
Chapter-2

WAVELET ANALYSIS

2.1) Time-frequency Localization
2.2) Gabor Transform
2.3) Short Time Fourier Transform
2.4) Reconstruction
2.5) Frames and Frame bounds



CHAPTER NO. 2
WAVELET ANALYSIS

Introduction:

As we have seen, Fourier transformation is a powerful tool in

representing functions in time domain and in frequency domain.

However the formula for transforming a signal from time domain

to its frequency domain is quite inadequate, since to extract

information about the signal f in a small neighborhood of some

frequency value *>, full information about f in time domain

must be acquired. In addition, a small change in signal would

affect the entire frequency spectrum of the signal. Another

drawback of Fourier transform is that the formula does not

given any information about frequencies which involve with

time. In many application, one only needs to have local

information either in time or in frequency domain. In view of

the above observations, Gabor in 1946, introduced a time

localization method by using window function in the definition

of transform. By shifting the window over the entire time
domain localized information about the signal in frequency
domain could be made available.

(2.1) Time Frequency Localization:
2A function f s L (IF?.) is used to represent an analog 

signal with finite energy and its Fourier transform is defined
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by

(,r f )(>-.<>) = f(w) f(t)dt, ---(2.1.1)

gives the spectral information of signal. This is similar to

musical notation, which tells the player which notes

( frequency information ) to play at the given moment.

Unfortunately, the formula (2.1.1) alone is not very useful

for extracting information of the spectrum f from local

observation of the signal f. Therefore, what is needed is good

time window. Time localization can be achieved by windowing

the signal f, so as to cut off only a well localized slice of

f and then taking its Fourier transform.
>» • . t

(# /)(<•>) = ( e“ f(t)g(t - b) dt —(2.1.2)
-w

This is a windowing Fourier transform which is standard 

technique for time-frequency localization. It is even more 

familiar to signal analysis in its discrete version. Many 

possible choices have been proposed for the window function g 

in the signal analysis, most of which have compact support and 

reasonable smoothness.

A very popular choice is a Gaussian function g . In alla

application g is supposed to be well concentrated in bothos
time and frequency, if g and g are both concentrated around0'S OS

zero ( 0 ), then {'% /)(<.*) can be interpreted loosely as theL fa
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"content" of f near time t and near frequency to. The windowed

Fourier transform thus provides a description of f in the 

time - frequency plane.

The "optimal window" for time localization is achieved by 

using any Gaussian function

! --il
g (t) = ----- e 4a —(2.1.3)
Ci „ i----

where a > 0 is fixed, as a window function.

(2.2) Gabor Transform

Definition: For any fixed value a > 0, the "Gabor transform" 
1of an f e L (R) is defined by

<x> . .($';*/) (to) = f e f(t)g (t - b)dt ---(2.2.1)
b .1 0!

-at

that is (!£'/)(6>) localizes the Fourier transform of f around h
t = b Observe that in the integral

f g (t - b)db 
J a 

-00

if we put t - b = y ^ -db = dy

Therefore,
w w
f 9 (t - b)db = f g (y)dy
J Ci. J Ct

-00 -<X'I
2® ± ___y_= |‘ ----- e 4a, dy

-oo 2ifna
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1iXis
-iXi

g (t - b)dba ■4= f
2Vnc< -oft
-p= /
2Vna

e 4a. dy

n
(1/4:0

Oft
f g (t - b)db = 1

•* CA
— (2.2.2)

—06
so that

w 00 00 jj.ti tf {$' f)(w)db = f f e f(t)g (t - b) dt db
J </ V> vl J o.-co -CO -CO

j’ gr_ (t - b) db I e *f f (t) dt
-0£> -QD 

Oft

- it-} t

= e ^u>tf(t) dt
-Oft

= f(t.d) td e R

That is, the set (<f* f) : b e (R ►of Gabor transforms of f

decomposes the Fourier transform f of f exactly, to gives its 

local spectral information
2 *Definition: For a nontrivial function w <= L (8?), the center x 

and radius A are defined asw
*x

Aw

7ft ! w(t)( dt -«T * *—CO

J (t - X*)2| w(t)j2
-oo

dt
1/2

— (2.2.3)

-- (2.2.4)

Geometrically the center of the window function, we mean the 

value in the time domain, around which g has maximum spectral
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energy. Width of the window function specifies that the energy
* *contribution outside the interval [ t - A , t + A

9
be always negligible.

