CHAPTER 2

CHARACTERIZATIONS

Chapter 2

CHARACTERIZATIONS

This chapter is devoted to obtain various characterizations of

0-distributive lattices. [9]

Theorem 2.1- Let L be a lattice with 0. Then the following statements are equivalent.

- 1.L is 0-distributive.
- 2.If a, a_{1,....}, a_n are elements of a lattice L such that

$$a \wedge a_1 = \dots = a \wedge a_n = 0$$
 then $a \wedge (a_1 \vee \dots \vee a_n) = 0$.

3.If A is an ideal and $\{A_i \mid i \in I\}$ is a family of ideals of L such that $A \cap$

$$A_i = (0)$$
 for all i then $A \cap (\vee_{i \in I} A_i) = (0)$.

- 4. Every maximal filter of L is a prime.
- 5. If M is a maximal filter of L, $L\setminus M$ is a minimal prime ideal.
- 6. If M is a maximal filter of L, L \setminus M is an ideal.
- 7. Every minimal prime semi ideal of L is a minimal prime ideal.
- 8. Every prime semi ideal of L contains a prime ideal.
- 9. Every proper filter of L is disjoint from a minimal prime ideal.
- 10. Every proper filter of L is disjoint from a prime ideal.
- 11. Every proper filter of L is contained in a prime filter.

12. For each non zero element a of L, there is a minimal prime ideal not containing a.

13. For each non zero element a of L, there is a prime ideal not containing a.

14. For each non zero element a of L is contained in a prime filter.

Proof:-

$$(1) \Rightarrow (2)$$

Follows by Result 1.3.1.

$$(2) \Rightarrow (3)$$

Suppose (2) holds.

Let $A \in I(L)$ and $\{A_i, i \in I\} \subseteq I(L)$ such that $A \cap A_i = \{0\}$ for all i.

To prove $A \cap (\bigvee_{i \in I} A_i) = (0]$.

Let $x \in A \cap (\vee_{i \in I} A_i)$ implies $x \in A$ and $x \in (\vee_{i \in I} A_i)$.

Then $x \in A$ and $x \le a_{i1} \lor \lor a_{in}$ where $a_{ij} \in A_i$

we get
$$x \wedge (a_{i1} \vee \vee a_{in}) = x(I)$$

Now $x \in A$ and $a_{ij} \in A_i$ implies $x \wedge a_{il} \in A$ and $x \wedge a_{il} \in A_l$.

Thus by data $x \wedge a_{i1} \in A \cap A_i = (0]$.

Therefore $x \wedge a_{ii} = 0$, similarly $x \wedge a_{ij} = 0$ for all a_{ij} .

By (2),
$$x \wedge (a_{i1} \vee \vee a_{in}) = 0(II)$$

From (I) and (II) we get x = 0.

Thus $A \cap (\vee_{i \in I} A_i) = (0]$.

$$(3) \Rightarrow (1)$$

To prove that L is 0-distributive.

Let $x \wedge y = 0$ and $x \wedge z = 0$.

hen $(x \wedge y] = (0]$ and $(x \wedge z] = (0]$.

i.e.
$$(x] \cap (y] = (0]$$
 and $(x] \cap (z] = (0]$.

By (3)
$$(x] \cap [(y] \lor (z]] = (0]$$
.

i.e.
$$(x \land (y \lor z)] = (0]$$
. i.e. $x \land (y \lor z) = 0$.

Hence L is 0-distributive.

$$(2) \Rightarrow (4)$$

Let M be any maximal filter of L.

To prove M is a prime filter.

Let
$$x, y \notin M$$
. $x, y \in L \setminus M$.

By Result (0.2.5), $a \wedge x = 0$ and $b \wedge y = 0$ for some a, $b \in M$.

Suppose $c = a \wedge b$ then $c \wedge x = 0$, $c \wedge y = 0$ and $c \in M$.

By (2),
$$c \wedge (x \vee y) = 0$$
.

If $x \lor y \in M$, then $c \land (x \lor y) \in M$.

Thus we get $0 \in M$; a contradiction.

Thus $x \notin M$ and $y \notin M$ imply $x \vee y \notin M$.

Hence M is a prime filter.

$$(4) \Rightarrow (5)$$

Let M be a maximal filter of L.

To prove that $L \setminus M$ is a minimal prime ideal.

By Result 0.2.11, $L \setminus M$ is a minimal prime semi ideal.

To prove $L \setminus M$ is an ideal.

i.e. Prove that if $x, y \in L \setminus M$ then $x \vee y \in L \setminus M$.

