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CHAPTER - III

DISTRIBUTIONAL GENERALIZED LAPLACE

TRANSFORMATION

3.1 Introduction:-

The conventional generalized Laplace transformation is defined by 

the integral,

co

F(s) = j (st)1 e~“ Ll(st)flt)dt .... (3.1.1)
0

where L*k(st) is the Laguerre polynomial.

The aim of this chapter is to extend the conventional generalized 

Laplace transformation defined in (3.1.1) to a certain class of generalized 

functions.

The generalized Laplace transform F(s) of certain generalized 

function f is defined directly as the application of f(t) to (si)xe~stLak(st), 

that is

F(s) = < f(t), (stf eLl(st) > .... (3.1.2)

For this we construct a certain space of testing functions on 0 < t < oo 

which contains (sty e~st Lak(st) for the various values of the complex 

parameter s.

We have obtained an inversion formula and Uniqueness theorem for 

the generalized Laplace transformation.

We use notations and terminology as those of Zemanian [24].
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Z.7. The Testing Function Spaces GLa GL(w) and Thier 

Dual Space:-

Let a be a fixed real number. We define the space GLa as the set of all 

complex valued smooth functions <f>(t) on 0 < t < oo such that for each 

non-negative integer m,

= Sup \e* r d: [#f)]|, m = o, 1,2,3................. (3.2.1)
0</<oo

assumes finite values.

GLa is a linear space under the pointwise addition of functions and 

their multiplication by complex numbers.

ya>m is a seminorm on GLa and yafi is a norm.

Therefore the collection {ya,m }®=0 is a countable multinorm on GLa . 

We assign to GLa the topology generated by the countable multinorm

{yam }®=0 and this makes GLa, a countably multinormed space.

We say that the sequence {^v}“=, converges in GLa to <f) if and only if 

for each non-negative integer m, ya,m(<f>v - $) 0 as v -*■ oo.

A sequence {^v}®=[is said to be a Cauchy sequence in GLa if and 

only if ya,m(<f>v - <f>n) -*■ 0 as v -+ oo and pi -*• oo independently, for each 

non-negative integer m.

First we can prove that the kernel (st)A e~st Lak(st) is a member of GLa.

Lemma 3.2.1:

The function (st)x e~~st Lak(st) is a member of GLa , for Re. s > a, 

where X be a non-negative integer.
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Proof:-

Let <j>(t) = (st)A e~st L“k(st)

The function <f){f) will be member of GLa, if

(i) <f>(t) is a smooth on 0 < t < oo.

(ii) Sup \eat tm Dmt[(f>it)\ | < oo for each m = 0, 1, 2, 3,...
0 < t <<»

The function <f>(t) is a product of three smooth functions of t and 

threfore smooth on 0 < t < oo.

Consider,

D:m\ =

= t (") [« e-r~J) U»]0) .... (3.2.2)
7 = 0

But,
m~j . ..

[(if)'1 e~» ]“'J> = £ ("70 [e-*'](0
l=D

m -j

= Z (V) 1) — (A-m+y +1) ('st)x~m + J+ 1 (s)m~J~l e"st (—s)1]
1 = 0

m - j

= Z ...{X~m+j + l)(sty-m*j+l (r\)1 e-st]
1 = 0

Putting in (3.2.2) we get.

D:im
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= L(7)
7 = 0 J

>m-J , ..
2 (1 - 1) ... (X-m+j + l) (fl)J-«+/+'(-l)'(i)”-ye

^/=0
(-1)”(l^)t«"[»(»-1) -(«-/)]r-iN

«!(ir-n)!(l+a)„

Therefore,

I e- r d; [ m}
Q<t< co

= Sup 0< <<«

r («>-} , \ “1

m x . 2 (V )l ,..(X-m+j + l){si)1 ~m+J + l (-l)'(s)m J e s‘

e*r S (J)
7 = 0 W '

\J = 0 J
f Y (-l)n on* S” [» (»-l) (n-7)l r 11

.
A L-i w! (*-")! <i+a>" J

-

—Sup0</< OO j=o J

¥ (V> ...a-/n+y+/x^)A-m+j+/(-i),(^)
7=0 '

m-j

(-1)” (1 + «)t *”[*(«- 1) (n -y)] <- 
w! (k - n)! (l+a)„

The expression under the supremum will be finite if and only if 

Re.{s - a) > 0 i.e. Re. s > a and X > 0.

i.e. Sup | eat tm D” [0(f)] | < <» if and only if Re.s > a and X > 0.
0 </<oo

for each m = 0, 1, 2, 3,...