Theorem(2.1): For any a > 0

A
gC%

That is the width of the window function g is 2 faa y

PROOF: Recall that

J
oo . 2-u.ox -ax , ,—7—e e dx = fn/a - e 4a

-m

setting = 0 
to _ 2[ e aX dx = ^f~n]a 

-00

differentiate both side w.r.t. a

co n 2 _f 2 —ax /—, - 3/2jx • e dx - fn/2 a.
-to

Now we calculate |g ||fit” 2

gJ = <
e* 2
! gJX) dx

1/2

HJI2- I0C? i-
x2 ,2 '1/2

2-fna
e 4 a

=
oo

-oo
e 2a dx

dx

1/2

3 will

— (2.2.5)

— (2.2.6)

— (2.2.7)
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— I"
4:77.0',. ^

1/2
n
1/2 a

1^12 = <8Ka> 1/2
Now by the definition (1.2.4)

1/2
A

a. # g0

1 1 f (x - 0 )2g (x)2 dx
J Ot

a* 2 -ee

---(2.2.8)

(8na)

1
(8na) -1/4

f * O *« 1/2
1 4 g (x)2 dx

>

f CO _ 2x ,r 2 1 4ax ----  e
—coV L 2y?T.a. -

1/2
dx

2 . 1/2
4/4 , „ -1/2 I {r 2---4- ,= (8na) - (4no) • ^ | x e 2a. dx

->:o

.. .1/4 -1/2 y 'JT .3/2 -'/J.= ( 8na) ■ (4 net) (--- (2a.) )

A = ya 
g.

We may interpret the Gabor transform (>T\f) in (2.2.1)hi
different way by setting

g“ (t) = eg (t - b) —(2.2.9)b,M a

We have
W _---

((f/)(6>) = < f,C? > = f f(t) (t) dt —(2.2.10)b b^.ct Dj.o
-

One advantage of this formulation is that the Parseval 

Identity can be applied to relate the Gabor transform of f
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with Gabor transform of f .We have
Jit

Wc°'b„, ) <»> • ,f e'ir!t<3b,,,(t) dt
f -til)

til)f * ^ JL,Kh' t , , v j,[ e e g (t - b) dt J
•0)

COs - i ('<]! - o.i) t g (t - b) dt

Put t-b = x=*dt = dx
>Xi,_a x / > j’ - i (y? - «) (x + b) . .(Gb,r, 3 (!5) = J e »„<*> dx

• oo
-i(v7 - oo)b ru’ -i(r/ - w)x , . 

e 1 j e ‘ gr (x) dx
-oo

!»i('0 - <*>)b /•" -i(?j - &>)x 1 x
I

- iX>

e ‘ i e ----- e 4a dx
2 -/na

'x‘ ■i(r$ - •:>.)) x
e ■i(n - «)b 1

2X77
J

X

e 4a dx
'770 -ao

i (s - <a)b

2ina

n
1 / 4ct

(?j - <*>)
e 4(1/4a)

c< >‘<r» * e-d)b •
D.UV (2.2.11)

Now we know that

{%**£) M = < f, <3 f > = tA- < >b ' • b,o< ^ 2n ' b/,> ^
$)!»
f f(r>) G® (v?) cb>

Zf? »* b f L\\

1 rU* x Q i(rv - w)b - a(r/
aT J f(,?> ‘ e ' 9

- <0
w>‘
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1o£0(«> - ibw ® ... -!jj- y'nTa j' e • f(*J)
- M 2~/rTTio,

(?) - w)
e 4(1/ 4a) dr

($“*)(«) rr - ibo.il 1 -- e
co

•ut 2it
eibu f (T/) g1/4^ (r? - w) dr;

-(2.2.12)

Let us interpret (2.2.12) from two different point of view. 