By (4), M is a prime filter.

If x, y \notin M, then x \vee y \notin M implies x \vee y \in L \ M.

Hence $L \setminus M$ is a minimal prime ideal.

$$(5) \Rightarrow (6)$$

Obviously true.

$$(6) \Rightarrow (7)$$

Let N be any minimal prime semi ideal of L.

To prove N is a minimal prime ideal.

By Result 0.2.11, $L \setminus N$ is a maximal filter.

By (6), $L \setminus (L \setminus N)$ is an ideal.

Hence N is a minimal prime ideal.

$$(7) \Rightarrow (8)$$

Let A be any prime semi ideal of L.

To prove prime semi ideal A of L contains a prime ideal

By Result 0.2.3 $N \subseteq A$ for some minimal prime semi ideal N.

By (7), N is a prime ideal.

$$(8) \Rightarrow (10)$$

Let A be any proper filter of L.

To prove A is disjoint from a prime ideal.

Then $L \setminus A$ is a prime semi ideal by Result 0.2.2.

By (8), $B \subseteq (L \setminus A)$ for some prime ideal B.

Therefore $A \cap B = \phi$.

$$(11) \Rightarrow (14)$$

Obviously true.

$$(5) \Rightarrow (9)$$

Let A be any proper filter of L.

To prove A is disjoint from a minimal prime ideal.

By Result 0.2.1, $A \subseteq M$ for some maximal filter M.

By (5), $L \setminus M$ is a minimal prime ideal.

Therefore $A \cap (L \setminus M) = \emptyset$.

$$(9) \Rightarrow (12)$$

Let a be any non zero element of L.

Then [a) is proper filter.

To prove a minimal prime ideal not containing a.

By (9), [a) is disjoint from the minimal prime ideal N.

Thus $a \notin N$.

$$(12) \Rightarrow (13)$$

Obviously true.

$$(13) \Rightarrow (14)$$

Let a be any non zero element of L.

To prove a is contained in a prime filter.

By (3), there exists a prime ideal A such that $a \notin A$.

Then $L \setminus A$ is a prime filter by Result (0.2.10).

Therefore $a \in L \setminus A$.

$$(14) \Rightarrow (1)$$

To prove that L is 0-distributive.

Let a, b, $c \in L$ and let $a \land b = 0$ and $a \land c = 0$.

Suppose $a \wedge (b \vee c) \neq 0$.

By (14), $a \wedge (b \vee c) \in B$ for some prime filter B.

Then $a \in B$ and $b \lor c \in B$. Thus $a \in B$ and $b \in B$ or $c \in B$.

Since B is a prime filter.

Thus $(a \in B \text{ and } b \in B)$ or $(a \in B \text{ and } c \in B)$.

i.e. $a \wedge b \in B$ or $a \wedge c \in B$.

Thus in either case $0 \in B$; a contradiction.

Hence $a \wedge (b \vee c) = 0$.

Therefore L is 0-distributive.

Thus we have proved

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$$

$$(2) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (10) \Rightarrow (11) \Rightarrow (14) \Rightarrow (1)$$

$$(5) \Rightarrow (9) \Rightarrow (12) \Rightarrow (13) \Rightarrow (14) \Rightarrow (1)$$

Hence all the statements are equivalent.

Theorem 2.2- Let L be a lattice with 0. Then the following statements are equivalent.

L is 0-distributive.

- 2.If A is a non empty subset and B is a proper filter intersecting A in L, there is a minimal prime ideal containing A* and disjoint from B.
- 3. If A is a non empty subset of L and B is a proper filter intersecting A, there is a prime filter containing B and disjoint from A*.
- 4. If A is a nonempty subset of L and B is a prime semi ideal not containing A, there is a minimal prime ideal containing A* and contained in B.
- 5. If A is a nonempty subset of L and B is a prime semi ideal not containing A , there is a prime filter containing $L \setminus B$ and disjoint from A^* .
- 6. For each non zero element a of L and each proper filter B containing a, there is a prime ideal containing (a)* and disjoint from B.
- 7. For each non zero element a of L and each proper filter B containing a, there is a prime filter containing B and disjoint from (a)*.
- 8. For each non zero element a of L and each prime semiideal not containing a ,there is a prime ideal containing (a)* and contained in B.
- 9. For each non zero element a of L and each prime semiideal &

not containing a ,there is a prime filter containing $L \setminus B$ and is disjoint from (a)*.

