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CHAPTER NO. 3

CARDINAL SPLINE ANALYSIS

Introduction:

This chapter is devoted to the study of cardinal spline 

functions with emphasis on their basic properties. At the end 

of this chapter we develop "two-scale relation" for the 

cardinal splines of order m. Finally we develop an 

interpolatory graphical display algorithm.

(3.1) Cardinal Spline Spaces:

Notations:

0 : The collection of all algebraic polynomials of degree at

most n

Cn: The collection of all functions f such that

f, f' f(2) ,(3)
f ± t X f * ♦ . ,

f(n) are continuous everywhere with
C° and C 1 is the space of piece wise continuous function.

Definition: For each positive integer m, the space Sm
of cardinal splines of order m and with knot sequence Z is the

collection of all functions f e C,m-2 such that the restriction

of f to any interval [k ,k + 1), k *s E are in n „ that is,m-1
f! , k ■£ Z m-1

[k,k+l)
S^: The space of piece wise constant functions. The basis for 

can be { N^(x - k) : k e Z } where N^ is characteristics
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function of [0,1) defined by

ryt) 1 for 0 < t < 1
(3.1.1)

0 otherwise
To get basis for S : m > 2, we consider the space Sm m; N
consisting of restriction of functions f e S to the intervalm
[-N,N], where N is any positive integer. That is S „ is am;N
subspace of functions f <= S such that the restrictionm

and f j of f are in 0
*(-®,-N + 1) I[H - 1 , ®) m-1

Setting P . = f!m, 3 | « n , j = -n,...,nm-1 then
[ j / j+1)

. jm-2since f <€. C we have

_(k) _(k)P - P 'm,3 m,3~1 (j) = 0 for k = 0,1,2,...,m-2 ( m > 2 )

The jumps C. of ^at the knot sequence Z are then given by

„ ^(m-1), . . . ^(m-1), . „ .C. = P' . ( 3+0 ) - P' ' 3-0 ) 
3 m,3 m,3-l (3.1.2)

lim
0+

f{m 1}(j + £) J. m-1) . ./ (l ~ £■)

The adjacent polynomial pieces of f are related by
C , 

3
P • (x) m ,3 Pm 4 1 <x) +m, 3-1

/ ■\m—1

(x - 3) (3.1.3)
(m-1)!

We introduce the new notation

x = max(x,0) +
m . . mx = x + +

— (3.1.4)
for all m

52



Therefore,

fix)

N-l

/| (x) + E
![-N,-N+l) j =-N+l

for all x e

C.
3

(m-1)!
-(x

C-N,N]

j) m-1+

---(3.1.5)

This equation (3.1.5) is true for all f *= S „ with constantm; N

Cgiven by equation (3.1.2). Therefore, the collection

{ l,x/x2,...,xm"1,(x+N-l)™":L,...,(x-N+l)I|1'1 }---(3.1.6)

of (m + 2N - 1) functions is a basis of S „ . This collectionm,N

consist of both monomials and truncated powers. We can replace 

monomials 1, x, x2, ..., xm ^ by the truncated powers.

(x + N + m - l)™-1, ..., (x + N)™"1 —(3.1.7)
X X

Therefore, the following set of truncated powers, which are

generated by using integer translates of a single function

xm 1, is also a basis of S „
+ m; N

{ (x - K)^"1 : k = -N - m + 1, • - • , N - 1 } —(3.1.8)

This basis is more powerful than (g.1.6) because,
^

i) Each function (x - j) vanishes to the left of j

ii) All the basis in (3.1.8) are generated by a single 

function x™ 1 which is independent of N

iii) Finally

sm = U sm N“1 ^
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It follows from (iii) that the basis in (3.1.8) can be

extended to a "basis" ?. of the infinite dimensional space Sm

(x - k)™_1 : k e Z J ---(3.1.9)

Unfortunately, there is not a single function in r that

belongs to L2(IR) as each (x - k)m ^--- » m as x --- * m
+

2We therefore, have to create functions in L (IF?) form those in 

r , which can be done by controlling their growth. Since, inM
vector space, finite linear combination is the only operation, 

we use "differences" instead of derivatives in tamping 

polynomials growth.