First, we consider
e ■*uit f(t) g,,(t - b) dt =

| n - ibo.iJ— e 1 ibn ~ ,5T.(e ■ f{ri) gl/iJT> <*>) dr;

which says that, with the exception of the multiplication term 
^n/ct e lUd, the "window Fourier transform" of f with window 

function g at t = b agrees with the " window Inverse Fourier

transform " of f with window function g„ . . at rs = w. We know1 / 4<.-if
A and A"gi/4a.
Theorem(2.1) A

are the radii for two windows. And by the

?l/4«
product of the width of these two windows is

„ ,— 1

y' 1/Aa . Therefore, the

C2 a ) (2 a; )
a yl/4os.

= 2 (2.2.13)
-/ a

On the other hand, by considering
ibo>

Hb,,(f'> * * 1 -ibre ‘ g.
2yna l/4a (T)-6j) (2.2.14)

We have
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-—(2.2.15)< f'C >= < }'C >

This identity says that the information obtained by 

investigating an analog signal f(t) at t = b by using the 
window function G'* can be obtained by observing the 

spectrum f(r/) of the signal in a neighborhood of the frequency
..at= w by using the window function H, . Again the product of
D

jZi.the width of the time-window and that of frequencyL> f

window H' isb,w
C2Ag« ) (2 ARa. ) = (2 A )-(2 A~ ) = 2 

b, ;.<> b ya yl/ Aa

The cartesian product

(2.2.16)

[b - Ya ,b + Ya ] x {<«> - —— ,^ + —— ]
Y tyy. Y tyy.

of these two windows is called a rectangular time-frequency 

window. The width 2~/a~ of the time window is called the "width 

of the time-frequency window" and the width 1/Y~ of the 

frequency window is called "Height of the time-frequency 

window". Observe that the width of the time and frequency 

window is unchanged for observing the spectrum at all 

frequencies. This restricts the application of the Gabor 

transform to study signal with high and low frequencies.
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(2.3) SHORT TIME FOURIER TRANSFORM (STFT);
The Gabor transform is a window Fourier transform with

any Gaussian function g as the window function. For various

reasons such as computational efficiency or convenience in

implementation other functions may also be used as a window

function instead of ga *
2Definition: A nontrivial function g e L (JR) is called window 

function if
x g(x) *= L2(1F?.) -- (2.3.1)

We called this condition ( 2.3.1 ) as window condition.
2 .1/2 2 Since t-g(t) e L (0? ) =* 11 j g( t) -e L (E)

=> (1 + 111 f1 « L2(0?) and (1 + jt| ) e L2 (K).

By Property of Fourier transform g is continuous and by the
2parseval identity g(«) e L (K) but does not necessarily 

satisfy window condition and hence may not be a (frequency) 

window function. Since Fourier transform of Gaussian function 

is itself a Gaussian function, so that g and g can be used
Oi 0*

for time-frequency localization.

Ex. Both the first order B-Spline

1 for 0 < t< 1

0 otherwise

lyt) =
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and Haar function

1 for 0 < t< 1/2V'-(t) = |i -1 for 1/2 < t < 1
^ 0 otherwise

are window functions but their Fourier transforms and g?

do not satisfies window condition. Hence and ^ can not be

used for time - frequency localization.

The Gabor transform defined in (2.2.1) can be generalized
2to any "window Fourier transform" of an f € L (I), by using 

function g that satisfies window condition.
. .