Proof:-

$$(1) \Rightarrow (2)$$

Let A be a non empty subset of L and B be any proper filter such that

 $A \cap B \neq \phi$.

To prove a minimal prime ideal containing A* and disjoint from B.

By Result 0.2.2, L \ B is a prime semi ideal.

Then there exists a minimal prime semi ideal N such that $N \subseteq L \setminus B$

by Result 0.2.3.

Thus $N \cap B = \phi$ and $A \not\subset L \setminus B$.

Also as $A \subset N$ we get $A^* \subseteq N$ by Result 0.2.12.

Since L is 0-distributive, N is a minimal prime ideal [see Theorem 2.1(7)].

$$(2) \Rightarrow (3)$$

Let A be a non empty subset of L and B is a proper filter such that

 $A \cap B \neq \phi$.

To prove a prime filter containing B and disjoint from A*.

By (2), there exists a minimal prime ideal say Q such $A^*\subseteq Q$ and

$$Q \cap B = \emptyset$$
.

 $L \setminus Q$ is a prime filter containing B and disjoint from A* by Result (0.2.10).

$$(3) \Rightarrow (5)$$

Let A be a non empty subset of L and B is a prime semi ideal not containing A.

As B
$$\subset$$
 A we get A \cap L \ B $\neq \phi$.

To prove a prime filter containing $L \setminus B$ and disjoint from A^* .

By Result 0.2.2, L \ B is a maximal filter.

By (3), there exists prime filter Q such that $L \setminus B \subseteq Q$ and

$$Q \cap A^* = \phi$$
.

$$(5) \Rightarrow (9)$$

Let a be a nonzero element of L and B is a prime semi ideal not containing a. i.e. a∉B.

To prove a prime filter containing $L \setminus B$ and disjoint from (a)*.

By (3) , there exists prime filter F such that $L \setminus B \subseteq F$ and

$$F \cap (a)^* = \phi$$
.

$$(9) \Rightarrow (1)$$

Let a be a non zero element of L.

To prove L is 0-distributive lattice.

Then [a) is proper filter of L.

By Result 0.2.2, $L \setminus [a]$ is a prime semi ideal and $a \notin L \setminus [a]$.

By (9), there exists prime filter F such that $L \setminus (L \setminus [a)) \subseteq F$.

i.e. [a) \subseteq F. Thus $a \in$ F.

Hence L is 0-distributive, by Theorem 2.1 [14].

$$(8) \Rightarrow (9)$$
 and $(6) \Rightarrow (7)$ by Result $(0.2.10)$.

$$(3) \Rightarrow (5), (2) \Rightarrow (4) \text{ and } (7) \Rightarrow (9) \text{ by Result } (0.2.2)$$
.

$$(4) \Rightarrow (8)$$
 and $(2) \Rightarrow (6)$ by Result $(0.2.6)$.

Thus we have proved

(1)
$$\Rightarrow$$
 (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (9) \Rightarrow (1).

$$(1) \Rightarrow (2) \Rightarrow (4) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1).$$

(1)
$$\Rightarrow$$
 (2) \Rightarrow (6) \Rightarrow (7) \Rightarrow (9) \Rightarrow (1).

Hence all the statements are equivalents.

Theorem 2.3- Let L be a lattice with 0. Then the following statements are equivalent.

1. L is 0-distributive.

- 2. If A and B are filters of L such that A and B° are disjoint, there is a minimal prime ideal containing B° and disjoint from A.
- 3. If A and B are filters of L such that A and B° are disjoint, there is a minimal prime filter containing A and disjoint from B°.
- 4. If A is a filter of L and B is prime semi ideal containing A°, there is a minimal prime ideal containing A° and contained B.
- 5. If A is a filter of L and B is prime semi ideal containing A° , there is a prime filter containing $L \setminus B$ and disjoint from A° .
- 6. For each nonzero element a in L and each filter A disjoint from (a)*, there is a prime ideal containing (a)* and disjoint from A.
- 7. For each nonzero element a in L and each filter A disjoint from (a)*, there is a prime filter containing A and disjoint from (a)*.
- 8. For each nonzero element a in L and each prime semi ideal B containing (a)*, there is a prime ideal containing (a)* and in B.
- 9. For each nonzero element a in L and each prime semi ideal B containing(a)*, there is a prime filter containing L \ B and disjoint (a)*.

Proof:-

 $(1) \Rightarrow (2)$

Suppose (1) holds.

Let A and B be filters of L such that $A \cap B^{\circ} = \phi$.

To prove a minimal prime ideal containing B° and disjoint from A.