Definition: Backward differences are defined recursively 

(A/)(x) = f(x) - f(x - 1)
---(3.1.10)

(tnf)(x) = On_1(&f))(x) 

where f e FI m-1
Clearly

A mf = 0 —(3.1.11)

Definition: Let , where N be characteristic function

of [0,1) defined as in (3.1.1) and for m > 2 .

Let
M (x) = .. Am x1”"1 —(3.1.12)
m (m - 1)! +
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Since
2 11 1 1A x = x - 2(x - 1) + (x - 2)4* 4 4 4

= E (~Dk \
k=0

3 2 2 2 2 2A x = x - 3(x - 1) + 3{x - 2) - (x - 3)+ + + + +

^ k 3 2= E (-1) c. (x-krk=0 *
In general

, m m-1
h, x+

m
E (
k=0

•1) k in (x-k) m-1+

Therefore,
1 ^ km m—1

M (X) = .Tm....VT E (-1) C (X-k)” —(3.1.13)m (m - 1)! k +

M (x) = 0 for all x > m and M (x) = 0 for all x < 0 m m
Therefore, we have Supp M ^ [0,m]m
Moreover, we can show that Supp M = [0,m] ---(3.1.14)m

2Since M has compact support, M (x) <= L (flR*). We now show that m m
B = { M (x - k) :keZ} --(3.1.15)m

is a basis for S .m
For instant, consider S „ ,the dimension of S „ ism;N m;N

(n + 2N - 1). Since Supp M = [0,m], we see that each functionm
in the collection

{ M (x - k) : k = -N - m + 1, ... , N-l } ---(3.1.16)m
is non-trivial on [ -N,N ] and M (x - k) = 0 on [ -N,N ] form
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k < (-N - m + 1) or k > (N - 1).

Since the functions in the set (3.1,16) are linearly

independent they form basis for S „ . Thus we have an anotherm;N
set of basis function for S „ . If we take union of thesem; N
basis in (3.1.16) for N = 1,2,3,.,. we get B in (3.1.15) as a 

basis for Sm
Therefore,

f(x) = r C ,M (x - k) ---(3.1.17)k mk=-oe*
Since M has compact support, all except finite number of m
terms in (3.1.17) are zero and therefore RHS sum of (3.1.17) 

is convergent.

We are interested in only those cardinal splines that
*2t 2 mbelong to L (E), namely S^ ^ L (E). Let denote its closure

in L2 (E), that is, S^ ^ L2(E) = V^. Observe that B - V^.

In fact B is a Riesz basis of V™

The cardinal splines we have considered so far have the

knot sequence Z. If we consider the knot sequence 2"I-Z, then

the corresponding space of spline functions is denoted by S'1,
m

jl j2 jl j 2
since for j.< j_ we have 2 -Z c 2 -Z, we have S c Slz mm
Thus we have doubly infinite nested sequence.

„-l „0 „1. . . c S c S c S ... m mm
of cardinal splines where S° = S . Analogous to definition of

m m
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HenceV?, we let Vm denote the L2(R)-closure of S"1 a L2 (K) 
0 3 m 1 ‘
the nested sequence

Vm - Vm r- Vm 
-1 0 - 1 —(3.1.18)

of closed cardinal spline subspaces of L (SR). Then we have

f u1. f
Vm
j

njeZ Vm

L2(CE:)

{0}
-(3.1.19)

.mAlso, if B is a Riesz basis of then for any j the

collection
f 2j/2 M (2jx - k) 

m --(3.1.20)

is also Reisz basis of Vm with the same Riesz bounds.
J

(3.2) B-Splines and their properties:
t hDefinition: The m order cardinal B-Spline N (x) is definedm

by

N (x) = (N * N„)(x) for all m > 2 m v m-1 1-^
w

N (x) m f Nm (x - y) N.(y) dy » m-1 1
lit

N (x) m {' N . (x - y) dy for all m > 2 ---(3.2.1i _ m-10

In the definition of M (x) we set M„ = N„ , we can prove thatm ll
M (x) = N (x) for all x. m m

thThe m order cardinal B-Splme N satisfies the properties:m
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Property (1): For any f e C, 

f f(x) N (x) dx =■i m-00

1 1
= f ... f f(x +x +...+X )dx dx ...dx ---(3.2.2)