Thus (sf)1 e~st Lak(st) is a member of GLa if and only if Re.s > a and 

X>0.

Hence the proof.
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l emma 3.2.2:

GLa is complete and therefore a Frechet space.

Proof:-

Let sequence {^v}*=1 be a Cauchy sequence in GLa . Then by the 

equation (3.2.1), e* tm ] is a uniform Cauchy sequence on

0<t<ooasv-*-oo.

Hence by the standard theorem [1, P. 402] there exist a smooth 

function (f>(t) such that for each m and t

£>r[^v(oi .“*■ d"iw\ 35 v c°-
Moreover, for each e > 0 there exist an integer Nk such that, for every 

v,/i > Nk,

Taking the limit as ftoo. We obtain

\eat tmDmt[<l>v(t)-<l>(t)\\< e v > Nk, 0 <t<oo .... (3.2.3)

Thus as v -*■ oo

ya,m - $) -*■ oo for each m.

Finally because of uniform convergence and the fact that each 

eat tm D”[ is bounded on 0 < t < oo , their exist a constant Ck not 

depending on v, such that

\eat tm D”[<f>v(t)]I < Ck for all t.

Therefore from the equation (3.2.3) it implies that

\eat tm Dmt{(f>{i)}\ <Ck+ e
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which shows that eat tm D* [^(f)] is bounded on 0 < t < oo .

Hence the limit function ^ is a member of GLa.

Thus, the Cauchy sequence 1 converges in GLa to the unique limit

$■

Hence GLa is complete.

Since GLa is countably multinormed space which is complete . Hence 

GLa is a Frechet space.

Hence the proof.

Lemma 3.2.3:

GLa is a testing function space.

Proof:-

Clearly, GLa satisfies the first two conditions of testing function 

space. We shall prove the third.

Let sequence {(f) v } “ = i converges in GLa to zero.

Then ya, m(<f>v) -*■ 0 for each m, as v oo.

i.e. Sup \eat tm D”[^v(0ll 0for each m, as v -> oo.
0 < / < oo

i.e. | eat tm D” [Mt)l | 0 for each m, as v-> oo.

Since \eat tm D™ [<f>v(t)]\-+0 uniformly for each m and \eat tm\ has 

positive supremum on every compact subset of I = ( 0 , oo ).

Therefore,

\D:[Mt)]\ -* 0 for eachm, as v-^oo.
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Hence we must have the sequence {D”[<f>v(t)]}^0 converges to zero 

function uniformly on every compact subset of I = ( 0 , co ).

Thus, GLa satisfies all the three defining properties of a testing 

function space.

Hence GLa is a testing function space.

Hence the proof.

The dual space of GLa is GL’a and GL’a consists of all continuous 

linear functionals on GLa - Thus, f is member of GL’a, if f is a continuous 

linear functional on GLa.

As we were already proved that GLa is a testing function space and 

therefore GL’a is a space of generalized functions.

Under the usual definitions of addition and multiplication by a 

complex numbers, GL’a is a linear space. We assign to GL’a its 

customary(weak) topology. It follows that GL’a is also complete.

Now, we list some properties of the space GLa, which can be easily 

established

(i) If a < b then GLa c GLb . The topology of GLa is stronger than the

topology induced on GLa by GLb .

To see this first we note that 0 < eat tm <ebt tm on 0 < t < oo.

Therefore,

\e* t” D”[j(t)]\ < \ebt tm

So that
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ya,m{<l>)<yb,m{(l))

Our assertion follows by this inequality and [24, (lemma (1.6.3)].

(ii) D(I) <= GLa and the topology of D(I) is stronger than that induced on 

it by GLa.

Similarly, the other properties of the space GL’a can be easily 

established as following,

(iii) If a < b, the restriction of f e GL’b to GLa is in GL’a . Also the 

convergence in GL’b implies convergence in GL’a , it follows as a 

consequence of property (i).

We shall turn now to certain countable union space GL(w) that 

arises from the GLa space.

Let w be either a real number or -oo. Let {av}”= ]be a monotic 

sequence of positive real numbers which converges to w+ as v -*■ oo.Then 

define GL(w) as a countable union space of GLav space.

Thus,

co

GL(w) = U GLa,.
V=1

Space of this type were introduced by Gelfand and Shilov.

The sequence {<^v} ”=1 converges in GL(w) to ^ if and only if

<f>v and <f> belongs to some particular GLar , for some fixed av and 

-*• ^ in GLav -

The sequence {^v}®=i is said to be a Cauchy sequence in the 

countable union space GL(w) if it is a Cauchy in one of the spaces GLav ■
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When all the the Cauchy sequences in GL(w) are convergent then GL(w) 

is complete.