Cfb/)U0 = j g{ t - b) dt -—(2.3.2)
- m

Hence by setting
W (t) = eJwtg(t - b) —(2.3.3)
D f Kti

We have
~ at
Cf,/)(a0 - { f , W > = f f(t) W (t) dtb b ,isi •* b

The time - frequency window can be obtained as
* -k * *[x + b - A , x + b + A ] X [as + as - A~ , as + as - A" ] 

i. gr ' g J 1 g 9
* *where x and ut are centers of g and g respectively. Such a

transform in which both g and g are window functions is called

short time Fourier transform (STFT). For an arbitrary window
function, the window area is given by 4 A - A" .g g

It is indeed remarkable to note that the window area for
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Gabor transform turns out to be minimal.

Theorem!2.2): (Uncertainty Principle)
A

Let g and g be both window functions, then

1/2,
g g

with equality if and only if
g(t) = c • e^atg (t - b)

O.

where c (*0) : constant and a,b <e IE’, a, > 0

Short time Fourier transform ( STFT ) gives a way to localized

time - frequency analysis. However, one finds that there is

still a scope for improvement in this time - frequency

analysis. Since in Gabor transform or Short time Fourier

Transform the width of the window remains unchanged. One needs

to have a window function such that the spectrum of the signal

can be analyzed locally more efficiently. By this we mean that

the width of the window should be relatively small for high

frequency levels and be wide enough to cover low levels. This

motivates us to define Integral Wavelet Transform (IWT).
2Let us begin with a window function y € L (E) such that

both tp and its Fourier transform p are window function. Let
~ * *the center and width of p and yt be given by t , and ,

2&~ respectively. We define for a,b <s E and a * 0
t - b (2.3.4)
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The integral wavelet transform of a signal f e L (!R) may be 

defined as

(W /)(b,a) = < f,yi >¥ b,a

i'Xi

= J f(t) ¥'b a(t) dt —(2.3.5)
- iX* '

Notice that the introduction of parameters 'a' allows w, to■ b, a

compress or expand depending on the choice of 'a'. The

-1/2normalizing factor [aj automatically take care of the

relative frequency band. For example if a > 1, is1 b, a

stretched by a factor 'a' in the horizontal direction, where

as if 0 < a < 1 then it is compressed in the same horizontal

direction, when w, is dilated in horizontal direction, the! b, a
-1/2factor |af automatically reduces its size in the vertical

direction and for small 'a' with the compression of in
ID / cl

the horizontal direction, w is enlarged in the vertical 

direction. In fact the total energy of remains
ID / cl

2 2
independent of 'b' and 'a', that is J| ^ a jj = J| V |j

Now let us proceed to the effect of parameter 'a' in the

time-frequency window of wavelet transform. Since the center
*

and width of are given by t and 2 & respectively. these
¥

quantities for ^ ^ can be seen to be (b + a t and ^2a A^ 

respectively.

2
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Therefore, the time window is given by ,
* *fb + at - a A ,b + at + a A ].

Y y

We now proceed to determine the frequency window. We have

(W /Mb,a) = < f , yf > # d , a
-- / f , w '■>
2 it v f b, a (2.3.6)

Also we see that 
1 ■fu _ )2?t b, a 2n

i -1 / 2 ® . ,a r - i6.it _t - b.
i_ J e y> (—-—) dt

-to

af a i -ibto * .—--L_ e v (ata)2tt
-- (2.3.7)

Setting

77 (to ^ (6) + to ) (2.3.8)

We can shift the center of the window function to the origin 

for convenience. Using (2.3.6) we get

(W /) (b, a)
| j -1/2 to .a a f 2bto .. . . * ,J e /(to) >7 (ato - « )dto

-to
2ir

* 3.width of 77 (ato - to ) will be given by --- A~. Therefore, the‘ a y>

frequency window in this case is given by

/m.‘i /a w a
to 1 A _— + ---  A 1.a >#

Hence the rectangular time - frequency window is given by
* ** * to 1 to 1[b+at - aA , b+at + aA IX [ — - --- A" , —+--  A~ ].y> w a a y> a a W

— (2.3.9)
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(2.4) Reconstruction