>t n 't 12 m 1 2 m0 0

Proof:We prove this result by method of mathematical induction 

Step(l) We show that result is true for m = 1

L.H.S = [ f{x) N (x) dx 
-co
1

= f f(x) dx 
' 0
1

= f f(x ) dx 
o 1 1

= R.H.S.

Step(2) Let us assume that result is true for m-1 that is, 
a> 1 1
f f(x) N „(x) dx = f ... f f(x„+x_+. . .+x .)dx„dx„...dx 
f m-1 1 2 m-1 1 2-ix 0 0

Step(3) We prove that result is true for m
iXi iXi r 1 t

m-1

J f(x) Nm(x) dx = J f(x)
—oo —oo

f N (x - t) dt 
"0

dx

L.
f(x) N Ax - t) dx m-1 dt
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Put y = x- t=p.dy = dx
r r If f(x) N (x) dx = f If f(y + t) N (y) dy dt 

■f m J J m-1 1-av 0 L —a? J
lf 1 1

= f f ...f +x„+. • .+x +t)dx dx ...dx•f .t j _ 12 m-1 12 m-1oL o 0
dt

•» 1 1 
f f(x) N (x) dx = f ... f f(x.+x +...+X )dx„dx_...dxJ m J J 1 2 m 1 20 0 m

mProperty (2): For any g ■>= C ,
(m). . „ . , , ™ . . ,m-k rn .. .J 9 (x) Nm(x) dx = £ (-1) Ck g(k)

k=0
— (3.2.3)

Proof: Since g e Cm =*■ g^m^ *= C therefore, by applying above 

Property(1)
® , 11..

g m (x) N (x) dx = f ... f g m (x„+x„+...+x )dx„dx_...dx m I J 1 2 m 1 2 m0 0

For m = 1,

f g'(x) N (x) dx•i m-m
f g* (x )dx
” o

= [g(x)] o
= g(D - g(0)

^ l-k 1 = v (-D1 * •LC g(k)
k=0

Thus by direct integration we get the required property
® . m .r (m), . / \ j _ , . ,m-k rn ., ,j g (x) Nm(x) dx = £ (-1) Ck g(k)

'-® k=0

59



Property (3): N (x) =M (x) for ail x m m
Proof: Fix x e ¥;., By selecting

g{ t} =
(-Dm

(x - t)“ 1
(m - 1) !

, ,m-l
g'(t) = (-1) (x - t)m-2 

+(m - 2) !

g"(t) = (x - tim-3
+(m - 3 ) !

(t> = -LM (X - t)“
and so on

= * (x - t)

where & is delta distribution defined as

-(i)

6(x) = 0 for all x & 0 and
oo

i 6 (x * dx = 1
-00

Now by Property (2) 

gW(x) I
m

m
(' (m), \ ^ Z , .m-k rn .9 (x) N (x) dx = £ (-1) c g(k)

k=0 *

= £(-l)m-kmC <-1)m 
k=0

/k (m - 1) f X t * +

m
(m - 1) !

mm / - »1c m , .ml£ (-D ck (x - t>+ 
k=0

And by (i)
w( ^ (x) N {x) dx = f 6 (x) N (x) dx

J m j m—£0

= M (X) m

w

— (ii)
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-- (iii)
W / xf g m (x) N (x) dx = N {x)•/ mm

-i.V(

Finally, from (ii) and (iii) we have the required property

N (x) = M (x) for all x & IF: m m
Property (4): Supp N = [0 , m]m
Proof: We prove this result by method of mathematical 

induction

Step(l) We show that result is true for m = 1

The assertion is clearly true for m = 1 by the definition of

Step(2) Let us assume that result is true for m-1 that is,

Supp N = CO , m-13 m-1
Step(3) We prove that result is true for m 

Now we have

N <x) = f N (x - t) N (t) dt m .» m-l l
—t'.O 

1
= r N {x - t) dt ‘ o ra_1

Since Supp N . = [0 , m-1] m-1
N „(x - t) # 0 for all 0<x-t<m-l m-1
Let x - t = y 4 -dt = dy 

x—1
N (x) = - f N (y) dy m •* m-1x
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That is

