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CHAPTER NO. 3

CARDINAL SPLINE ANALYSIS

Introduction:

This chapter is devoted to the study of cardinal spline
functions with emphasis on their basic properties. At the end
of -his chapter we develop "two-scale relation" for the
cardinal splines of order m. Finally we develop an

interpolatory graphical display algorithm.

(3.1) Cardinal Spline Spaces:
Notations:

ﬁn: The collection of all algebraic polynomials of degree at

most n
Cn: The collection of all functions f such that
f, ', f(z), f(s),..., f(n) are continuous everywhere with

-1 . , . . ,
C=¢C and C is the space of piece wise continuous function.

Definition: For each positive integer m, the space Sm
of cardinal splines of order m and with knot sequence &£ is the
collection of all functions f = Cm~2 such that the restriction
of f to any interval [k ,k + 1), k &« F are in ﬂm~1 that is,

s
.

f = §1 , k
[k,k+1)

i

Slz The space of piece wise constant functions. The basis for

Sl can be { Nl(x - k) : k

if

& } where N1 is characteristics
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funztion of [0,1) defined by

Nl(t) = 1 for 0 <t <1
--=(3.1.1)
0 otherwise
To get basis for Sm: m * 2, we consider the sgpace Sm-N

consisting of restriction of functions f = Sm to the interval

[-N,N], where N is any positive integer. That is Sm-N is a

subspace cf functions f = Sm such that the restriction
£ and £l of f are in {]
§ ; m-1
F(=p0,-N + 1) N -1, m)

Setting Pm,j = f§ = ﬂm—l’ j = ~-N,...,N - 1 then
f[3,3+1)

. -2
since f = C we have

© (k) (k) Sy _ .
Pm,j Pm,j—l ] (3) =0 for k=0,1,2,...,m=2 (m> 2 )

The jumps Cj of fmnlat the knot sequence & are then given by

_ o{m=-1) . (m-1), .
Ci=P (3 +0)-P 7 (3-0) (3.1.2)
_ lim {m-1), . . (m-1),. N
-&7___§O+{f (3 +2) - £7 (3 -2) |,
The adjacent polynomial pieces of f are related by
C.
P .(x) =P (x) + i (x - ™t (3.1.3)
mIJ mIJ_l (m—l)! -
We introduce the new notation
x+ = max(x,0)
-—=(3.1.4)
xm = (x )m for all m = 1
+ +
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Therefore,

N-1 Cj
L m=1
f(x) = f% (x) + © — (X = J),
i -1
L[-N,-N+1) j=-nez (M)
for all x & [-N,N] -—-{3.1.5)
This equation (3.1.5) is true for all f = 8 with constant

m;N

Cj given by equation (3.1.2). Therefore, the collection

{ 1,x,x2,...,xm”l,(x+N-1)T"1,...,(x-N+1)T"1 } —==(3.1.6)
of (m + 2N - 1) functions is a basis of 8 . This collection

m,N

consist of both monomials and truncated powers. We can replace

monomials 1, X, xz, ey xm-1 by the truncated powers.
(x + N + m - 1)?"1, col, (x4 N)T“l ———(3.1.7)

Therefore, the following set of truncated powers, which are
generated by using integer translates of a single function
m-1

x+ , is also a basis of Sm

;N
m-1
{ (x - K)+ :k=2=-N-m+1, -+ , N-11} ---(3.1.8)
This basis is more powerful than (2.1.6) because,
i) Each function (x - j)T_ vanishes to the left of j
ii) All the basis in (3.1.8) are generated by a single

function XT~1 which is independent of N

iii) Finally
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It follows from (iii) that the basis in (3.1.8) <can be

extended to a "basis" 7 of the infinite dimensional space Sm

T = (% - k)i:j—1 : ke & } ---{(3.1.9)
Unfortunately, there is not a single function in 7 that
2. m-1
belongs to L (%) as each (x - k)+ — W A8 X 3

We therefore, have to create functions in LZ(E) form those in
'Eg’ which can be done by controlling their growth. Since, in
vector space, finite linear combination is the only operation,
we use "differences" instead of derivatives in tamping
polynomials growth.

