} \lambda_{j} f_{j}(z) \\
& =z-\sum_{j=2}^{\infty} \frac{2 \gamma \beta(1-\alpha) \lambda_{j}}{j^{n+1}[1+\beta(2 \gamma-1)]} z^{j} .
\end{aligned}
$$

Since

$$
\begin{gathered}
\sum_{i=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)] \frac{2 \gamma \beta(1-\alpha)}{j^{n+1}[1+\beta(2 \gamma-1)]} \lambda_{j} \\
=2 \beta \gamma(1-\alpha) \sum_{j=2}^{\infty} \lambda_{j} \\
\leq 2 \beta \gamma(1-\alpha) .
\end{gathered}
$$

By Theorem 1, $f \in P_{n}^{*}(\alpha, \beta, \gamma)$.
Conversely, we suppose that $f \in P_{n}^{*}(\alpha, \beta, \gamma)$.
Since

$$
a_{i} \leq \frac{2 \gamma \beta(1-\alpha)}{j^{n+1}[1+\beta(2 \gamma-1)]} \quad j=2,3, \ldots,
$$

setting

$$
\lambda_{j}=\frac{j^{n+1}[1+\beta(2 \gamma-1)]}{2 \gamma \beta(1-\alpha)} a_{j}
$$

and

$$
\lambda_{1}=1-\sum_{j=2}^{\infty} \lambda_{j} .
$$

Then we have

$$
f(z)=\lambda_{1} f_{1}(z)+\sum_{j=2}^{\infty} \lambda_{j} f_{j}(z) .
$$

This completes the proof of Theorem 2.

Corollary 1. The extreme points of $P_{n}^{*}(\alpha, \beta, \gamma)$ are the functions

$$
f_{1}(z)=z
$$

and

$$
f_{i}(z)=z-\frac{2 \gamma \beta(1-\alpha)}{j^{n+1}[1+\beta(2 \gamma-1)]} z^{i} \quad j=2,3, \ldots .
$$

We give the following particular cases for above theorem.
Corollary 2. The extreme points of $P_{0}^{*}(0, \alpha, 1)$ are the functions

$$
f_{1}(z)=z
$$

and

$$
f_{i}(z)=z-\frac{2 \alpha}{j(1+\alpha)} z^{j} \quad(j=1,2,3, \ldots) .
$$

This result is due to Caplinger [1].

Corollary 3. The extreme points of $P_{0}^{*}(\alpha, \beta, \gamma)$ are the functions

$$
f_{1}(z)=z
$$

and

$$
f_{j}(z)=z-\frac{2 \gamma \beta(1-\alpha)}{j[1+\beta(2 \gamma-1)]} z^{j} \quad(j=1,2,3, \ldots)
$$

This is due to the class studied by Kulkarni [5].

Lastly we also state the corollary for the class of the functions introduced by Jain and Gupta [2].

Corollary 4. The extreme points of $P_{0}^{*}(\alpha, \beta, 1)$ are the functions

$$
f_{1}(z)=z
$$

and

$$
f_{j}(z)=z-\frac{2 \beta(1-\alpha)}{j^{n+1}(1+\beta)} z^{j} \quad(j=1,2,3, \ldots) .
$$

3. SOME PROPERTIES OF CLASS $P_{n}^{\prime}(\alpha, \beta, \gamma)$

Now we prove some properties of class $P_{n}^{*}(\alpha, \beta, \gamma)$, like distortion theorem, radius of convexity and closure theorems.

Theorem 3. Let $\alpha \in[0,1), \beta \in(0,1], \gamma \in(1 / 2,1]$ and let $n \in N_{0}$, if $f \in P_{n}^{*}(\alpha, \beta, \gamma)$, then for $0<|z|=r<1$, we have

$$
\begin{equation*}
r-\frac{\beta \gamma(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]} r^{2} \leq|f(z)| \leq r+\frac{\beta \gamma(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]} r^{2} \tag{3.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{\beta \gamma(1-\alpha)}{2^{n-1}[1+\beta(2 \gamma-1)]} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\beta \gamma(1-\alpha)}{2^{n-1}[1+\beta(2 \gamma-1)]} r \tag{3.3.2}
\end{equation*}
$$

