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INTRODUCTION

1.1 Integral Transform
The theory of Integral Transformation is widely used in both pure 

and applied mathematics. This theory is used in solving some boundary 

value problems and initial value problems.

The origin of Laplace transform is due to Oliver Heaviside 

(in 1850-1925) later investigation by Bromwich, Carson and Van der Pol 

placed the Heaviside calculus on foundation.

We can express many functions in analysis as improper Riemann 

integrals or Lebesgue integrals of the form,

OO

(1.1.1)K(s,t) f(t) dt

where s is real or complex.

The function F defined by this type of equation is called integral 

transform of f. The function K(s,t) in the integrand is called kernel of the 

transformation. It is assumed that the infinite integral in the equation 

(1.1.1) is convergent.

Different forms of the kernel K(s,t) and the range of integration, 

gives different integral transformations, such as Laplace, Fourier, Mellin, 

Hankel, Convolution and K-transformations. For all these 

transformations inversion formulae are available in Erdelyi [7].

The problems involving several variables can be solved by 

applying integral transformations successively with regard to several
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variables. In physical problems Laplace transformation is generaly used 

first to remove the time variable and then other integral transformations 

on space variables are successively applied. Some examples of repeated 

applications of transforms are given by Sneddon [16] , Tranter [18] and 

Ditkin [5].
In the integral (1.1.1) when the kernel K(s,t) is e~st and the range 

of integration is 0 to oo then we get the one sided Laplace transform. 

Thus, the conventional Laplace transformation of a function f(t) is 

defined by the integral,
OO

F(s) -1 e“ fit) dt .... (1.1.2)
0

It has always been a subject of great interest because of its 

mathematical elegance and also because of its usefulness in solving 

certain types of boundary value problems. In certain cases it has already 

shown its distinct and superior mathematical character in comparison 

with the ordinary methods of solving such problems.

The inversion formula for Laplace transformation of (1.1.2) is 

obtained in the form,

<7 + ioo

= i J e''Ks)cb .... (1.1.3)
a - ioo

under suitable conditions on F(s) or f(t).

The important aspect of the integral transformation is its inversion 

theorem.

The theory of integral transformation is developed by many 

mathematicians like Widder, Sneddon, Tranter, Boas, Brijmahon,
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Bhonsle, Saxena and others, who studied deeply in this field and made 

their contributions for integral transformations.

Many mathematicians have made deep study of the Laplace 

transformation in the various aspects and some others have introduced 

more generalized integral transformations of which the Laplace 

transform become a particular case.

We enumerate below some of these generalizations

[i] Meijer [9] has defined the transformation

m = (I)1'2 f (st)mKJst)fit)dt .... (1.1.4)
0

where Kta(z) represents Bessels function of the second Kind with 

imaginary argument.

[ii] Meijer[10] has also defined the transformation

7 _£_± ^
F(s)= J (st) 2 - 2 

o
e 2 W*. i m(st)f(t)dt .... (1.1.5)

where Wk,m(.) Represents the Whittaker function.

[iii] P. K. Banerji and Deepali Sinha [11] has taken the transformation

F(z) = 2t ( {zt)k e~& Dv(j2zi)j{i) dt Re(vl) > 0 .... (1.1.6)
o

where Dv denotes Weber's parabolic cylinder function.

[iv] Bhise[2] has introduced the Meijer-Laplace transformation by the 

integral,
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F(s)= f <C [*' fcSw ]*>* .... (,'L7>
0

in which G(.) Represents Meijer’s G - function.

[v] Choudhary M.S. [4] has taken the Laplace - Hankel transform of 

F(u,v) is
00 00

F(u,v) = l jhv> = \U"“Jvy Ji(vy)Ax,y) * <fy ....(1.1.8)
0 0

where J; (vy) is the Bessel function of the first kind with A real.

[vi] Varma[19,20] has introduced Verma transformation
00

F(s) = f (st)^e~^WKm(st)mdt .... (1.1.9)
0

where Wk,m(.) represents the Whittaker function.

[vii] Varma[19, 20] has also introduced the Whittaker transformation
oo

F(s) = J <2st)~i W^tlsQMdt .... (1.1.10)
0

where Wk,m (.) represents the Whittaker function.

J.M.C.Joshi and P.C.Joshi [8] have defined the generalization of 

Laplace Transform, in the integral (1.1.1) when the kernel K(s,t) is 

(st)} e~st Lak(st) and the range of integration is 0 to oo then we get the 

generalized Laplace transform as

1.2 Generalized Laplace Transform:-
The generalized Laplace transform is defined as,

oo

F(s) = Jtrt)1 e-‘ Ll(st)Mdt .... (1.2.1)
0
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where Lak{si) is the Laguerre polynomial and kis a non-negative integer. 

When k = 0 and k = 0 this transform reduces to well known one sided 

Laplace transform.

The Laguerre polynomial L°k{st)is defined as,

Ll(s t) V (-0” (!+«)*
2-* n\ (k-ri)\ (l+a)„

„ tillwhich is the simple set of polynomials. The coefficient of (stf is £! »

and (a)n = a (a + 1) (a + 2) (a + 3)..... (a + n - 1), n > 1.