Definition: Backward differences are defined recursively

(AF)(x) = f(x) - f(x - 1)

---(3.1.10)

o (x) = @ an) (x)
where f = ﬂm_l
Clearly

A"F = 0 ---(3.1.11)
Definiticn: Let Ml = Nl’ where N1 be characteristic function
of [0,1) defined as in (3.1.1) and for m = 2
Let

M (x) = T'm_%“_l‘)'"' A" K ——(3.1.12)
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Since

az xl = x1 - 2{(x - 1) + (x - 2)l
+ + +
2
k 2
= [ (-1)" ‘¢, (x-k)
k=0
3 2 2 2
& = - - - - -
x+ x+ 3(x 1)7 + 3(x 2)+ (x 3)
3
k 3
=% (-1) Ck (x-k)
k=0
In general
m m-1 m km m-1
L X = ¥ (-1) C_ (x-k)
+ k +
k=0
Therefore,
m
1 knm m-1
Mm(X) = —'(m z ( 1) Ck (x—k) “‘"(3’1.13)
k=0

Mm(x) = 0 for all x > m and Mm(x) = 0 for all x < O

Therefore, we have Supp Mm < [0,m]
Moreover, we can show that Supp Mm = [0,m] ---{3.1.14)
Since Mm has compact support, Mm(x) = Lz(m). We now show that

B = { Mm(x - k) : ke £} ---(3.1.15)
is a basis for Sm.

For instant, consider Sm;N ,the dimension of Sm;N is
(n + 2N - 1), Since Supp Mm = [0,m], we see that each function
in the collection

{ Mm(x -k):k=-N-m+1, ... , N-11} ---(3.1.16)

is non-trivial on [ -N,N ] and Mm(x -kKy=0onI![ -N,N ] for
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k< (-N-m+ 1) or k> (N-1).

Since the functions 1in the set (3.1.16) are linearly

independent they form basig for Sm~N . Thus we have an another
set of basis function for Sm-N . If we take wunion of these
basis in (3.1.16) for N = 1,2,3,... we get B in (3.1.15) as a

basis for 8
m
Therefore,
FL )

f(x) = E C, M (x - k) ---(3.1.17)
k=—mk m

Since Mm has compact support, all except finite number of
terms in (3.1.17) are zero and therefore RHS sum of (3.1.17)
is convergent.,

We are interested in only those cardinal splines that

belong to Lz(ﬁ), namely Sm N Lz(ﬁ). Let Vg denote its closure
in L2(®), that is, S pn L°(E) = V. oObserve that B = V"
=), .8y 0 ) = V- = 0"

In fact B is a Riesz basis of V?

The cardinal splines we have considered so far have the
knot sequence £. If we consider the knot sequence 23~E, then

the corresponding space of spline functions is denoted by S;,

since for j_< j2 we have 2 1-2 -~ 2 &, we have Sm1 = Sm

1
Thus we have doubly infinite nested sequence.

b S_l o S0 N S1
m m m

of cardinal splines where S; = Sm . Analogous to definition of
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Vg, we let V? denote the Lz(ﬁ)—closure of S; N LZ(EU . Hence

the nested sequence

m Vioe v e ——=(3.1.18)

T 1

of closed cardinal spline subspaces of LZ(R). Then we have

= L (F)
---{3.1.19)

m
Vown
LR
3 I
<
.
| S—
H
N
11411 VOO

<
]

{0}

Also, if B is a Riesz basis of Vg then for any j e« £ the

collection
{ 2372 M (27%x - k) : k=T ; ~--(3.1.20)

J

is also Reisz basis of V? with the same Riesz bounds.

(3.2) B-8Splines and their properties:

Definition: The mth order cardinal B-Spline Nm(x) is defined

by
Yo * ~ o
Nm(x/ (Nm_1 Nlj(x) for all m = 2
e
N (x) = | N _ (x-7v)NI(y)dy
=¥
1
N (x) = jo N _,(x-v¥) dy for all m # 2 ---(3.2.1)
In the definition of Mm(x) we set M1 = Nl’ we can prove that

M (x) = Nm(x) for all x.

The mth order cardinal B-Spline Nm satisfies the properties:
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Property (1): For any f = C,
A _
5 £(x) N _(x) dx

1 1

= f { . . -——(3.2.
jo... }Of(x1+x2+ +xm)dx1dx2 dx_ (3.2.2)

Proof:We prove this result by method of mathematical induction

Step{l) We show that result is true for m = 1

f £(x) Nl(x) dx

et A

|
i
0
i

"

-
ol
b
0.
x

Step(2) Let us assume that result is true for m-1 that is,

Jo ofx)ynw

(x) dx = f - f F(X_ +X_+...+x _)dx_ 4x_...dx
p— "0 "0

172 m-1 172 m-1

Step(3) We prove that result is true for m

i ] 1
.{ £(x) Nm(x) dx =.j f(x)[‘f N _1(x - t) dt ] dx
—3¥4 0
R 1 X
= jo { J fx) N (x - t) ax } at
R 1]
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¥ 1 £
5 £(x) N_(x) dx = } ['j fly + t) N (y) dy } dt
—i 0 -
1 1 1
= ; [ ; . ’ f(x1+x2+...+xm_1+t)dx1dx2...dx _1]dt
0 0 0
i 1 1
j £(x) Nm(x) dx = J . j f(x1+x2+...+xm)dx1dx2...dxm
—13 0 0
m
Property (2): For any g = C ,
o (m) n m-k m
[ ¢ '(x) N (x) dx = [ (-1) ¢, a(k) ---(3.2.3)
- m k=0