The bounds in (3.3.1) and (3.3.2) are sharp.
Proof. From (3.2.1) we have

$$
2^{n+1-k}[1+\beta(2 \gamma-1)] \sum_{j=2}^{\infty} j^{k} a_{j} \leq \sum_{j=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)] a_{j} \leq 2 \beta \gamma(1-\alpha)
$$

and

$$
\begin{equation*}
\sum_{i=2}^{\infty} j^{k} a_{j} \leq \frac{\beta \gamma(1-\alpha)}{2^{n-k}[1+\beta(2 \gamma-1)]} . \tag{3.3.3}
\end{equation*}
$$

Using (3.3.3) with $\mathrm{k}=0$, for $0<|z|=r<1$ we obtain

$$
\begin{aligned}
|f(z)| & \leq r+\sum_{j=2}^{\infty} a_{j} r^{j} \leq r+r^{2} \sum_{j=2}^{\infty} a_{j} \\
& \leq r+\frac{\beta \gamma(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]} r^{2},
\end{aligned}
$$

and

$$
|f(z)| \geq r-\frac{\beta \gamma(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]} r^{2} .
$$

Similarly using (3.3.3) with $\mathrm{k}=1$, for $0<|z|=r<1$ we obtain

$$
\left|f^{\prime}(z)\right| \leq 1+r \sum_{j=2}^{\infty} j a_{j}
$$

$$
\leq 1+\frac{\beta \gamma(1-\alpha)}{2^{n-1}[1+\beta(2 \gamma-1)]} r,
$$

and

$$
\left|f^{\prime}(z)\right| \geq 1-\frac{\beta \gamma(1-\alpha)}{2^{n-1}[1+\beta(2 \gamma-1)]} r .
$$

This completes the proof of Theorem 3. Sharpness are attained by the function

$$
\begin{equation*}
f(z)=z-\frac{\beta \gamma(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]} z^{2} \quad(z= \pm r) \tag{3.3.4}
\end{equation*}
$$

Keeping our intension in view, we go to state some special cases of Theorem 3.

Corollary 1. A function $f \in P_{0}^{*}(\alpha, \beta, \gamma)$, then for $0<|z|=r<1$, we have

$$
r-\frac{\beta \gamma(1-\alpha)}{[1+\beta(2 \gamma-1)]} r^{2} \leq|f(z)| \leq r+\frac{\beta \gamma(1-\alpha)}{[1+\beta(2 \gamma-1)]} r^{2}
$$

and

$$
1-\frac{2 \beta \gamma(1-\alpha)}{[1+\beta(2 \gamma-1)]} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2 \beta \gamma(1-\alpha)}{[1+\beta(2 \gamma-1)]} r .
$$

The result is sharp. This result is due to Kulkarni [5].
Corollary 2. A function $f \in P_{0}^{*}(\alpha, \beta, 1)$, then for $0<|z|=r<1$, we have

$$
r-\frac{\beta(1-\alpha)}{(1+\beta)} r^{2} \leq|f(z)| \leq r+\frac{\beta(1-\alpha)}{(1+\beta)} r^{2}
$$

and

$$
1-\frac{2 \beta(1-\alpha)}{(1+\beta)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2 \beta(1-\alpha)}{(1+\beta)} r
$$

The result is sharp. This result is due to Gupta and Jain [2].

Corollary 3. A function $f \in P_{0}^{*}(0, \alpha, 1)$, then for $0<|z|=r<1$, we have

$$
r-\frac{\alpha}{(1+\alpha)} r^{2} \leq|f(z)| \leq r+\frac{\alpha}{(1+\alpha)} r^{2}
$$

and

$$
1-\frac{2 \alpha}{(1+\alpha)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2 \alpha}{(1+\alpha)} r
$$

The result is sharp. This is due to the class studied by Caplinger [1].
We now state the theorem which gives the disk contained in the range set of functions in class $P_{n}^{*}(\alpha, \beta, \gamma)$.

Theorem 4. The disk $|z|<1$ is mapped onto a domain that contains the disk

$$
|w|<1-\frac{\gamma \beta(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]}
$$

by any $f \in P_{n}^{\prime}(\alpha, \beta, \gamma)$.
Proof. The result follows upon by letting $r \rightarrow 1$ in (3.3.1).