Theorem( 2.3): Let w -e L (IK:) be so chosen that H w if = 1 and
A

both w and w satisfies the window condition. Also let
V/ (t) = ei>vtw(t - b). Then
D r 6.V

Wf f < f , W> < g , W, > db dwt« U ^ 1) , 2r< < f g >
-CO —05

Proof: For any f € L (US), let f denote the inverse Fourier
v ± .

transform of f; that is, f(x) =75— f(-x). Then by the ParsevalZfT
Identity,

<t> >:o

f f <f,W, > < f , W. >db d<(> .f J b,6.v b, i».>—00 —00

Hence,
£0

—00 —00

Cv &
J J i‘$ i/> (, ) (£ f)(«) db d.d
-m -®

CO W .... -.1..

= 2irf j Clbf)V,(x Cfbf)v(x) dx db
-00

CO CO
= 2n f J fit) w{ t - b) g(t) w( t - b) dt db

—00 —00

= 2nf
00
j fit) git) j w(t - b) | 2 dt db

-00 —00

=
-X

2, j
-it

f( t) gi t)
p 00
1 Iwlt -
—

b)i2 db dt

- 2 n < f , g > ( Since i f w ^2 1 )

wb, > <
Kib f > db dw = 2n < f g >

TheoremC2.4): Let y be a basic wavelet which defines an IWT 

W . Then
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iS> ii> da
f f [ (W f)(b,a) (W g)(b,a) ]
f ./ {if — db = C <f , g>Z u*"*05 —

2 2 for all f , g <= L (IF!). Furthermore, for any / <= L (IF!) and

x I! at which f is continuous, 

1 m m da
f(x)=— J J (W* f)(b'a) »'b;a(x)

~t0 —1.0

db

where y (x) given by the equation (2.3.4). id j a
Proof: In order to prove the theorem we use the following 

notation

F(x) = f(x)- y(ax)

G(x) = g(x)- w{ax)

We have,
w
f [ (W f)(b,a) (W g)(b,a) ] db =
“00

r w

=J JI-oo ^ -a?

OD-1/2 . - t - b 5-1/2—J- ( s - ba j /(t)^(--- ----jdt j | a | g[ s) --- -—
—O-’i

-)ds] db

as as

! ! -®

as-ij— J j’ f{ t) 1 a —) dt J g( s) w (- S b
-00

■)ds) db

05 05
I a ii 3 J 2n J

f(x) e lbx y.-(ax) dx
-M

f 00
2 n

[ g(y) e iby w(ay) dy 1 db
-to

*

-to

as
2n

-ibx —-r ,e F(x) dx
—i?.U

)■(-*£•e Iby G(y) dy! db

37



= TiT-I [-25- "(b) ] f* I -tfj. - *
— G(b) I db

^2 
2n \ a\

as
2rr J G(b) F(b) db

—05

00
2 ft j a

! ' -05
(' G( x) F(x) dx

Thus,

2 m
f [(W f)(b,a) {W g)(b,a) ]db = --o- f G(x) F(x) dx
■i \p ip 2 n j a i J-oo -as

Now integrate above equation from -® to «> w. r. t. a

as as da
f f [ (Ww f)(b,a) (W g)(b,a) ]

•f -f ipr ip-05 —05
db

* r i ,® _ 1= f .......  f G(x) F(x) dx da
ZU i J I-a> L 5 2 -a* -*

r

2n I a! [ g( x) $<( ax) f(x) tp(ax) dx
-05 *- * • -05

da

05

■ J 2n-oo

r s
g(x) f(x)

L —ccv
\ a*( ax ) |J ir..)\..r."; j. da dx

■ J 2n
—iXi

g(x) /(x)
05

L -as

Hy) i
TyT dy dx
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= c „ “or f fU) dxtit An •'-oo

tt.i —--- - - - -  ,N

= C < f , g >
r

(2.5) FRAMES AND FRAME BOUNDS:
Definition: A family of functions { #43 3*=^-

in a

Hilbert space D!, is called a frame if there exists A and B

( 0 < A < B < a't ) so that, for all f e IH
AII f l2 < E \<f , #>|2 < B 

j<=Z' j
Mil2 ---(2.5.1)