By Result 0.2.13, there is minimal prime semi ideal N such that $B^{\circ} \subseteq N$ and $N \cap A = \emptyset$.

Since L is 0-distributive it follows that N is a minimal prime ideal.

[See Theorem 2.1 (7)].

$$(2) \Rightarrow (3)$$

It follows by Result 0.2.10.

$$(3) \Rightarrow (5)$$

Suppose (3) holds.

Let A be filter of L and let B be a prime semi ideal containing A° such that $A^{\circ} \subseteq B$.

To prove a prime filter containing $L\setminus B$ and disjoint from A° .

By Result 0.2.2, $L \setminus B$ is a filter.

By (3), there exists prime filter Q containing $L \setminus B$ and disjoint from A° .

i.e.
$$L \setminus B \subseteq Q$$
 and $A^{\circ} \cap Q = \phi$.

$$(5) \Rightarrow (9)$$

Let a be non zero element of L and let B be a prime semi ideal containing (a)*.

Then [a) is a proper filter of L.

To prove a prime filter containing L\ B and disjoint from (a)*.

By Result 0.2.2, L \ B is a filter.

Consider $A^{\circ} = [a)^{\circ}$.

As $x \in A^{\circ}$ then $x \in [a)^{\circ}$.

We get $x \wedge t = 0$ for some $t \in [a)$.

Then $t \ge a$ and $x \land t = 0$ implies $x \land a = 0$.

Hence $x \in (a)^*$.i.e. $x \in B$.

Therefore $A^{\circ}\subseteq B$.

By (5), there exists a prime filter Q such that $L \setminus B \subseteq Q$ and

disjoint with A°.

Then $Q \cap A^{\circ} = \phi$ implies $Q \cap [a)^{\circ} = \phi$.

By result 0.2.6, $Q \cap (a)^* = \phi$

 $(9) \Rightarrow (1)$

Suppose (9) holds.

We have to prove L is 0-distributive.

Let a be nonzero element of L.

Then [a) is a proper filter of L.

We get $L \setminus [a]$ is prime semi ideal not containing a by Result 0.2.2.

Since (a) \cap (a)* = (0] \subset L\[a), it follows L\[a] contains (a)*.

By (9), there is prime filter Q containing [a) and disjoint from (a)*.

Clearly $a \in Q$. It follows that L is 0-distributive. [see Theorem 2.1(14)]

$$(2) \Rightarrow (4)$$

Suppose (2) holds.

Let A be filter of L and be B is prime semi ideal containing A° such that $A^{\circ} \subseteq B$.

To prove a minimal prime ideal containing A° and contained in B.

By Result 0.2.2, L\B is a filter.

By (2) , there exists a minimal prime ideal Q such that $A^{\circ} \subseteq Q$ and

$$(L \setminus B) \cap Q = \emptyset$$
. i.e. $Q \subseteq B$.

$$(4) \Rightarrow (8)$$

Let a be non zero element of L and B is prime semi ideal containing (a)* such that (a)* \subseteq B.

since [a) is a proper filter of L.

To prove a prime ideal containing (a)* and contained in B.

By Result 0.2.6, ([a)) $^{\circ}$ =(a)*. $^{\circ}$

By (4), there exists a minimal prime ideal P such that (a)* \subseteq P \subseteq B.

$$(8) \Rightarrow (9)$$

Let a be non zero element of L and B is prime semi ideal containing (a)* such

that $(a)^* \subseteq B$.

To prove a prime filter containing $L\setminus B$ and disjoint from (a)*.

By (8), there is prime ideal P such that (a)* \subseteq P \subseteq B.

Then $L \setminus P$ is prime filter by Result 0.2.10 such that $L \setminus B \subseteq L \setminus P$ and $L \setminus P \cap$

$$(a)^* = \phi$$

$$(2) \Rightarrow (6)$$

Let a be non zero element of L and A is a filter disjoint from (a)*

then [a) is a proper filter of L.

By Result 0.2.6 (a)* =([a])°.

By (2), there exists a minimal prime ideal P such that (a) $^{\circ} \subseteq P$ and

$$P \cap A = \phi$$
.

i.e. (a) * \subseteq P and P \cap A = ϕ .

$$(6) \Rightarrow (7)$$

Let a be non zero element of L and A is filter of L such that

$$(a)^* \cap A = \phi$$
.

To prove a prime filter containing A and disjoint from (a)*.

By (6), there is prime ideal P such that (a) $^{\circ} \subseteq P$ and $P \cap A = \phi$.