(a)0=l , a * 0.

1.3 Generalized Functions:-

The generalized functions were first introduced in 1927 by P. 

Dirac in his research in quantum Mechanics. The generalized functions is 

a generalization of the classical concept of mathematical functions.

The first impact of such a generalization of function have laid by 

Bochner [3] and Sobolev [17]. But the Laurent Schwartz’s [14] deep 

study gives the construction of the theory of generalized functions on 

firm foundation ( 1950-51 ).

Let I be an open subset of Rn or Cn, where C” is the complex 

n-dimensional Euclidean space. The set V(I) is said to be testing function 

space if the following conditions are satisfied,

(i) V(I) consists entirely of smooth functions defined on I.

(ii) V(I) is either a complete countablly multinormed space or complete 

countable union space.
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(iii) If the sequence {^v}“=1 converges in V(I) to zero, then for every 

non-negative integer k e R“, { Dk<^v}“=1 converges to the zero 

function uniformly on every compact subset of I.

A generalized function on I is any continuous linear functional on 

any testing function space V(I) on I.

In other word, f is called a generalized function, if it is a member 

of the dual space V’(I) of some testing function space V(I).

1.4 Distributions:
Let I be a non-empty open set in R" and K be a compact subset of 

I. Dk(I) is the set of all complex valued smooth functions defined on I 

which vanish outside K. Dk(I) is linear space under the usual definition of 

addition of functions and their multiplication by complex numbers. The 

zero element in Dk(I) is the identically zero function on I. For each non 

negative integer k e R“ define 7t by,

jk{f) =Sup \Dk <f>{i)\ ; ^ e Dk(I) , k = 0, 1, 2,...
tel

....(1.4.1)

Then {yk} is countable multinorm on Dk(I). The topology of Dk(I) 

is generated by the multinorm {yk }^=0 where yk is a seminorm on Dk(I) 

defined in (1.4.1).

The space Dk(I) is a testing function space on I.

Let (Km }“=1 be the sequence of compact subsets of I with the 

following two properties,

(i) Ki c= K2 g K3 c: ....

(ii) Each compact subset of I is contained in one of the Km .
00

consequently, I = U Km
m = 1
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and Dkm(l) cz DKm+](I) and the topology of Dkm(I) is stronger 

the topology induced on it by DKm+i(I).

Therefore, the countable union space D(I) is the space

D(I)= 0 Di.(I)
m = 1

The dual of D(I) is denoted by D’(I) and members of D’(I) are 

called distributions on I.

In other words, a continuous linear functional on the space D(I) is 

called a distribution on I.

Thus, every distribution is a generalized function but not 

conversely. Because of this convention, the members of D’k (I) will be 

called generalized functions but not distributions because Dk (I) does not 

contain D(I).

1.5 Generalized Integral Transformations:
The Generalized Integral Transformation is evolved from the 

theory of integral transforms and the theory of generalized functions. By 

using this theory Fourier transform is extended to the generalized 

functions.

Schwartz in 1952 extended Laplace transform to generalized 

function. In 1966 Zemanian [24] has extended it to generalized functions 

as follows,

F(s) = <M, e-* > (1.5.1)

Zemanian [24] has also extended Weierstrass, Convolution, 

Hankel and K- transformations to generalized functions.
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In the present work, we extend the generalized Laplace transform 

defined by (1.2.1) to the certain class of generalized functions using the 

technique used in the extension of Convolution and K- transformations

by Zemanian [24] as

F(s) = < f(t), (sf)'1 e~st Lak{st) > , f e GL'a .... (1.5.2)

where GLa is a suitably chosen space.

1.6 Notations and Terminologv:-
Here we mention the most common notations and terminology's 

used in the development of the present work follows from that of 

Zemanian [24].

R“ and C“ denotes the real and complex n-dimensional Euclidean 

spaces respectively. Throughout this work x, y and t are real variables 

and s is complex variable.

By the compact set in R” we mean a closed and bounded set in R“. 

If I is an open set in Rn and K is compact set in Rn such that Kc/, then 

K is called compact subset of I.

A conventional function is a function whose domain is contained 

in Rn or Cn and whose range is either in R1 or C1.

A conventional function is said to be smooth if all its derivatives 

of all orders are continuous at all points of its domain.

If k is non-negative integer in R1 the partial differential with
k &

respect to t is denoted by D, ~ Qft.

The support of a continuous function f(t) defined on open set O in 

R” is the closure with respect to O of the set of points t where f(t) * 0.

Whenever a certain equation is a definition, the symbol — is used 

for equality.

A study of generalized Laplace transform Page no. 8



If the f is a generalized function on R1, the notation f(x) , x e R1 is 

used merely to indicate that the testing function, on which f is defined, x 

as their independent variable, it does not mean that f is a function of x.

denotes the number assigned to the element <j> in a testing 

function space by a member of the dual space.

D(I) denotes the space of smooth functions that have compact 

support. D’(I) is its dual space.
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