In the next theorem we determine the radius of convexity for the functions in $\quad P_{n}^{*}(\alpha, \beta, \gamma)$.

Theorem 5. If the function $f \in P_{n}^{*}(\alpha, \beta, \gamma)$, then f is convex in the disk

$$
\begin{equation*}
|z|<r=r(\alpha, \beta, \gamma, n)=\inf _{j}\left(\frac{j^{n-1}[1+\beta(2 \gamma-1)]}{2 \beta \gamma(1-\alpha)}\right)^{\frac{1}{j-1}}, \quad(j=2,3, \ldots) .(\tag{3.3.5}
\end{equation*}
$$

This result is sharp, with the extremal function as given in (3.2.4).
Proof. It suffices to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \quad \text { in } \quad|z| \leq r(\alpha, \beta, \gamma, n) . \tag{3.3.6}
\end{equation*}
$$

In view of (3.2.1), we have

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{\sum_{j=2}^{\infty} j(j-1) a_{j}|z|^{j-1}}{1-\sum_{j=2}^{\infty} j a_{j}|z|^{j-1}}
$$

Thus (3.3.6) follows if

$$
\sum_{j=2}^{\infty} j(j-1) a_{j}|z|^{j-1} \leq 1-\sum_{j=2}^{\infty} j a_{j}|z|^{j-1}
$$

or

$$
\begin{equation*}
\sum_{i=2}^{\infty} j^{2} a,|z|^{j-1} \leq 1 \tag{3.3.7}
\end{equation*}
$$

Also by Theorem 1, we have

$$
\begin{equation*}
\sum_{j=2}^{\infty} \frac{j^{n+1}[1+\beta(2 \gamma-1)]}{2 \beta \gamma(1-\alpha)} a_{j} \leq 1 \tag{3.3.8}
\end{equation*}
$$

Hence f is convex if

$$
j^{2}|z|^{j-1} \leq \frac{j^{n+1}[1+\beta(2 \gamma-1)]}{2 \beta \gamma(1-\alpha)}
$$

Solving for $|z|$, we obtain

$$
|z| \leq\left(\frac{j^{n-1}[1+\beta(2 \gamma-1)]}{2 \gamma \beta(1-\alpha)}\right)^{\frac{1}{j-1}}, \quad(j=2,3, \ldots)
$$

setting $|z|=r(\alpha, \beta, \gamma, n)$, the result follows.

Now we state some particular case of above theorem.
Corollary 1. If the function $f \in P_{0}^{*}(\alpha, \beta, \gamma)$, then f is convex in the disk

$$
|z|<r=r(\alpha, \beta, \gamma, 0)=\inf _{j}\left(\frac{1+\beta(2 \gamma-1)}{2 j \beta \gamma(1-\alpha)}\right)^{\frac{1}{j-1}} \quad(j=2,3, \ldots) .
$$

This result is sharp.

Next corollary gives the radius of convexity for the class introduced and studied by Gupta and Jain [2].

Corollary 2. If the function $f \in P_{0}{ }^{\prime}(\alpha, \beta, 1)$, then f is convex in the disk

$$
|z|<r=r(\alpha, \beta, 1,0)=\inf _{j}\left(\frac{(1+\beta)}{2 j \beta(1-\alpha)}\right)^{\frac{1}{1-1}} \quad(j=2,3, \ldots) .
$$

This result is sharp.

Corollary 3. If the function $f \in P_{0}^{*}(0, \alpha, 1)$, then f is convex in the disk

$$
|z|<r=r(0, \alpha, 1,0)=\inf _{j}\left(\frac{(1+\alpha)}{2 j \alpha}\right)^{\frac{1}{j-1}} \quad(j=2,3, \ldots) .
$$

This result is sharp. This is due to Caplinger [1].

In [8] Sarangi and Uralegaddi obtained the radius of univalence of holomorphic functions with negative coefficients under the different conditions, on the same line we also obtain results for the class $P_{n}{ }^{*}(\alpha, \beta, \gamma)$.