Moreover, GL(w) does not depend on the choice of { a v } ®= j.

The dual space of GL(w) is denoted by GL’(w). GL’(w) is linear 

under ususal definitions.

A sequence {/v}v=iconverges m GL*(w) if their exist a/in GL’(w) 

such that, for every y/ e GLav ,

-*■ <f,y/> as v-+oo.

GL’(w) is also complete because GL(w) is complete. [24, theorem 1.8.2]

If w < u then GL(u) cr GL(w) and convergence in GL(u) implies 

convergence in GL(w). Thus the restriction of any f e GL’(w) to GL(u) 

is in GL’(u).

3.3 The Distributional Generalized Laplace

Transformation:-

We shall call, the generalized function f GL transformable if f e 

GL’(w) for some w, let <7f be the infimum of all such w. Define

F(s) =GL(fXs) = < f(t) , (st)k e~si Lak{st) > , Re. s >Gf .... (3.3.1)

Our aim is to obtain the very important aspect of the space GLa is its 

Inversion theorem and Uniqueness theorem.
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3.4 Inversion and Uniqueness theorems for the 

Distributional Generalized Laplace Transformation

In this section we shall derive the inversion formula for the 

distributional generalized Laplace transformation. From this we will 

obtain a Uniqueness theorem. We shall use the same technique as that 

used in proving the inversion formula for Convolution, K-transformation 

and Generalized Laplace transformation by Zemanian [24].

First we state and prove some lemmas which will be used for proving 

the inversion theorem.

Result 3.4.1:
oo

|[f],i+”e-!f'-£Tr U(-t,l+a; f t)dx~ nt(k + n + k-2)!
0

as nt -+ oo

Proof:-

By the definition of Lagurre polynomial, we have

Therefore,

oo

0

CO

0
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put x =u => dx = _'^7^M*

w/?e« x = 0, w = oo.

andx =oo, u = 0

f [w^] 2 + "+* ~~«tJLdue U2

j^ fk + n+k^uk + n+k 2 g ut dy

Integrating by parts, we get

^ jX + n+k) I + n+ k-2 L-Ut TOO]: - JO* +n + k-2) uX 4- n+ k — 3 ^.

n ,A + »+*-i ^ + « +£-2) J i^ + "+*~3 e-u^M

Continuing in this way, we get

00

= n^ + n+*-(A+« + *-2) ^ + w + £-2)! | e~"f du
o

= nt2(/l + « + fc-2)! [^f]‘rJo

n t (2 + n + k-2)\

Hence the proof.

du

Lemma 3.4.1:

Let a be a suitably fixed real number and y/ e GL’a and s = f. Then

00

1 '"W < w > ir^ki e_" £»] > *
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= < fif) , J .J**"*My+n e~st Lak(st)] y/(x) dx > .... (3.4.1)
q IA + n + k+1

Proof:-

To prove this lemma, we shall use the technique of Riemann sums.

If y/(x) = 0 then the lemma is obvious, hence we assume that y/(x) * 0 in 

GL’a.

First we shall show that,

00

G(n,t) = f -■ \tx+n e~st La,(st)]y/(x) chc is a member of GLa.
^ |/. + n + ifc+l *■ *

Consider,

00

e" r D‘[G(n,t)] = e“ rD~ J -J=== [/+" <T" iftOkto dx

.... (3.4.2)

Since the integrand is smooth function, we may carry the operator £>" 

under the integral sign in the equation (3.4.2), we get
oo

e“ r d;[G'(«,/)J = e- r J -^=g=.o;|y+" e-« dx

By definition of Laguerre polynomial and s = f we get, 

ea‘tm D”[G(n,t)]

= eattm J £>; <T*' ^ 1 + a; f 0] tK*) *
| A + w + A: +1

00= ** f)xm[ '4r^+r:m ^ 1 + a; foJv'C*) dx

00
= e" (-!)■ == | [(f)1+* e-»< ^ f/(-*; 1 + a; f i)]dx
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Consider,

\e°‘ r D’{G(n,i)}\

< eat
I /. + n + k + 1

j 1 BL\l + nm -4/ Hf U(-k; 1 +a; ft) dx

< oo.

Since the expression is finite because 

By the result (3.4.1), we have

j[(f-)A + n - U(-t, 1 + a; ff)] dx ~ nt( /l + n + k - 2 )!

and y/ has smooth and bounded support.

This shows that G(n,t) is a member of GLa.

This will insures that the right hand side of (3.4.1) has a sense. 

Now we prove that two sides of (3.4.1) are equal.