= f N (y) dy 
J „ m-1 x-1

x-l<y<m-l<x<m # N . (y) pf 0m-l
when y = m - 1, x will be m or N (x) ^ 0 for 0 < x £• mm
Thus Supp N = [0 , m] m
Hence by method of principle of mathematical induction result 

is true for all m

Property (5): N (x) > 0 for all 0 < x < m m
Proof: We prove this result by method of mathematical 

induction

Step(l) We show that result is true for m = 1

By the definition, N (x) = 1 > 0 0 < x < 1, therefore result
holds for m = 1

Step(2) Let us assume that result is true for m-l, that is,

N (x) > 0 m-l
Step(3) We prove that result is true for m

N (x) = f N (x - t) dt m j m-l

Therefore, by property (4) N (x) > 0 for all 0 < x < m.m
Hence by method of principle of mathematical induction result 
is true for all 0 < x < m.
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Property (6): Partition of unity that is

£ N (x - k) = 1 for all x ,u m k=-M

Proof:We prove this result by method of mathematical induction

Step(l) We show that result is true for m = 1

£ N (x - k) = 1 for all x 
k=-<»

as there is only one interval [k,k+l) such that N^(x - k) 

Step(2) Let us assume that result is true for m-1 that is,
Ui

T N . (x - k) = 1 for all x , m-1k=-a>
Step(3) We prove that result is true for m

m 1
£ N (x - k) 

k=-oo E .f N (x - t - k) dt m-1

1

1 p ii'i

£ N {x - t - k) dtA 1 S0 k=-« J

I' 1 dt for all x ( by step(2) ) 
0

= 1 for all x

Hence by method of principle of mathematical induction result

is true for all x

Property (7):Ni(x)=(AN ,'*(x)m m-1
Proof: We have by the definition 

1r (x) = r N1 .(X - t) dt m .f m-1
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N' (x) = m fN .(x - t)]A 1 m-1 J0

= N „(x) - N „(x - 1) m-1 m-1

N' (x) = (AN .)(x) m m-1

Property (8): The cardinal B-Spline N and N . are related bym m-1
the identity,

y m—.XN (x) = —V N (x) + Nm (x - 1)m m-1 m-l m-1 m-1
Proof: We have

w , , „ , . 1 tm m-1
m m (m-1)! +

and also Leibniz rule
m _

(Amfg)(x) = £ V { A f)(x) (Am g) (x - k)k=0 K

„ , . 1 4 m m-1Vx) = -(» -1)1 4 \
1 , m , . m-2.,Ti""-~l")T A <x(x + »

Applying Leibniz rule,

„ z . 1 f .m m-2 .., .m-1, „, m-2N (x) = ---- ttt x -A x + m~ (1) -A (x - 1m (m-l) f + +

1 f r.m-l„. m-2., .m-1, , ,m-2(m _1}, j x [A (A x+ )] + m-A (x - 1)+

1 f r.m-l. m-2 , . ,m-2,, .m-1, „ , m-2---- r-r-r x [A (x - (x —1) )] + m-A (x-1)(m-l)!1 v+ +'J +

1 r .m-1 m-2 tm-l, .,m-2 ,m-l, „,m-2i---- rrrfx A x - x A (x-1) + m-A (x-1)(m - 1)! I + + + ' +
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t( 4m-l m-2 , , 4m-l, „ .m-2. x A x + (m - x)-& (x - 1)(m - l)! I + +

(m - 1)
,m-l _ .m-1& m-2 . , & , . .m-2
(m-2 + (m-2) v + J

N (x) = .. ..---t— N .(x) + ---4- N . (x—1)
m (m - 1) m-1 (m - 1) m-1

Hence the property.