Theorem 6. If the function $F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, \quad a_{j} \geq 0, j=2,3, \ldots$ is in $P_{n}^{*}(\alpha, \beta, \gamma)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$ then $f(z)$ is n-starlike function of order λ, type δ in

$$
\begin{array}{r}
|z|<r=r(\alpha, \beta, \gamma, \delta, \lambda, n)=\inf _{j}\left(\frac{j^{n+1}[1+\beta(2 \gamma-1)](2 \delta-\lambda-1)}{j^{n} \beta \gamma(1-\alpha)(j+1)(j-\lambda)}\right)^{\frac{1}{j-1}} \\
(j=2,3, \ldots) . \tag{3.3.9}
\end{array}
$$

Proof. It suffices to show that $\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>\lambda \quad$ for $|z|<r=r(\alpha, \beta, \gamma, \delta, \lambda, n)$, by definition of $f(z)$ we have

$$
f(z)=\frac{1}{2}[z F(z)]^{\prime}=z-\sum_{j=2}^{\infty}\left(\frac{j+1}{2}\right) a_{j} z^{j},
$$

now

$$
\begin{aligned}
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-\delta\right| & =\left|\frac{(1-\delta)-\sum_{j=2}^{\infty} j^{n+1}\left(\frac{j+1}{2}\right) a_{j} z^{j-1}(j-\delta)}{1-\sum_{j=2}^{\infty} j^{n}\left(\frac{j+1}{2}\right) a_{j} z^{j-1}}\right| \\
& \leq \frac{(1-\delta)-\sum_{j=2}^{\infty} j^{n+1}\left(\frac{j+1}{2}\right) a_{j}|z|^{j-1}(j-\delta)}{1-\sum_{j=2}^{\infty} j^{n}\left(\frac{j+1}{2}\right) a_{j}|z|^{j-1}} .
\end{aligned}
$$

Hence, $\quad\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-\delta\right| \leq(\delta-\lambda) \quad$ if

$$
\begin{gathered}
(1-\delta)+\sum_{j=2}^{\infty} j^{n+1}\left(\frac{j+1}{2}\right) a_{j}(j-\delta)|z|^{j-1} \leq(\delta-\lambda)\left[1-\sum_{j=2}^{\infty} j^{n}\left(\frac{j+1}{2}\right) a_{j}|z|^{j-1}\right] \\
\sum_{j=2}^{\infty} \frac{j^{n}\left(\frac{j+1}{2}\right)(j-\lambda)|z|^{j-1} a_{j}}{(2 \delta-\lambda-1)} \leq 1
\end{gathered}
$$

On account of coefficient inequality, we have

$$
\sum_{j=2}^{\infty} \frac{j^{n+1}\left(\frac{j+1}{2}\right)(j-\lambda)|z|^{j-1}}{(2 \delta-\lambda-1)} a_{j} \leq \sum_{j=2}^{\infty} \frac{j^{n+1}[1+\beta(2 \gamma-1)]}{2 \beta \gamma(1-\alpha)} a_{j}
$$

solving for $|z|$, we get

$$
|z| \leq\left(\frac{j^{n+1}[1+\beta(2 \gamma-1)](2 \delta-\lambda-1)}{j^{n} \beta \gamma(1-\alpha)(j+1)(j-\lambda)}\right)^{\frac{1}{i-1}}
$$

We state some particular cases for above theorem.
Corollary 1. If the function $F \in P_{0}^{*}(\alpha, \beta, \gamma)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$, then $f(z)$ is starlike function of order λ, type δ in

$$
|z|<r=r(\alpha, \beta, \gamma, \delta, \lambda, 0)=\inf _{i}\left(\frac{j[1+\beta(2 \gamma-1)](2 \delta-\lambda-1)}{\beta \gamma(1-\alpha)(j+1)(j-\lambda)}\right)^{\frac{1}{j-1}} .
$$

$$
(j=2,3, \ldots)
$$

This result is due to Joshi [3].
Corollary 2. If the function $F \in P_{0}^{*}(\alpha, \beta, 1)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$, then $f(z)$ is starlike function of order λ, type δ in

$$
\begin{aligned}
|z|<r=r(\alpha, \beta, 1, \delta, \lambda, 0)= & \inf _{j}\left(\frac{j(1+\beta)(2 \delta-\lambda-1)}{\beta(1-\alpha)(j+1)(j-\lambda)}\right)^{\frac{1}{j-1}}
\end{aligned}
$$