Let ®(x) = <At), -F== " e'S'>

Then the left hand side of (3.4.1) is J y/(x) 0(x) dx

Then its Riemann sum is Y ytlxt) <E>(jci-)AJC/
i = 0

Now conside the Riemann sum of the left hand side of (3.4.1),

t < M,J=== L\{s,t)] > A„ .... (3.4.3)

Since < fit) , ——== \tk+n e~Sit LUsif) >is a continuous function on
' ’ I/.+ n+k+ i L *v
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0 < x < oo.

Hence (3.4.3) equals to

< fit) . t **,) [>**" e-‘ £>,0] A„ > (3.4.4)

Since, £ ^(x,) , [tx+n e~s'1 £>,-/)] AXl is the Riemann sum of
i = 0 \/. + n + k+l

the integral

| 5l+”+1.... \tx+n e st La.(st)] y/(x) dx
£ \}. + n + k+l

Therefore (3.4.4) equals

oo

< M, 1,^== [tx+n e~st LI(J0] ¥(x) dx >

Hence the proof.

Lemma: 3.4.2:

Let y/ e D{J) then,

oo

p(n,t) = J 'j \tx + n e~st Lak(st) ] y/(x) dx s = f converges GLa

to p(i) as n -*■ oo, for every real number a.

Proof:-

We have to show that p(n, t) converges uniformly to y/(t) in GLa, for 

every real number a, as n qo, means, we have to show that

eat tm D*[p(n, t) - y/(t)] converges uniformly to zero function in
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0<t<coasn-*oo.

Consider

e* tmDmt S Z + Tt + I

| A + n + k + 1
[tx + n e~st Lak{st)] y{x)^dx - y/(t)

Since y is smooth and is of bounded support, we may repeatedly 

differentiate under the integral sign as,

e* tm sJ + n+ 1

\/. + n + k+ I
D" [tx+n e~st Lak{si)] y/{x)^dx - ym{t)

since s = f and by definition of Laguree polynomial, we get

at tm J I _2_e“‘ t

emtm

* V. | /.+rH-k+ i

D” [^^-TT ‘ Hif~ u(-k; 1 + a; f o] v(x))dx - ^m(o]

|X + n + k+ 1
- e ” ‘ U{-k; 1 + a ; f o] v(x)^dx - y/m(t)

integrating by parts m times, we get

e* tm {j( H)'><"(*) e "' U(-k; 1 + a; f /)] - y/m(t)

~Qt ==(-i)m[^m(x)X—1 ][[f ] A+V* lk^U(-k-1 + «; f o]V- r
J71 ft'f 1 /^ V |/.+ n+Ar+l

but, by the result (3.4.1), we have

oo
f [f ]A+" (t]f £/(-*; 1 + a; f 0 ^ ~ ^ 2)!.... ( 3.4.5)

-.at i
(-1)”

X [ (f )->*" e-K t-f U(~t, 1 +a; # /)]
| A + tt + k + 1
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J ([^(x)x-.] _ ),
x [mx*’ e~*‘ m-k,\+a; i t)]dx

= /,(0 + 12(f) + hit) .....(3.4.6)

where I\(t), hit) and hit) denotes the terms obtained by integrating 

over the intervals 0 < x < t - 5, t-S<x<t+S and 

t + S < x < 00 respectively. <5 being a positive number.

Consider,

t + 5
[ hit) | < eat | |y/mix)xm~l - if/mit) tm~l\dx

t-5

Let (f)ix) = \j/mix) xm~l 

Now <f> is bounded as if/ is bounded.

Therefore,

| hit) I < $eat Sup |f(Y)i
/-<5< T <t+S

Restrict <5 by 0 < S < 1. Then, since ^ is smooth and of bounded support, 

the last expression is bounded by SB, where B is a constant with respect 

to t and S.

Thus, given an e > 0, we have that

| hit) I < e . For <5 = min ( 1 ; f) 

and for all n. Fix S in this way.

Now consider,

-.at_ _ _ _ 0_
| + n + k + 1

(-1)’

A study of generalized Laplace transform Page no. 39



l/i(Ol<^r ^r- U(-t, 1 +a; f o]|<&

t-S.

+
![<*>l + n (-*)*

k\ U(-k; 1 + a; ft) dx
o

but, as n -*■ oo the second term of the above expression tends to zero 

uniformly.

Therefore,

t-s k ...
\h(f)\<eat j Wm(x)xm-l[(f)x + n e-^‘\+a; ft)\\dx

Again,

Let <f>(x) = y/m(x) xm~l and (f> is bounded.

t-s

l/i(0Ue‘Ci f
0 L

t-S

<eatCk \ {~)l+n + k e^( dx

1+a; f 0 dx

M

put — = u => dx = du.

when x = 0, « = oo. 