By Result 0.2.10, $L \setminus P$ is prime filter such that (a) $^* \cap L \setminus P = \phi$ and $\mathbf{A} \subseteq L \setminus P$.

$$(7) \Rightarrow (9)$$

Let a be non zero element of L and B is prime semi ideal of L

such that $(a)^* \subseteq B$.

To prove a prime filter containing $L \setminus B$ and disjoint from (a)*.

We get $L \setminus B$ is filter in L by Result 0.2.2.

Such that (a) * \cap L\ B = ϕ

By (7), there is prime filter Q such that $L \setminus B \subseteq Q$ and (a)* $\bigcap Q = \emptyset$.

Thus we have proved

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (9) \Rightarrow (1)$$
.

$$(1) \Rightarrow (2) \Rightarrow (4) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1)$$
.

$$(1) \Rightarrow (2) \Rightarrow (6) \Rightarrow (7) \Rightarrow (9) \Rightarrow (1)$$
.

Hence all the statements are equivalents.

Theorem 2.4- Let L be a lattice with 0. Then the following statements are equivalent.

- 1. L is 0-distributive.
- 2. For any non empty subset A of L, A* is the intersection of all the minimal prime ideal not containing A.
- 3. For any filter A of L, A° is a the intersection of all minimal prime ideals disjoint from A.

- 4. For each a of L, (a)* is an ideal.
- 5. Every normal semi ideal of L is an intersection of minimal prime ideals.
- 6. For any ideal A of L and any family of ideals $\{A_i \mid i \in I\}$ of L,

$$(A \cap [\vee_{i \in I} A_i])^* = \bigcap_{i \in I} (A \cap A_i)^*$$
.

7. For any three ideals A, B, C of \in L

$$(A \cap [B \vee C])^* = (A \cap B)^* \cap (A \cap C)^*.$$

8. For any finite numbers of filters A, A₁....A_n of L

$$(\mathbf{A} \vee (\mathbf{A}_1 \cap ... \cap \mathbf{A}_n))^{\circ} = (\mathbf{A} \vee \mathbf{A}_1)^{\circ} \cap ... \cap (\mathbf{A} \vee \mathbf{A}_n)^{\circ}.$$

9. For any filters A, B,C of L

$$(A \lor (B \cap C))^{\circ} = (A \lor B)^{\circ} \cap (A \lor C)^{\circ}.$$

10. For all a, b, c in L,

$$(a \wedge (b \vee c))^* = (a \wedge b)^* \cap (a \wedge c)^*.$$

Proof:-

$$(1) \Rightarrow (2)$$

Follows by Result 0.2.12 and theorem 2.1 (7)

$$(1) \Rightarrow (3)$$

Follows by Result 0.2.14 and theorem 2.1 (7).

$$(3) \Rightarrow (4)$$

Follows by Result 0.2.6 and (a)* = $[a)^{\circ}$. Hence result.

$$(4) \Rightarrow (1)$$

We have to prove L is 0-distributive.

Let a, b, $c \in L$ such that $a \wedge b = 0$ and $a \wedge c = 0$.

Then b, $c \in (a)^*$.

By (4),
$$b \lor c \in (a)^*$$
.

Thus we get $a \wedge (b \vee c) = 0$.

Hence L is 0-distributive.

$$(3) \Rightarrow (5)$$

Since a semi ideal A of L is normal if and only if $A = B^*$ for some semi ideal B.

$$(5) \Rightarrow (4)$$

By Result 0.2.6, (a)* = (a]* for all $a \in L$. Hence the result.

$$(2) \Rightarrow (6)$$

Suppose (2) holds.

To prove $(A \cap [\lor A_i])^* = \bigcap_{i \in I} (A \cap A_i)^*$.

Let $A \in I(L)$ and $\{A_i / i \in I\} \subseteq I(L)$.

If Q is any minimal prime ideal of L such that $A \cap [\vee A_i\,] \not\subset Q$,

then $(A \cap A_j) \not\subset Q$ for some $j \in I$.

By (2), it follows that

$$(A \cap [\lor A_i])^* \supseteq \cap_i (A \cap A_i)^*$$
.

The reverse inclusion being obvious.

Hence
$$(A \cap [\lor A_i])^* = \cap_i (A \cap A_i)^*$$
.

$$(6) \Rightarrow (7)$$

Obviously true.

$$(7) \Rightarrow (10)$$

Follows by Result 0.2.6.

$$(10) \Rightarrow (1)$$

We have to prove L is 0-distributive.