This is the result for the class studied by Gupta and Jain [2] .
Corollary 3. If the function $F \in P_{0}^{*}(0, \alpha, 1)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$ then $f(z)$ is Stariike function of order λ, type δ in

$$
|z|<r=r(0, \alpha, 1, \delta, \lambda, 0)=\inf _{j}\left(\frac{2 j(1+\alpha)(\delta-1)}{\alpha(j+1)(j-\lambda)}\right)^{\frac{1}{j-1}} .
$$

$$
(j=2,3, \ldots)
$$

This is due to Caplinger [1] .

Theorem 7. If the function $F(z)=z-\sum_{j=2}^{\infty} a_{i} z^{j} \quad a_{j} \geq 0, j=2,3, \ldots$ is in $P_{n}^{*}(\alpha, \beta, \gamma)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$, then $\operatorname{Re} f^{\prime}(z)>\lambda$ for $0 \leq \lambda<1$ of order λ, type δ in

$$
|z|<r=r(\alpha, \beta, \gamma, \lambda, n)=\inf _{j}\left(\frac{j^{n}[1+\beta(2 \gamma-1)](1-\lambda)}{(j+1) \beta \gamma(1-\alpha)}\right)^{\frac{1}{j-1}} \quad(j=2,3, \ldots) .
$$

Proof. We show that $\left|f^{\prime}(z)-1\right| \leq 1-\lambda$ for $|z|<r=r(\alpha, \beta, \gamma, \lambda, n)$.
We have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{j=2}^{\infty} j\left(\frac{j+1}{2}\right)|z|^{j-1} a_{j} .
$$

Hence $\quad\left|f^{\prime}(z)-1\right| \leq 1-\lambda$ if

$$
\sum_{j=2}^{\infty} j\left(\frac{j+1}{2}\right)|z|^{j-1} a_{i} \leq 1-\lambda .
$$

On account of coefficient inequality, we have

$$
\sum_{j=2}^{\infty} \frac{j\left(\frac{j+1}{2}\right)|z|^{i-1}}{(1-\lambda)} a_{1} \leq \sum_{j=2}^{\infty} \frac{j^{n+1}[1+\beta(2 \gamma-1)]}{2 \beta \gamma(1-\alpha)} a_{j},
$$

solving for $|z|$, we get

$$
|z| \leq\left(\frac{j^{n}[1+\beta(2 \gamma-1)](1-\lambda)}{(j+1) \beta \gamma(1-\alpha)}\right)^{\frac{1}{j-1}}
$$

Hence the Theorem 7.

Now we put some particular cases .

Corollary 1. If the function $F \in P_{0}^{*}(\alpha, \beta, \gamma)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$ then $\operatorname{Re} f^{\prime}(z)>\lambda$ for $0 \leq \lambda<1$ of order λ, type δ in

$$
|z|<r=r(\alpha, \beta, \gamma, \lambda, 0)=\inf _{j}\left(\frac{[1+\beta(2 \gamma-1)](1-\lambda)}{(j+1) \beta \gamma(1-\alpha)}\right)^{\frac{1}{j-1}} \quad(j=2,3, \ldots) .
$$

This result is due Joshi [3].
Corollary 2. If the function $F \in P_{0}^{*}(\alpha, \beta, 1)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$ then Re $f^{\prime}(z)>\lambda$ for $0 \leq \lambda<1$ of order λ, type δ in

$$
\left\lvert\, z<r=r(\alpha, \beta, 1, \lambda, 0)=\inf _{j}\left(\frac{(1+\beta)(1-\lambda)}{(j+1) \beta(1-\alpha)}\right)^{\frac{1}{j-1}} \quad(j=2,3, \ldots) .\right.
$$

This is new result obtained for class defined by Gupta and Jain [2].
Corollary 3. If the function $F \in P_{0}^{\cdot}(0, \alpha, 1)$ and $f(z)=\frac{1}{2}[z F(z)]^{\prime}$ then $\operatorname{Re} f^{\prime}(z)>\lambda$ for $0 \leq \lambda<1$ of order λ, type δ in

$$
\left\lvert\, z_{\mid}<r=r(0, \alpha, 1, \lambda, 0)=\inf _{j}\left(\frac{(1+\alpha)(1-\lambda)}{(j+1) \alpha}\right)^{\frac{1}{1-1}} \quad(j=2,3, \ldots) .\right.
$$

This is due to Caplinger [1] .