Here A and B are called frame bounds. If A = B then frame is
called tight frame. In this case,

E \<f >j<=2
#j>!2 - B || f f

Definition: If i L.-* isJ JfciSL a frame in IH, then the
frame operator T is the linear operator from &i to £2(Z)

(T : fli ---- » / (Z ) ), defined by (Tf) = <f /
Since

B Tf || < y b j f j — (2.5.2)

the operator T is clearly bounded and is called as "frame
*operator" associated with the frame { . The adjoint T

3 3&t
2of T is also an frame operator which maps from i (Z) to IH

* 2( T : t (Z) ---- * IH ) and can be easily calculated

39



<T c , f> = <c ,Tf> where c = { e . } , 
3

= T c . (Tf) . A* J 3

: £ c-i <f ' #4>j^Z 3 ^

: E c -i 4 ' ■Oj«z J 11

<T c , =£ <c , f>

<T c , f)> - £ <c # , f> = 0jeZ 3 3

=> <T c , f> - < £ c tp , f> - 0
jeZ J -1

< *T c E c ■ # •
3<&iL

, i> * 0

*T c E c, ^.
3 33'Sitt

= 0

Therefore,

T c = £ c. 4>.
mm *j 4 ij«Z

-(2.5.3)

* *Thus T is an adjoint operator defined by T c = £ c, 4.j 3 ' 33 til
where c = { c. }. e 4f (Z) and { 4i ■ }. <a Bi 

3 3'*=&- " j 3*=&-
* *Since T is adjoint operator | T |j = jj T j]

Therefore, | T c | i y B |] c | ( by (2.5.2) )

And hence T is also a bounded operator.
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We have

*= <T Tf ,i>

E \<f / 'rO I 2 = <T*Tf ,f> 
jeZ J

— (2.5.4)

Thus by (2.5.1) and (2.5.4)
A || f |2 < < T*Tf , f > < B | f |2 — (2.5.4a)

Now we recall an important result

Result(1): If G is Hermitian operator on M such that
*< G Gf , f > > 0 for all f (H, then all the eigenvalues of G 

are necessarily nonnegative. We then say that the operator G 

itself is nonnegative and write this as an operator inequality 

G > 0.

Now since inequality (2.5.4a) can be written as,
*A < f , f > < < T Tf , f><B<f, f>

that is

< T Tf , f > - A < f, f > > 0

< [ T Tf - Af ] , f > > 0

< [ T T - A Id ]- f , f > > 0

Using above result(l), we have
*T T - A Id 0 =* T T A Id — (a)

Similarly,
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0B < f , f > - < T*Tf , f > >

< [ B Id - T*T ]- f , f > > 0

Using above result(l), we have

B Id - T T > 0 4 B Id > T T -- (b)

Combining (a) and (b) we have
A Id < T*T < B Id -- (2.5.5)

*Inequality (2.5.5) shows that ( T T ) is inversible, by 

result (2)
B_1 Id < (T*T)_1 < k1 Id -- (2.5.6)

Result?2): If a positive bounded linear operator T on W is

bounded below by a strictly positive constant a, then T is
-1 . -1inversible and its inverse T is bounded by a

* -1Applying the operator (T T) to the vector {#.}. gives a
3 J'&ii

new family of vectors, which is denoted by $
4>. = (T*T fV -- (2.5.7)

i 3

Then the family {#j }jconstitute another frame, More 

precisely,
~ ~ ic _ ^

I) The family {#.}. with £. = (T T) £ • constitute frame
3 13 3

-1 -1with bounds B and A

Proof: For any f e SH we have,
</,#.> = </, (T*T)_1#. >

= < [(T*T)-1]* f >
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<f , #/> = < [ (T*T)* ] 1 f , <P. > 

<f , tf > = < (T*T)_1 f , tf >

Hence

j >rr&..