Property(9): N is symmetric with respect to the center of its m
support,

N < JL + x ) = Nm( JL - x ) 
m2 m2

Proof:We prove this result by method of mathematical induction 

Step(l) We show that result is true for m = 1

N ( -5- m 2 + x ) = for 0 < + x < 1

Nm 2 + x ) =

0 otherwise
1 11 for — - ̂ x < 7T
2 2

otherwise

V “T x ) for 0 < x < 1

0 otherwise

Nm 2
1 1x ) = ^ 1 for - ^ - x < ^

0 otherwise 
Hence result is true for m = 1.
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Step(2) Let us assume that result is true for m-1 that is,

„ , m-1 . „ , m-1 .N „ ( —=— + x ) = N . { —=— - x )m-1 2 m-1 2
Step(3) We prove that result is true for m

Let us start with 
mN 1 < m-1

N 1 ( m-1

+ x ) = N ( m-1
= Nm ( 

m-l

m - x ) = N ( m-1
= N ( m-1
= N { m-1

m-1 1 .—--- + 7T + x )
2 2

= N ( m-1 2

m-l

m

1
2

m-1 12 + 2 
m-1 1

- x ) 

x )

- X )

+ x )
m 1 + x )

-- (i)

---(ii)

By Property (8) 
m

m 2N (~ + X) = m 2
+ x

N ,m m
(m-1) m-1 2 + x) +

,m . <2 + X)
N , m

(m - 1) m-1 2(■* + x - 1)

By equation (i) and (ii), we have
m

, m + x
N (7 + x) m 2 N ( m

(m - 1) m-1 2 -1- x) +
m - (| + x)
----- -----  N (-(m-1) m-1' 2 - x)

m ,m .o~x m m-(^-x)9 „ , m . 2 „ , m . .N . (« - x) + — ----—— N . ( -tj- - x - 1 )(m - 1) m-1 2 (m-1) m-1

= N (^ - x) for all x 
m 2

Thus
N (? + x) = N (^ - x) for all x m2 m2

Hence by method of principle of mathematical induction result
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is true for all x.

Now we proceed to show that the cardinal B-Splines basis,

B = { N (x - k) : k *= 2 } m
.m

---(3.2.4)

is a Riesz basis for in the sense that there exists

constant A and B with 0 < A < B < m such that for any sequence 
2{ C } e t (Z), we have

A l< ck >!/«) S IZ ck - k> iV, S E l‘ ck >11/(2)k=-oc> L (K)
---(3.2.5)

Condition (3.2.5) is equivalent to frequency domain condition
, 2 a. e. — (3.2.6)

We will work with this frequency domain condition to obtain A

a < z ! - 2*k) i ^ B
k=-oo

and B. Replacing by 2x in above equation (3.2.6) we get,
<30 2 .A < r ! N (2x - 2wk) < B, 1 m *

k=-a'i

a. e.

Since

N (x) = ( N * N. )(x) m m-1 1
= (( N * N„ )* N„}(x) and so on vv m-2 1 J ly

( N. * N * 1 1 * N^U)

Thus N is an m-fold convolution of N„ and m 1
N1 (.-») = J e N^t) dt

-if.v>t ,, e dt ( By the definition of N (t) )
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—iwt e
Ms-f

1

0

N1(«)

We have,

Nm
We have,

- it*- e
1X>.\

2m

2

- Ito+ e
2 ]

2 - 2 - cos(i.,.t) 
2

2[1 - cos(w)] _
’i'll)

2-2-sin1 2(to/2 ) = _
6)

1 - e~m 12 = sin2(<d/2)
i:,> ? ’ (f.d/2 )2
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Thus,

1 - e m ,2
ifi> *

sin2(w/2) 
(w/2)2

Using this relation, we get

N UO m
1 - e j2m sin2m(«/2)

Uo/2) 2m

Therefore,

£
k=-oo

N (2x - 2i?k) ! m 1
• 2m, , \sm (x + rrk)

