
chapter I

NOTIONS AND CONCEPTS.

".....the electromagnetic 

field - even in the null case 

leaves such a distinctive 

imprint on the geometry in 

which, it lies that the 

electromagnetic field follows 

from the geometry1*

GERDCH (1965)



1 INTRODUCTION

The existance of intense magnetic field in inter­
stellar objects justifies the study of electromagnetic 
phenomena in cosmic physics. The decisive inportance of 
electromagnetic field in inter-stellar space and inter- 
galactic space necessiciates the development of magneto­
hydrodynamics (MHD) to Relativistic magnetohydrodynamics 
(RMHD). This explains the effects of electromagnetic fields 
on the motion of charged particles in space (Alfv. 1963).

The rapid progress in the branch of RMHD can be 
visualised by the work of Lichnerowicz (1967), who gave an 
elegant account of the basic equations for RMHD, with 
reference to the existance and uniqueness of solutions. The 
other contributors in this field are Yodzis (1971), DeBray 
(1972), Date (1973), Shaha (1973). Maugin (1972) generalised 
the Lichnerowicz's formalism to the form of a self-consistent 
scheme incorporating electromagnetic field interacting 
with matter field. In various successive series of papers, 
Maugin and Eringen (1972 a), Maugin and Eringen (1972 b), 
Maugin and Eringen (1972 c) have Invastigated various aspects 
of RMHD. The evolution of supermassive relativistic objects 
like pulsars, neutron stars at the end of thermo-nuclear 
reactions show ferro-magnetic properties. Newringer and 
Rosenweig (1964) gave synthesis of the ferro-fluid. A 
classical concept of steady state in RMHD has introduced by
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Yodzis (1971) in order to obtain a relativistic analog of 
ferraro's theorem. The classical concept as considered by 
Yodzis is modified by Banerji (1974). cissiko (1978) has 
established the general relativistic equations characterising 
the ferro fluid. G. Prasad (1980) has discussed the implica­
tion of an electric counterpart of ferraro’s law of isorota­
tion in the case of pulsars. Ray and Banerji (1982) studied 
the growth of magnetic energy density in the ferro fluid 
in collapsing state.

These works have prompted us to study the properties 
of relativistic perfect ferro fluid with infinite electrical 
conductivity and variable magnetic permeability (P-magneto­
fluid) .

The weak conservation laws and law of isorotation 
pertaining to the space time of F-magnetofluid are the main 
streams of the dissertation work.

2. Stress-energy tensor for ferro magneto fluid s

To estploit the properties of the relativistic 
perfect fluid with infinite electrical conductivity and 
constant magnetic permeability, Lichnerowicz (1967) used 
the stress energy tensor

*

Tab = ( + p + jaH2) UaUb - (p + | |AH2)gab-|iHaHb. ...(2.1)

The modified form of the stress-energy tensor for the
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polarised magnetised perfect fluid with infinite electrical 
conductivity and constant magnetic permeability established 
through action principle is given by Maugin (1972) in the 
form,

where
Ba is the magnetic induction vector, 
ha*3 is the projection operator given as,

hab = gab _ ^yb # ... (2.3)

Ha is the magnetic field vector,
Ua is the flow vector.

with
UaUa » 1, ... (2.4)

H®Ha • - H2 , ... (2.5)

UaHa * 0 ... (2.6)

If we consider the ferreae fluid then the magnetic 
induction vector, magnetic field vector and polarization 
vector are related by (Cissoko, 1978).

B = H + M, M ® X B. ... (2.7)

The ferret's fluid is suppose to have isotropic properties, 
so we write.

to to1
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B = j* H • • • (2.8)
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Tab ■ (<^ + p + 2ra) U U - [p + 2m - m|i] gah-jiH^ . ..(2.14)

This form of stress energy tensor characterizes the 
properties of infinitely conducting ferron-magneto fluid 
with variable magnetic permeability. Hereafter throughout 
the work we write ferro-magnetofluid as F-magnetofluid 
denoted by stress energy tensor (2.14).

3. Contractions of stress-energy tensor T s

We perform successive contractions of stress-energy 
tensor (2.14) characterising the F-magnetofluid as follows.

Tab Ua - ( ^ + mji) U15. ... (3.1)

By using condition (2.4) we get,

Tab UaUb - ( ^ + m |i). ... (3.2)

From equations (2.5) and (2.6) we obtain,

Tab He- (p + 2m - mjl)Hb + }iH2Hb .