</ , |2 = £ 1 < (T*T)_1 f , <>, > | 2
J . _M7?i J

= £ j (T(T*T) 1 f) \2 ( by (Tf) = <f , tf >
^ J -J J

* -1 „2
T(T T) f "

< T(T*T) 1 f „ T(T*T) 1 f >

* —1 * * —i
< ( T T ) f , ( T T ) ( T T) f >

E | <f / tf,> j2 = < (T*T) 1 f , / >
*“*TJc J

From (2.5.4a), (2.5.6) and (2.5.8)

(2.5.8)

B_1 8 f fi2 - £ !<f ' #j>l2 * A_1 II f 1,2

j<=2
— (2.5.9)

which shows that the family {tf.}. constitute a frame, with
' J 3>&eL

-1 -1frame bounds B and A

II) Associated operator T to the frame {tf .} . is given by
J

* -1i) T = T(T T) and it satisfies
~* ~ * _i

ii) T T = (T T)

iii) T* T = Id = (T* T) — (2.5.10)

Proof: We have the definition of tf = (T T) tf^

Also, We have definition of (Tf) .= <f , #.>
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By applying these definition,

(Tf). = </ , #.>

= <f , (T*T)_1#,>

= < (T*T )_1 f , ^ > ( Since (Tf) = <f , 4>.y )

= ( T(T*T f1/ >

T = T(T*T)_1 —(i)

Now
~ * ~ T T * _1 T(T T)

* -1 t
(T T) T

:k -1 *(T T) (T T)

Id (T*T)

* -1 T(T T)

* _i"T(T T)

* -ll (T T)

~ ~ ^ _ A

T T = (T T) — (ii)

Finally,
~ *T T * _l'T(T T)

* —1 * (T T) T

* -1 *(T T) (T T)

T T = Id
* ~ * T T = T T (T*T ) 1

(T* T)(T*T) 1

T T = Id
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Therefore,
'■*' ft ft
T T = T T

~ * ~ *III) TT = TT is the orthogonal projection operator

on the range of T

Proof: TT = T(T T) T
_ *

* -1 T (T T)
„ ft ft *’1 ft
TT = T(T T) T

-- (iii)

in f(E)

— (iv)

— (v)

From equation (iv) and (v), we have,
'v ft ~ ft
TT = TT

Now we have to only prove that,
~ *

i) (T T )(c) = c where c is in Ran(T) and 
~ *ii) (T T )(c) = 0 for all c orthogonal to Ran(T) 

Proof:
i) (T T*)(c) = (T T*)(Tf) where c € Ran(T)

T(T*T) 1T* (Tf)

* _1 * T(T T) (T T)

= Tf

(T T ){c) = c

ii) c jl Ran(T) # <e , Tf> = 0 for all f e fH
* <T*c , f> = 0 for all f <s M 

*=> T C = 0
* (T T*)(c) = 0
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The operation { 4fj : j <= Z } --- > : j € Z } defines, in a

sense, a duality operation. The same procedure applied to the 

frarce = j « Z } gives the origin frame = J - 2 J 

back again. We shall therefore, call : j e Z } the dual 

frame of : j € Z }. The duality

4*^ *- •4 4sj is also expressed by

OR

T T = Id = T T

that is (T T)f = f

* T (Tf) = f

* T ( £ <f , #,» =' *“« J

«♦ E <f r #j> # j = -f

(T T)f = f

* T (T f) = /

=*■ T ( £ <f , # .> ) = f
‘3J’criL.