Suppose (10) holds.

Let a, b, $c \in L$ such that $a \wedge b = 0$ and $a \wedge c = 0$.

Then
$$(a \wedge b)^* = L = (a \wedge c)^*$$
.

By (10),
$$(a \wedge (b \vee c))^* = L$$
.

It follows that $a \wedge (b \vee c) = 0$.

Thus L is 0-distributive.

$$(3) \Rightarrow (8)$$

Suppose (3) holds and let A , A $_1$A $_n$ be the filters of L.

To prove $(A \lor (A_1 \cap ... \cap A_n))^\circ = (A \lor A_1)^\circ \cap ... \cap (A \lor A_n)^\circ$.

If Q is any minimal prime ideal of L such that

$$Q \cap (A \vee (A_1 \cap ... \cap A_n)) = \emptyset$$
, then $Q \cap A = \emptyset$ and $g \cap (A_1 \cap ... \cap A_n) = \emptyset$

So $Q \cap (A \vee A_i) = \phi$ for some $i \in I$.

By (3), it follows that

$$(A \lor (A_1 \cap ... \cap A_n))^{\circ} \supseteq (A \lor A_1)^{\circ} \cap ... \cap (A \lor A_n)^{\circ}.$$

The reverse inclusion being obvious.

$$(8) \Rightarrow (9)$$

Obviously true.

$$(9) \Rightarrow (10)$$

Suppose (9) holds and let a, b, c, $\in L$.

To prove $(a \land (b \lor c))^* = (a \land b)^* \cap (a \land c)^*$.

Then
$$([a) \lor ([b) \cap [c))$$
) $\circ = ([a) \lor [b)) \circ \cap ([a) \lor ([c)) \circ$.

Now
$$([a) \lor ([b) \cap [c))) \circ = ([a) \lor [b \lor c)) \circ = ([a \land (b \lor c)) \circ =$$

 $(a \land (b \lor c))$ * by result (0.2.6).

And
$$([a)\vee [b))$$
 $^{\circ}\cap ([a)\vee ([c))$ $^{\circ}=([a\wedge b))$ $^{\circ}\cap ([a\wedge c))$ $^{\circ}=$

$$([a \land b))^* \cap ([a \land c))^*$$
 by Result 0.2.6.

Thus
$$(a \land (b \lor c))^* = (a \land b)^* \cap (a \land c)^*$$
.

Thus we have proved

$$(1) \Rightarrow (2) \Rightarrow (5) \Rightarrow (4) \Rightarrow (1)$$
.

$$(1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$$
.

$$(1) \Rightarrow (2) \Rightarrow (6) \Rightarrow (7) \Rightarrow (10) \Rightarrow (1)$$
.

$$(1) \Rightarrow (3) \Rightarrow (8) \Rightarrow (9) \Rightarrow (10) \Rightarrow (1)$$
.

Hence all the statements are equivalents.

Theorem 2.5 - Let L be a lattice with 0. Then the following statements are equivalent.

- 1.L is 0-distributive.
- 2. For any finite numbers of ideals A, A $_1$, ... A $_n$ of L

$$((A \lor A_1) \cap ... \cap (A \lor A_n))^* = A^* \cap (A_1 \cap ... \cap A_n)^*.$$

3. For any three ideals A, B, C of L

$$((A \vee B) \cap (A \vee C))^* = A^* \cap (B \cap C)^*.$$

4. For any filter A of L and any family of filters $\{A_i \mid i \in I\}$ of L,

$$[\vee_{i\in I}(A\cap A_i)]^{\circ}=A^{\circ}\cap [\vee_{i\in I}A_i]^{\circ}.$$

5. For any three filters A, B, C of L

$$[(A \cap B) \vee (A \cap C)] \stackrel{\circ}{=} A^{\circ} \cap [B \vee C] \stackrel{\circ}{\cdot}.$$

6. For all a,b,c in L

$$((a \lor b) \land (a \lor c))^* = (a)^* \land (b \land c)^*$$

7. For any family of ideals $\{A_i / i \in I\}$ of L,

$$[\vee_{i\in I}A_i]^* = \cap_{i\in I}A_i^*.$$

8. For any two ideals A, B of L,

$$|\mathbf{A} \vee \mathbf{B}|^* = \mathbf{A}^* \cap \mathbf{B}^*.$$

9. For any finite numbers of filters $A_1, ..., A_n$ of L

$$(A_1 \cap ... \cap A_n) \circ = A_1 \circ \cap ... \cap A_n \circ$$
.