Jx =t- 5, u n
t - 8

|/i(0l < efl' Cjfc f {utf+n+k e-ut K~i
t-d

<neat Cktx+n+k j uk+n+k~2 e~ut du
n

t-8

Integrating by parts repeatedly, since the integrated part is vanish as

n -*■ oo.
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|/i(0l < neat Ck{X + n + k -2)! tl+n + k -(A+" + *“2) f e~ut du
n

t~6

00

< n eat

< n eat 

-* 0

Ck (2 + n + k -2)! t2 

Ck (2 + n + k -2)! t e
n

t-5 t

00

n
t~6

as n -+ co.

Thus, U(t) converges to zero uniformly on0<x<t-<5asn -»■ oo. 

Finally,

I/,(01 < e" j 1 TT WC-*; 1 +«;

CO

+ lr(,)„r-!l J [(f )i+" ' nr 1 + a; f o] *
l + S

but, as n ->oo the second term of the above expression tends to zero 

uniformly.

173(01 < ** j y/m(x) xm- 1

t + S
(f)A+n tSitU{-b, l+a;

Again, Let <j>(x) = y/m(x) xm~x and <f> is bounded, and let A < x < B 

be the finite interval containing support of $(x). For 

A < t+S < B; h(0 = 0. and on the other hand 

t + 5 < B < oo, |^(x)| < Ck, Ck is sufficiently large constant.

Thus,
B

\h(t)\<e-Ct 1 (f)l + " + ke-*‘dx
t 4- 3
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P»t X =U => dx= -~%2du- 

whenx-t + S,u= ” 

and x = B, u — Jr.

n
B

\h(t)\<neat Ck tx + n + k f ux+n + k~2 e~ut du
n

t + S

< n eat Ck t2(A + n + k — 2)! ^ B
f+ <5

< n eat Ck t (X + n + k - 2)! [e~^1 - e~~e *]

-► 0 as n -*■ oo.

Thus, /3(f) converges to zero uniformly on t + <5 <x<oo asn -> oo.

Altogether this proves that as limit n -*■ oo (3.4.6) is uniformly 

bounded by e on 0 < jc < oo. Since e > 0 is arbitrary we get (3.4.6) 

tends to zero uniformly as n -* oo .

Hence the proof.

By using this lemmas we prove the inversion theorem.

Theorem 3.4.1: (Inversion theorem )

For a given kernel (st)x e~st L\(st), let Mn^ denotes some shifting and 

differentiation operator as defined in the section 2.3 of second chapter.

If F(s) = < f(t) , (st)x e~st Lak(st) > , f e GL’a, s = §, then

Urn MnrX [F(s)] = f in GL’a .... (3.4.7)

Proof:-

Let ^eD, then in the sense of convergence in D’, we shall show that
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,(3.4.8)lim < MnJt [F(s)], y/{x) > = <j(t) , y/(t) >
fi —*■

Since, F(s) is a smooth function and

Mw [F(s)] = < f(t) , (sty e-‘ L‘t(st) >

= < f(t), M„ [(sr)-1 e-"Ll(st)]>

= < f(t), *... [t! + n e i“(*0] >
V 7 ’ \X + n + k+\ L tV 7J

Consider,

< [F(s>], y/(x) >

= < <M == k1+n e stLKst)} > > v(x) >

Since [F(s)3 is a smooth function, therefore < [F(s)], y/(x) >

is an integral and for y/ e D we write,

<M^[F(s)],^(x)> =
00

f y/{x) < j{t) 
o

SX + n + 1

| X + ft -I- k+ I
[tl+ne-stLak{st)]>dx

By the lemma (3.4.1) this equals,

oo

< AO , | \x + n + i+l ^ + " ^ ^ ^ > ...(3A9)

This expression tends to < f(t) , y/{t) > as n-+ oo because f e GL’a and

according to the lemma (3.4.8), the testing function in the expression 

(3.4.9) converges to y/(t) in GLa.

Hence the proof.
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Theorem 3.4.2: ( U nig uncss theorem )

Let f, g g GL'a and GL(f)(s) = F(s), Re. 5 > af , GL(g) = G(s) 

Re. s > Gg and GL(f)(s) = GL(g)(s) for s > max(oy,ag) . Then f = g in 

the sense of equality in D’.

Proof:-

Let [F(s)] be as specified in the theorem (3.4.1), then in the 

sence of convergence in D’, we have

/= Hm Mv[F(s)\ = lim M„[C(s)J = g

Hence the proof.
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