Theorem 8. The class $P_{n}^{*}(\alpha, \beta, \gamma)$ is convex.
Proof. Let $f_{1}(z)=z-\sum_{j=2}^{\infty} a_{j} z^{\prime}$ and $f_{2}(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}$ be in $P_{n}^{*}(\alpha, \beta, \gamma)$. For $0 \leq \lambda \leq 1$, we shall prove that $F(z)=\lambda f_{1}(z)+(1-\lambda) f_{2}(z)$ is also in class $P_{n}^{*}(\alpha, \beta, \gamma)$.

Since for $0 \leq \lambda \leq 1$,

$$
\begin{equation*}
F(z)=z-\sum_{j=2}^{\infty}\left[\lambda a_{j}+(1-\lambda) b_{j}\right] z^{\prime} \tag{3.3.11}
\end{equation*}
$$

we observe that

$$
\begin{aligned}
& \sum_{j=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)]\left\{\lambda a_{j}+(1-\lambda) b_{j}\right\} \\
& =\lambda \sum_{j=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)] a_{j}+(1-\lambda) \sum_{j=2}^{\infty} j^{n+1}[1+\beta(2 \gamma-1)] b_{j} \\
& \leq 2 \beta \gamma(1-\alpha) .
\end{aligned}
$$

Hence $F(z) \in P_{n}^{\prime}(\alpha, \beta, \gamma)$. This completes the proof of Theorem 8 .

4. NEIGHBORHOODS OF UNIVALENT FUNCTIONS

The main object of present section is to investigate the δ-neighborhoods of the classes $T_{n}(\alpha, \beta, \gamma)$ and $P_{n}^{*}(\alpha, \beta, \gamma)$ subclasses of the class T of normalized analytic and univalent functions in unit disk U with negative coefficients

We define the δ-neighborhood of a function $f \in T$ by

$$
\begin{equation*}
N_{\delta}(f)=\left\{g \in T: g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{\prime} \quad \text { and } \quad \sum_{j=2}^{\infty} j\left|a_{j}-b_{j}\right| \leq \delta\right\} . \tag{3.4.1}
\end{equation*}
$$

In particular, for the identity function

$$
\begin{equation*}
e(z)=z, \tag{3.4.2}
\end{equation*}
$$

we immediately have

$$
\begin{equation*}
N_{\delta}(e)=\left\{g \in T: g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j} \quad \text { and } \quad \sum_{j=2}^{\infty} j\left|b_{j}\right| \leq \delta\right\} . \tag{3.4.3}
\end{equation*}
$$

Motivated by Ruscheweyh [7], Orhan and Kamali [6], we now prove some inclusion relations involving $N_{\delta}(e)$

Theorem 9. Let

$$
\begin{equation*}
\delta=\frac{2 \gamma \beta(1-\alpha)}{2^{n-1}[1+\beta(4 \gamma-2 \gamma \alpha-1)]} \tag{3.4.4}
\end{equation*}
$$

then

$$
\begin{equation*}
T_{n}(\alpha, \beta, \gamma) \subset N_{\delta}(e) \tag{3.4.5}
\end{equation*}
$$

Proof. Let $f \in T_{n}(\alpha, \beta, \gamma)$, then using characterization theorem of $P_{n}^{*}(\alpha, \beta, \gamma)$, it follows that

$$
\begin{equation*}
2^{n-1}[1+\beta(4 \gamma-2 \gamma \alpha-1)] \sum_{j=2}^{\infty} j a_{j} \leq 2 \gamma \beta(1-\alpha) . \tag{3.4.6}
\end{equation*}
$$

Thus

$$
\sum_{j=2}^{\infty} j a_{j} \leq \frac{2 \gamma \beta(1-\alpha)}{2^{n-1}[1+\beta(4 \gamma-2 \gamma \alpha-1)]}
$$

that is

$$
\begin{equation*}
\sum_{j=2}^{\infty} j a_{j} \leq \frac{2 \gamma \beta(1-\alpha)}{2^{n-1}[1+\beta(4 \gamma-2 \gamma \alpha-1)]}=\delta \tag{3.4.7}
\end{equation*}
$$

which in vie' w of definition (3.4.3), proves the Theorem 9 .