10. For any two of filters A, B of L

$$(A \cap B) \circ = A \circ \cap B \circ$$
.

11. For all a,b in L

$$(a \lor b)^* = (a)^* \cap (b)^*.$$

- 12. I(L) is pseudocomplemented.
- 13. I(L) is 0-distributive.

proof:-

$$(1) \Rightarrow (2)$$

Suppose (1) holds and A, $A_1 ..., A_n$ be ideals of L.

To prove
$$((A \lor A_1) \cap ... \cap (A \lor A_n))^* = A^* \cap (A_1 \cap ... \cap A_n)^*$$
.

If Q is any minimal prime ideal of L such that $A_1 \cap ... \cap A_n \not\subset Q$ be ideals of L.

It follows that $((A \lor A_1) \cap ... \cap (A \lor A_n))^* \supseteq A^* \cap (A_1 \cap ... \cap A_n)^*$.

The reverse inclusion is obvious.

$$(2) \Rightarrow (3)$$

Obviously true.

$$(3) \Rightarrow (6)$$

Suppose (3) holds and let a, b, $c \in L$.

To prove
$$((a \lor b) \land (a \lor c))^* = (a)^* \cap ((b \land c)^*$$
.

Then
$$(((a) \lor (b)) \cap ((a) \lor (c)))^* = (a)^* \cap ((b) \cap (c))^*$$
.

Now
$$(((a) \lor (b)) \cap ((a) \lor (c)))^* = ((a \lor b) \cap ((a \lor c))^* =$$

$$(((a\lor b)\land ((a\lor c)))^* = ((a\lor b)\land (a\lor c))^*.$$

And (a] *
$$\cap$$
 ((b] \cap (c]))* = (a) * \cap ((b \wedge c])* = (a)* \cap ((b \wedge c)* by

Result 0.2.6.

Thus
$$((a \lor b) \land (a \lor c))^* = (a)^* \cap ((b \land c)^*.$$

$$(6) \Rightarrow (11)$$

By (6), we have
$$((a \lor b) \land (a \lor c))^* = (a)^* \cap ((b \land c)^*$$
.

By taking c = b, we get $(a \lor b)^* = (a)^* \cap (b)^*$.

$$(11) \Rightarrow (1)$$

Suppose (11) holds.

To prove L is 0-distributive.

Let a, b, $c \in L$ such that $a \wedge b = 0$ and $a \wedge c = 0$.

Then $a \in (b)^*$ and $a \in (c)^*$ implies $a \in (b)^* \cap (c)^* = (b \lor c)^*$

by Result 0.2.6.

It follows that $a \wedge (b \vee c) = 0$.

Hence L is 0-distributive.

$$(1) \Rightarrow (4)$$

Suppose (1) holds.

To prove
$$(\vee_{i \in I} (A \cap A_i))^{\circ} = A^{\circ} \cap (\vee_{i \in I} A_i)^{\circ}$$
.

Then for any filter A of L, A° is the intersection of all minimal prime ideals

disjoint from A [see theorem 2.4 (3)].

Let
$$A \in F(L)$$
 and $\{A_i / i \in I\} \subseteq F(L)$.

If Q is any minimal prime ideal of L such that

$$Q \cap [\vee_{i \in I} (A \cap A_i)] = \emptyset$$
 then $Q \cap A = \emptyset$ or $Q \cap [\vee_{i \in I} A_i)] = \emptyset$

It follows that

$$(\vee_{i \in I} (A \cap A_i))^{\circ} \subseteq A^{\circ} \cap (\vee_{i \in I} A_i)^{\circ}.$$

The reverse inclusion is obviously.

Hence
$$(\vee_{i \in I} (A \cap A_i))^{\circ} = A^{\circ} \cap (\vee_{i \in I} A_i)^{\circ}$$
.

$$(3) \Rightarrow (5)$$

Obviously true.

(5) \Rightarrow (6) similar to (3) \Rightarrow (6) with obvious modification.

$$(1) \Rightarrow (7)$$

Suppose (1) holds.

To prove
$$[\vee_{i \in I} A_i] *= \bigcap_{i \in I} A_i^*$$
.

Then for any ideal A and for any family of ideals $\{A_i / i \in I\}$ of L,

$$(A \cap [\vee_{i \in I} A_i])^* = \cap_{i \in I} (A \wedge A_i)^*$$
. [see Theorem 2.4 (6)].