£ j N (2x - 2rrk) j2 = sin2m(x) £

a'.!
E -----------

k=-a*f (x + ?rk) 2m

, mk=-®
Now we have,

k=-ot’i (x + /rk) 2m

cot(x) Lim
n —* m

n

k=-n (x + nk)

Differentiating equation (3.2.8) w.r.t. x, (2m -1]

get,

,2m-l

k=-® (x + ?ik) 2m (2m -1)! dx 2m-l
< cot(x) )

Using equations (3.2.8) and (3.2.9) in equation

get,

£ | N (2x - 2^k), > mk=-i'.o

. 2m, . ,2m-l- sm (x) d
(2m - 1)! , 2m-3dx

— (3,2.7)

— (3.2.8)

times we

— (3.2.9)

(3.2.7) we

-( cot(x) )

-- (3.2.10)
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We evaluate R.H.S. of equation (3.2.10) for and 

I] For in = 1 in equation (3.2.10)

ft)— s T, / „ „ , , ,2 - sin (x) d , ^%E j N1(2x - 2nk) | = _ 1},--- ^ ( cot(x) ;
k=-<x>

2 2 = - sin (x) [- cosec (x) ]

= 1

Thus in this case when m=l,A=B=l and the B-Spline basis
2are orthonormal basis of L (IP:)

II] For m = 2 in equation (3.2.10)

■ 2£ ! N (2x - 2rck) j
k=H»

. 4, . .3sm (x) d
3! ( cot(x ) )

dx"

But the value of

.3a
dx

-2
3 ( cot(x) ) = 4 (1+2 cos x )

sin (x)

Art
E IN (2x - 2*tk) 1 
k=-m

4
t 2 — sin (x) -2

3! • 4/ \ sm (x)
1+2 cos x)

12 2 — + — cos X 3 3
Since 0 < cos (x) < 1 , we have,

\ < E j N2(2x - 2*7k) | 2 <1
k=-oa

Although the formula (3.2.10) is explicit and provide a 

formula for optimal Riesz bounds. In general it is quite 

cumbersome to calculate, we therefore, use following theorem.
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2Theorem (3.1) Let fe L (R) satisfies any one of the following 
three conditions:

. . -{■! ~ 1(i) f(x) = 0( jxj * ), ft > 1; and f(x) = 0( }xj ' ), a >

as j x j --- * oo

(ii) f is of compact support, and belongs to class 

Lip(y) for some y > 0, meaning:

sup sup j f(x+t) - f(x) ! = 0(h* ), as h —» 0+

(iii) f is a continuous function of compact support, and is 

of bounded variation in its support.

Then if follows that
- 9 Xi f ___ 1 - ikx£ j f(x + 2nk) | = £ ^ J f(y + k) f(y) dy } e

k=-oo
for all x e E.

Now using the relation
ix'.i

f f(x) N (x) dx J m

We take /(x) = N (x + k)m

k=-® I -off

1 1
= f ...f f(x.+x_+...+x )dx.dx_...dx J „ J 1 2 m 1 2 m

<» _____ 1 1
f N (x + k) N (x) dx = f ...f N (x.+x_+,..+x +k)dx.dx_...dx ! m m j . m l 2 m 1 2 m
-fjft 0 0

Since,

N (x) m
1

f N (x - t)dt m

x
f n 1(y) dy•t . m-l
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Set x = 1, we have

N (1) = j N (x)dx m m-1

Thus we have,

m
f N (x + k) N (x) dx = 

■f m m
~:Xl

1 1
f ...{' N .(x„+...+x „+k+l)dx„dx„...dxJ -J m+1 1 m-1 1 2 m-10 0
1 1

f ,..f N „(x„+...+x _+k+2)dx.dx_...dx _J m+2 1 m-2 1 2 m-20 0
N (m + k) m+m
N2m(m + k)

To evaluate (x + k) at k e 2 we use N„(k) = 6, . k e. Z 2m 2 kl
\r r^ —lr+.iN (k) = —— N (k) + .*.■■■. N (k - 1) for k = 1, 2,n+1 n n n n

N „(k) = 0 for k < 0 and k > n + 1 n+1
Therefore,

m-12 *“ ~ — ik/ 'E 1 NJiA + 2wk)| = E N (m + k) e "' < 1" ■ m * , „ 2mk=-i» k=-m+l