Is
> p*

p* vs s* (D o' §CMH•CM

n 3to

H Hi * W CD ft
tO

|M %

£+ Vf a vs % •d ft <d *§ o> ft u. o vs

(3.3)
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Also by contracting equation (3.3) by Hb we get,

Tab HaHb = ( P - m }i) H2 . ... (3.4)

It follows from equations (3.2) and (3.4), the time-like 
eigen-value is ( + mji) and the space-like eigen-value
is (p - m|i)H2.

The contraction of equation (3.3) with 
furnishes,

Tab H » 0. ... (3.5)
o ~

The trace of the stress-energy tensor Tab(2.l4) is,

T » Tab g^b - 3p - 4m (1 - |i)^J . ... (3.6)

We transvect the stress-energy tensor Tab (2.14) with the 

projection operator hab and use equations (2.4) and (2.6) 
we get.

Tab h^ = - ( 3p + 4m - 3jim). ... (3.7)

4. Energy Conditions s 
•%

We discuss below the energy conditions to be 
satisfied by the P-magnetofluid.
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(i) The WEAK ENERGY conditions state that the stress- 

energy tensor Tal3 at each point obeys the inequality 

condition#

Tab UaUb > 0 . ... (4.1)

In case of F-magnetofluid we have from equation (4.1)

( ^ + m ja) ^ 0. ... (4.2)

From this# we conclude that the total internal energy 

density of the F-magnetofluid is non-negative.

(ii) The well-known ENERGY CONDITION (Hawking and Ellis# 

1968) implies that#
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(iii) The anti-symmetric rotation tensor

= U[a;b] * u[a U b]u_ u ... (5.3)

where the term,
Ua = ua?b U*5 . ... (5.4)

is known as the acceleration.

5. Kinematics of fluid flow s

The term **kinematicalH quantities have definite 
dynamical implications for the time development of the 
gravitational field.

The kinematical parameters associated with the 
time-like congruence Ua of the fluid flow according to 
Greenberg (1970) are,

(i) The expansion parameter

6 - Ua ... (5.1)?a

We have projection operator
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hab * 9ab “ UaUb • (5.5)

with the properties.

ha - 3 - hab ^ - O' (5.6)

This shows that h^ is 3-space projection operator which 

is orthogonal to fluid flow. The shear tensor and the 

rotation tensor are trace free.

i.e., 6 a = 0 = ... (5.7)

Also by expressions (5.2) and (5.3) we have

tfabDb= “ab^-O- ... (5.8)

On the same line, it follows from the unitary character of 

the flow vector that.

ir ua ■ o . ... (5.9)

The invariants of these tensors are defined as,

£f 6" ab = 2 6" 2
ab (5.10)

Cx>ab OJab = 2 CO2 . ... (5.11)
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where

^ab tbe RiccA tensor#

Tab tbe energy-momentum tensor#

K is the gravitational constant.

Ernstein's field equations describe how the gravitational 

field raps up the space-time surrounding the matter but 

do not give any information about the motion of objects in 

the space-time.

We use the Einstein's field equations (6.1) to 

write the Ricci tensor in the form of the stress-energy 

tensor as given by#

1
Rab « - K ( Tab - --- Rgab ). ... (6.2)

In order to get Ricci scalar we inner multiply equation 

(6.2) by gab.
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Finally by substituting the value of stress-energy tensor 
Tab from equation (2.14) we write the expression for Ricci 

tensor as.

Rab “ - K [ t Q, + P + 2mJ uab 

- > HaHb ] •

\ ( <*• ' p + ^Kb *

... (6.4)

(ii) Maxwell equations s

In Relativistic magnetohydrodynamics (RMHD) the 
4-current Ja is not determineable, hence we have the only 

one applicable set of Maxwell equations (Lichnerowicz,1967),

[ji (hV5 - UaHb)] #b - 0, ... (6.5a)

i.e. |i (hV3. + Ha Ub - Ua Hb - UaHb . + 
r t b fb ;b ?b

+ „?b CH-O* - uV3) = 0. ...(6.5b)

Contractions of equation (6.5b) with Ua and Ha and making 
use of equations (2.4), (2.5), (2.6) we get,

|A (U_Ha + Hb.b) + jA?b Hb = 0* ... (6.6)

Ji(H2 0 + | H2 + Ua H Hb) + H2 u = 0, 
z jo a

dL • 6 |i(H2 0 + | H2 + Ua?b HaHb) + H2 jt = 0. ... (6.7)
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(iii) Heat equations :

The interrelation connecting the thermodynamical 
variables for polarised and magnetised fluid due to Maugin 
(1972) as

1 OdS = de + pd ( 1/ o ) - ---- u (l-}i)dH^ ...(6.8)>o 2 o\ o
where.

o is the proper material density, >o

£ is the internal energy density, 

S is the specific entropy,

TQ is the rest temperature, 

p is the isotropic pressure.

=o0o=