Taking $A = \bigvee_{i \in I} A_i$ we get

$$[\vee_{i\in I}A_i]^* = \cap_{i\in I}A_i^*.$$

$$(7) \Rightarrow (8)$$

Obviously true.

$$(8) \Rightarrow (11)$$

Suppose (8) holds and let $a, b \in L$.

To prove $(a \lor b)^* = (a)^* \cap (b)^*$.

Then $((a) \lor (b))^* = (a)^* \cap (b)^*$.

Now $((a) \lor (b))^* = ((a \lor b))^* = (a \lor b)^*$.

And (a] * \cap (b]* = (a) * \cap (b)* by Result 0.2.6.

Thus $(a \lor b)^* = (a)^* \cap (b)^*$.

$$(1) \Rightarrow (9)$$

Suppose (1) holds.

To prove $(A_1 \cap ... \cap A_n) \circ = A_1 \circ \cap ... \cap A_n \circ$.

Then for any finite numbers of filters A₁, ... A_n of L,

$$(A \lor (A_1 \cap ... \cap A_n)) \circ = (A \lor A_1) \circ \cap ... \cap (A \lor A_n) \circ.$$

[see theorem 2.4 (8)]

Taking $A=(A_1 \cap ... \cap A_n)$ we get

$$(A_1 \cap ... \cap A_n) \circ = A_1 \circ \cap ... \cap A_n \circ$$
.

$$(9) \Rightarrow (10)$$

Obviously true.

$$(10) \Rightarrow (11)$$

suppose (10) holds and let $a, b \in L$.

To prove $(a \lor b)^* = (a)^* \cap (b)^*$.

Then $([a) \vee [b))^\circ = [a)^\circ \cap [b)^\circ$.

Now $([a) \lor [b)) \circ = ([a \lor b)) \circ = (a \lor b)^*$

and [a) $^{\circ} \cap$ [b) $^{\circ} = (a) * \cap (b) *$ by Result 0.2.6.

Thus $(a \lor b)^* = (a)^* \cap (b)^*$.

 $(1) \Rightarrow (12)$

Suppose (10) holds.

To prove I(L) is pesudocomplemented.

Let $A \in I(L)$. Then A^* is an ideal [see Theorem 2.4 (2)].

If $B \in I(L)$ such that $A \cap B = (0]$ and $x \in B$, then $a \wedge x = 0$ for all $a \in A$ and so $x \in A^*$.

Thus $B \subseteq A^*$.

It follows that A* is pseudocomplement of A.

 $(12) \Rightarrow (13)$

Follows by Result 1.3.2.

 $(13) \Rightarrow (1)$

Suppose (13) holds.

To prove L is 0-distributive.

Let a, b, $c \in L$ such that $a \wedge b = 0$ and $a \wedge c = 0$.

Then (a) \cap (b) = (0] = (a) \cap (c).

By (13) (a] \cap ((b] \vee (c]) = (0].

i.e. $(a \wedge (b \vee c]) = (0]$

It follows that $a \wedge (b \vee c) = 0$.

Hence L is 0-distributive.

Thus we have proved

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (6) \Rightarrow (11) \Rightarrow (1).$$

$$(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (11) \Rightarrow (1).$$

$$(1) \Rightarrow (7) \Rightarrow (8) \Rightarrow (11) \Rightarrow (1)$$
.

$$(1) \Rightarrow (9) \Rightarrow (10) \Rightarrow (11) \Rightarrow (1)$$
.

$$(1) \Rightarrow (12) \Rightarrow (13) \Rightarrow (1)$$
.

Hence all the statements are equivalents.

REFERENCES

- 1. G. Gratzer, Lattice Therory First concepts and Distributive Lattices, Sanfrancisco W.H. Freeman, 1971.
- 2. C.Jayaram , Indian J. Pure appl. Math. 17 (1986),331-37.
- 3. Y. S. Pawar and N. K Thakare, Canad. Math. Bull 21 (1978), 469-75.
- 4. Y. S. Pawar and N. K Thakare, Peroid. Math. Hung .13 (1982), 237-46.
- 5. G. Szasz .Introduction to Lattice Theory, Academic Press, New York, 1963.
- 6. J. Varlet, Bull. Soc. Roy. Sci. Liege, 37 (1968), 149-58.
- 7. P. V. Venkatanarasimhan, Proc. Amer. math. Soc. 28 (1971),9-17.
- 8. P. V. Venkatanarasimhan, Col. Math. 30 (1974),203-12.
- 9. P. V. Venkatanarasimhan, Indian J. pure appl. Math.32(3): 315 324, March 2001.