( By Property (5) and (6) )

This gives the smallest upper bound B = 1

To determine lower bound A, consider the Euler-Frobenious

polynomials

B2m-l(z) = (2m " 1)! 22m-l
m-1

k=-m+l
N2m(m + k) Z
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This is a polynomial of order (2m - 1) and has 2m - 2 roots

0 > xx> x2> > X„ These are simple, real and2m-2
negative roots, that is ,

'V A2m-2 = k2 A2m-3 X . ■ X =1 m-1 m
Hence we have,

A = m (2m - l)i ^
m-1 (1 + X, )k > 0

Now, we can write 

! l m** | N (a + 2uk) {, 2
2m-2

L 
k=-®

(2m - 1)! kn= 1 I eIte - X
k

Since are simple roots in reciprocal pairs

A X = 1 =&> A _ _i 2m-2 2m-2

x • 2 A2m-3 = 1 ■* X2m-3

X ■ A. = 1 = X , =m m-1 m-1

E I N (« + s mso
2irk) j 2

k=-*:

A

A.

m

(2m - 1)!
m-1

k = 1
e a/}

Ak I A

(2m - 1)! k0= i

. | i.d . — Jis). I !m-1 e (1 - a,e ) i a,e I k = * k

k

IXkl

m-1
(2m - 1)! kH= 1

. — list i i * -T'-tf
1 - xfce i j 1 - xke

S h |* k*
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1 m-1 1 (1 - Ake M' ) ( 1 - X e" )|
(2m - 1)! kn= x IAkl

, , - Ms> . its? , 2
. m-1 1 - A.e - A.e + A.1 ^ 1 k k k

(2m - 1)! n= 1 KT

m-1 | 1 - 2-X. cos (id) + X' i

(2m - 1)! fcn= i A. | 
1 k1

Since | cos (id) j < 1

«> ~ 2 * - t
T f N (w + 2nk)| > T \ N (tr + 2nk)! = A, ^ * m > , ■ m * mk=-t» k=-as

Thus cardinal B-Spline basis B is a Riesz basis of v” with

Riesz bounds A = A and B = 1.m

(3.3) THE TWO SCALE RELATION & INTERPOLATORY GRAPHICAL DISPLAY 

ALGORITHM:

Since B={M(x-k) : k *= Z } is a Riesz basis of Vm , then 
m o

for any j e Z, the collection

B. = { 2-*/2 M (2jx - k) : k e Z }
3 m

;o a Riesz basis of Vm with the £
3

construction of computational algorithms, it is more

only changes the Riesz bounds by a factor of 2

— (3. 3.1)

esz bounds as

B and in the

it is more

3/2 in B ..
3

This

-3 Hence for

, . „ / - j v ,.in , in meach 3, since N (2 x) <= V. and V. c V. „ ,m 3 3 3-1'

We have from (3.3.1),
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— (3.3.2)N(2Jx) = £ P , N ~ k)m ,m, K m
k*=Z

where

{ P . : k e Z } is some sequence in $ (Z)m, k
jNow, replacing 2 x by y, we have,

V?) = E pm t NJ2y - k>keZ m'k m

Taking Fourier transform of both the side,
N (*>) = ~ \ £ Pm t e
" 2 *■ kfe m'k

■ik.<j/2 N ( m
S>) -(3.3.3)

Since,

NUOm
1 - e— jjh ^ m

Then by the equation (3.3.3)

1 - e - m „ m
M.o ) = \ f £ p j 2 i kfe m'

- ifca/2 e •iw/2
m/2

Therefore,

1 j[ £ P . eL kir m'kivrr#..

gr to

1 nT
lr
nr
 '
► H1 1 <t>
1 fc
4.