Theorem 10. Let

$$
\begin{equation*}
\delta=\frac{2 \gamma \beta(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]} \tag{3.4.8}
\end{equation*}
$$

then

$$
\begin{equation*}
P_{n}^{*}(\alpha, \beta, \gamma) \subset N_{\delta}(e) \tag{3.4.9}
\end{equation*}
$$

Proof. Let $f \in P_{n}^{*}(\alpha, \beta, \gamma)$, then using chacterization theorem of $P_{n}^{*}(\alpha, \beta, \gamma)$, it follows that

$$
\begin{equation*}
2^{n}[1+\beta(2 \gamma-1)] \sum_{j=2}^{\infty} j a_{j} \leq 2 \gamma \beta(1-\alpha) \tag{3.4.10}
\end{equation*}
$$

Thus

$$
\sum_{j=2}^{\infty} j a_{j} \leq \frac{2 \gamma \beta(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]}
$$

that is

$$
\begin{equation*}
\sum_{j=2}^{\infty} j a_{j} \leq \frac{2 \gamma \beta(1-\alpha)}{2^{n}[1+\beta(2 \gamma-1)]}=\delta \tag{3.4.11}
\end{equation*}
$$

which in view of definition (3.4.3), proves the Theorem 10.

Now, we determine the neighborhood for each classes

$$
T_{n}^{(\lambda)}(\alpha, \beta, \gamma) \text { and } P_{n}^{\bullet(\lambda)}(\alpha, \beta, \gamma)
$$

which we define as follows. A function $f \in T$ is said to be in class $T_{n}^{(\lambda)}(\alpha, \beta, \gamma)$, if there exists a function $g \in T_{n}(\alpha, \beta, \gamma)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\lambda \quad(0 \leq \lambda<1) . \tag{3.4.12}
\end{equation*}
$$

Analogously, a function $f \in T$ is said to be in class $P_{n}^{*(\lambda)}(\alpha, \beta, \gamma)$, if there exists a function $g \in P_{n}^{*}(\alpha, \beta, \gamma)$ such that inequality (3.4.12) holds.

Theorem 11. If $\mathrm{g} \in T_{n}(\alpha, \beta, \gamma)$ and

$$
\begin{equation*}
\lambda=1-\frac{\delta 2^{n-1}[1+\beta(4 \gamma-2 \gamma \alpha-1)]}{2^{n}[1+\beta(4 \gamma-2 \gamma \alpha-1)-2 \gamma \beta(1-\alpha)]} \tag{3.4.13}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{\delta}(g) \subset T_{n}^{(\lambda)}(\alpha, \beta, \gamma) \tag{3.4.14}
\end{equation*}
$$

Proof. Suppose that $f \in N_{\delta}(g)$, then

$$
\begin{equation*}
\sum_{j=2}^{\infty} j\left|a_{j}-b_{j}\right| \leq \delta \tag{3.4.15}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\sum_{j=2}^{\infty}\left|a_{j}-b_{j}\right| \leq \frac{\delta}{2} . \tag{3.4.16}
\end{equation*}
$$