* £ <f
j

$ .> 4. 
3 3

= f

That is

E <f -j~^ 3 3 E_<f , #j> ^ (2.5.11)

OR

<f , fl> « E <f / <#j / 9>
jeZ

(2.5.12)

46



This mean that we have a reconstruction formula for f from the

<f , 4‘j? • At the same time we have also obtained a recipe

writting / as a superposition of
*We introduce new notation for T T operator 

*¥ = T T and

I = T T
~ * * — i= T [ T(T T) ]

* —1 * * —1 = [ T(T T) ] [ T(T T) ]
* * * _i= [ (T T) T ] [ T(T T) ]

* _1 * * _i= (T T) (T T) (T T)
* _1 = (T T)

for

Thus
-1I = TT

In particular,

T T’r .E. <• ' > *i
J&i

W(f) = ,^<f ' > ?j

By inequality (2.5.5)

A Id < 1 < B Id -- (2.5.13)

If the elements f <= 1H are characterized

product t j ^ zy then f can

by mean of the inner 

be reconstructed from
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f = E <#, rf>p.j*=Z J J

The vectors 4.are defined by 1 j
* -1#j = (T T) #..= -1 ..

‘ 3

If the frame contains "more" vectors then a basis would, there

exists other vectors in fH that could equally well play the

role of the &. and lead to a reconstruction formula. This is 
3

due to the fact that the 4^ are not linearly independent in

the general case. This phenomenon can be illustrated with the
2following example with Qi = IF: .

Define

#1 = e1# *2 = 1 V3— e + ---  e2 1 2 : (ft.
1 V3— e - --- e2 1 2 2

where e^= (1,0), e2= (0,1) constitute the standard orthonormal

basis in (R for u *= OH 
3E !<u > #j>|* 2 = !<u ' #1>12+|<U / #2>!2+!<u ' #3>|2
j=l‘ J

Now
!<u , ^j2 = <u , 4>±y ■ <u , #x>

--(2.5.14)

= u„ -u 1 1
. v|2 , ,2 <vU , ^>1 = j u | -- (2.5.15)

- 2j< u , 4> >j = < u , 4> > - < u , 4>2 >

1 V3 1- + — e2 j 1 V3 12 ®1 + 2 e2 j

48



K U , #2 >1 4 K

. ,2 1K / r 2 |f 4 iui

K u , 4‘3
. , 2>} = < u ,

v = 2 1
\ v\ u , #3 > i 4 Iui

2 3 , , 2 V3 if 3
+ —;— iU_! + —— U_ 'U„ - —— U^'U

= 2
4 »~2*
3 , -,2

I - -T iu2l

2 3 ,+ --- u4 I 2

3

, 2

4 “1 "2 4 "2 1

---(2.5.16)

(2.5.17)

From equations (2.5.14),(2.5.15 ),(2.5.16 ) and (2.5.17)
3
£
3=1

£ |<u , ^>|2 = | u 2 1 , ,2 3 , ,2
4 I 1* 4 I 2’

1 , ,2 3 , ,— iUll + — lU2l

t |<U - #-i>|
3=1

. 2

2

3

|u„ + u.

II u II

This implies that { e. , e„, e_ } is a tight frame, but12 3
definitely not an ortonormal basis; the three vectors e , e ,X
e are clearly not linearly independent.

So that 

hence

1 = Id

I . = -4~ $ . and 
3 2 ■ 3

u £ < u , 4> > <pm
j=l J

Since

£ ^ = 4\ + *2 +
3 = 1
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_ , .. . 1 -f3~ 1 iTE fs j - (1 / 0) + 2 ' 2 ^ + ^ 2 ' 2 ^
3=1

=(0,0)
3
£$4 = 0

3 = 1

It is clear that for any choice of a <= DH an equality valid

reconstruction formula is given by

2U = 3 E <U , # .> ( 4>. + a ) j_l 3 3

For a = 0, corresponding to

u = ~ E < u ' 4‘, >j=l 3 3
3 2is the "minimal solution" in the sense that the image fR to tt! 

under the frame operator T is the two dimensional subspace 

with equation = 0. We denote this subspace by
3Ran(T) vectors in B?. orthogonal to Ran(T) are all of the type 

c = k(1,1,1) when the components of such a vector are

substituted for the < u > in (2.5.11) then the

reconstruction leads to zero. Since

E #ic.j = | :a- E $4
3=1 3 3 3=1 3

0
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