«t
w

a/ 3 „ -i(n/2 . -m
1 - e 12 1 J l ^ J i i.d/2 J

= f d-e-i”/2) (ite-^2) f j m/2 lm
l id } | , A Ms} / 2 . 1k (1-e )

. 2- (i + e-iM/2)"

m
2~m £ V

k=0
-iteri/2e
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Thus

keZ
Therefore,

P e~ifc..i/2 = 2-m*l " mc e-iW2
a'k kto k

^ -m+1 rn . . , . ,P , = . 2 C, for 0 i k i mm,k f kt 0 otherwise

— (3.3.4)

Consequently,

.. / . l III lktej 2 _ I f 1N (x) = V 2 C, e N (2x - k) --(3.3.5)m , k mk^ii:

which is called "two-scale relation" for the cardinal splines 

of order m.

Consider a cardinal spline function 

f. (x) = Y a.° N (2 °x - i)
j ' imm ^ JH -(3.3.6)

of order m with knot sequence 2 Z where j is any (fixed)
3 o °

integer. Suppose that {a. } is a " Causal " sequence of known
30

real numbers, where causality means that a^ =0

for all i < i (some constant), o
The object is to compute all the values of the sequence

f. (_JL
3 31o „ 1

) k <e for all j. > j 1 o

To display the graph of f(x), it is adequate to display the

sequence f. (-- r—1 To „J1
) k e Z , provided that the real (fixed)
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integer j is sufficiently larger. For each j 

notation

j let us the o

f.(x) = r a3 N (23x - i) 
3 rim1 -- (3.3.7)

J _ r ,(j) x a ~ -a a - i a^ / i •= t
By applying the two-scale relation is the identity

/j+1(x) = f.(x)

* £ a-?+1 N (2'i+1x
r i ml

i) = E a- N (23x " i) 
rim l

Using (3.3.2)

£ aj+1 N (2j+1x - i) = £ aj £ P N (2j+1x - 2i - k)
rim r 1 r m,k mi i k

£ a3+1 N (23+1x - i) = £ f £ P - 2k a^
r i m r I , m, i kl l *- k

,j + l

i +1N (23 x - i) m

Hence, since the collection N(2 x - i) : i ♦= Z is a Rieszm
basis of V™ the identity f. (x) = f. (x) is precisely 

3+1 3+1 j
described by the formula

i+1 £ P . - 2k a , m, l kk
(j) --(3.3.8)

where
a"* = { af3 ^ } and a3+1 = { a^ + ^ }

k k are the

coefficient of sequences of f^(x) and f^+^(x) respectively.

ll 3X
Finally, from the sequence a = { a } we still have toK
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compute the values of f: ‘—37O „ 1
) k €

Since

N_ (k) = o, . k e Z2 k,l

Jr m— k
N (k) = —V- N (k) + ——N (k-1) k = 1,2,3, ... ,m-l m m-1 m-1 m-1 m-1

For k e Z we have,

k (i-j) 3* i_
f ( * ) = £ a. N (2 -4- - i)

3 3* i i m j
° 2 1 1 21<v

E a N (k - i)— i m

(3.3.9

(j-)
E Wm k_! ai
i '

where Wm,k N (k), k m (3.3.10)

Note that both (3.3.8) and (3.3.9) are only "moving 

average" (M. A. ) formulae except that the sequence a*1 in (3.3.8) 

needs "upsampling". This means that a zero term must be 

inserted in between any two consecutive terms of the sequence 

a"1. To be precise, let us set

J' a = {ai> ie 2; with
I a3 = a? and
I 2k k -(3.3.11)

a = 0 , k € Z 2k-l '

Then the formula (3.3.8) becomes

a3 1 = T P - 2k a*3*
i “ m,i-k kk

1 ail (3.3.12;
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Algorithm:(Interpolatory graphical display algorithm)

Let f. be a cardinal spline function with causal coefficient 3 o
sequence

jo , jo . . . 1
a = { a : i * l/i + 1, ... }X o o

as in (3.3.6). Select any j. > j . Then for j = j ,...,j -1,1 o o 1
compute

S : a? using (3.3.11)

V aJ+1 using and (3.3.12)
Finally,

S : { f, (-, ) : k e Z }. using (3.3.9) and 3 3o 23o

S2 for j = j1 - 1 

(Skip S± and S2 if = jQ).
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