Since $g \in T_{n}(\alpha, \beta, \gamma)$ from characterization theorem of $T_{n}(\alpha, \beta, \gamma)$, we have

$$
\begin{equation*}
\sum_{j=2}^{\infty} b_{j} \leq \frac{2 \gamma \beta(1-\alpha)}{2^{n}[1+\beta(4 \gamma-2 \gamma \alpha-1)]}, \tag{3.4.17}
\end{equation*}
$$

so that

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{j=2}^{\infty}\left|a_{j}-b_{j}\right|}{1-\sum_{j=2}^{\infty} b_{j}} \\
& \leq \frac{\delta}{2} \frac{1}{1-\frac{2 \gamma \beta(1-\alpha)}{2^{n}[1+\beta(4 \gamma-2 \gamma \alpha-1)]}} \\
& =\frac{\delta 2^{n-1}[1+\beta(4 \gamma-2 \gamma \alpha-1)]}{2^{n}[1+\beta(4 \gamma-2 \gamma \alpha-1)-2 \gamma \beta(1-\alpha)]} \\
& =1-\lambda
\end{aligned}
$$

provided that λ is given precisely by (3.4.13). Thus by definition, $f \in T_{n}^{(\lambda)}(\alpha, \beta, \gamma)$ for λ given by (3.4.13), which completes the proof of Theorem 11.

Theorem 12. If $g \in P_{n}^{*}(\alpha, \beta, \gamma)$ and

$$
\begin{equation*}
\lambda=1-\frac{\delta 2^{n}[1+\beta(2 \gamma-1)]}{2^{n+1}[1+\beta(2 \gamma-1)-2 \gamma \beta(1-\alpha)]} \tag{3.4.18}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{\delta}(g) \subset P_{n}^{*(\lambda)}(\alpha, \beta, \gamma) \tag{3.4.19}
\end{equation*}
$$

Proof. Suppose that $f \in N_{\delta}(g)$, then

$$
\begin{equation*}
\sum_{j=2}^{\infty} j\left|a_{j}-b_{j}\right| \leq \delta, \tag{3.4.20}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\sum_{j=2}^{\infty}\left|a_{j}-b_{j}\right| \leq \frac{\delta}{2} . \tag{3.4.21}
\end{equation*}
$$

Since $g \in P_{n}^{*}(\alpha, \beta, \gamma)$ from characterization theorem of $P_{n}^{*}(\alpha, \beta, \gamma)$, we have

$$
\begin{equation*}
\sum_{j=2}^{\infty} b_{j} \leq \frac{2 \gamma \beta(1-\alpha)}{2^{n+1}[1+\beta(2 \gamma-1)]}, \tag{3.4.22}
\end{equation*}
$$

so that

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{j=2}^{\infty}\left|a_{j}-b_{j}\right|}{1-\sum_{j=2}^{\infty} b_{j}} \\
& \leq \frac{\delta}{2} \frac{1}{1-\frac{2 \gamma \beta(1-\alpha)}{2^{n+1}[1+\beta(2 \gamma-1)]}} \\
& =\frac{\delta 2^{\prime \prime}[1+\beta(4 \gamma-2 \gamma \alpha-1)]}{2^{n+1}[1+\beta(2 \gamma-1)-2 \gamma \beta(1-\alpha)]} \\
& =1-\lambda,
\end{aligned}
$$

provided that λ is given precisely by (3.4.18). Thus by definition , $f \in P_{n}^{*(\lambda)}(\alpha, \beta, \gamma)$ for λ given by (3.4.18), which completes the proof of Theorem 12.

REFERENCES

1. T .R. Caplinger, On Certain classes of analytic functions, Ph.D. Dissertation., (1972), University of Mississipi.
2. V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc., 14, (1976), 409-416.
3. S. B. Joshi, Study of geometric properties of some subclasses of Univalent functions, M.Phil., Dissertation., (1989), Shivaji University, Kolhapur.
4. O. P. Juneja and M. L. Mogra, Radii of convexity for certain classes of univalent analytic functions, Pacific Jour.Math.78, (1978), 359-368.
5. S. R. Kulkarni, Some problems connected with univalent functions, Ph.D Thesis (1982), Shivaji University, Kolhapur.
6. H. Orhan and M.Kamali, Neighborhoods of class of analytic functions with negative coefficients, Acta Matematica Academiae Paedagogicae Nyiregyhaziensis, 21, (2005), 55-61.
7. S. Ruscheweyh, Neighborhoods of univalent functions, Proc.Amer.Math. Soc., 81(4), (1981), 521-527.
8. S. M. Sarangi and B. A. Uralegaddi, The radius of univalence of certain analytic functions with negative coefficients, The Mathematics Student, Vol. 47, No. 4 (1979), 305-309.