Proof: Since g = Cm == g(m) = C therefore, by applying above

Property(1)

Xy (m) 1 1 (m)
'j g (x) Nm(x) dx = j j g (x1+x2+...+xm)dx1dx2...dxm
—ix 0 0
For m = 1,
Y 1
I og'(x) N (x) dx = | ¢ (x)ax,
—¥ 0
1
- gg(X)}O
= g(1) - g(0)
i
i-k 1
= T (-1) C g(k)
k=0

Thus by direct integration we get the required property

o {(m) m m-k m
J o9 (x) N (x) dx = T (-1) ¢, g(k)
—ig) k=0
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Property (3): Nm(x) = Mm(x) for ail x

Proof: Fix x = F, By selecting

g(t) = (;’f)i) cx - )t

g (t) = —(—;1?;1—, (x - )77

g’ (t) = (;—3)2;2! (x - t)T_3
and so on

o "y - L -

™ty =v (x-t)

=

where & 1s delta distribution defined as

&#(x) = 0 for all x # 0 and
a4
f &(x) dx = 1
‘*53.‘5
Now by Property (2)

3

. (m) w m-k m
[ ¢ (x) N (x) dx = T (-1) c, g(k)
- n k:O k
m m
_ -k m {(-1) N m-1
= k§0( 1) ¢k mo Ty T (Xt
m
_ 1 km m-1
= oo D0 k- o)
--—{1i1)

And by (1)

pt e

—¥

1 g™ (x) N (x) dx = [ &) N (x) dx
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- m) - T
J oo T (x) N (x) ax = N (x) (1ii)

-3

Finally, from (ii) and (iii) we have the required property
Nm(x) = Mm(x) for all x = §

Property {(4): BSupp Nm = [0 , m]

Proof: We prove this result ky method of mathematical

induction

Step(1l) We show that result is true for m = 1

The assertion ig clearly true for m = 1 by the definition of

N

Step(2) Let us assume that result is true for m-1 that is,

Supp Nm_1 = [0, m-1]

Step(3) We prove that result is true for m

Now we have

WK

N (x)= [ N _ (x-t)N(t)dt

X2

1

= | N _,(x-t)at
0
Since Supp Nm—l = [0 , m-1]

N (x -~ t) = 0 for all 0 % x -t m-~- 1
m-1

Let X -t =y & -4t = dy

‘x—l
Nm(x) = - Jx N (y) dy
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=] N () dy
x-1

That is X -1y m-1%X2m = Nm—l(Y) = 0

when vy =m - 1, x will be m or Nm(x) # 0 for 0 & x £ m

Thus Supp Nm = [0 , m]

Hence by method of principle of mathematical induction result

is true for all m

Property (5): Nm(x) > 0 for all 0 < x < m

Proof: We prove this result by method of mathematical

induction

Step(1) We show that result is true for m = 1

By the definition, Nl(x) =1>0 0 £ x < 1, therefore result

holds for m = 1

Step(2) Let us assume that result is true for m-1, that is,
Nm—l(x) > 0

Step(3) We prove that result is true for m

1

N (x) = fo N (x - t)at

Therefore, by property (4) Nm(x) >0 for all 0 < x < m.
Hence by method of principle of mathematical induction result

is true for all 0 < x < m.
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~

Property (5): Partition of unity that is
[t
L N (x - k) =1 for all x
m
k=—m

Proof:We prove this result by method of mathematical induction

Step{(1l) We show that result is true for m = 1
#K
kz Nl(x - kY =1 for all x
=R

as there is only one interval [k,k+1l) such that Nl(x - k) =1

Step(2) Let us assume that result is true for m-1 that is,
pL ]
kg_T Nm_l(x - k) =1 for all x

Step(3) We prove that result is true for m

o ¥ 1
T N(x-k =T [ N (x-t-k)dt
K=—g O Ke— O 1
1 s
= f L N (x-1t- k)] dt
' 0 [ k=—-i.‘£v‘ m-1
1
= ; 1 dt for all x ( by step(2) )
"0

1t

1 for all x
Hence by method of principle of mathematical induction result
ig true for all x

Property (7): Nm(x) = { A Nm_lg(x)

Proof: We have by the definition
1

N ix) = jo N (x - t)dt
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N&(x) = - [Nm_l(x - t)]0
= Nm»l(x) - Nm~1(x - 1)
N%(x) = {éNm_l}(x)

Property (8): The cardinal B-Spline Nm and Nm— are related by

1
the identity,
X m-x
Nm(x) T m-1 Nm—l(x) A N -—1(X - 1)
Proof: We have
s 1 m m-1
Mm(.X) = Nm(X) = m & X+
and also Leibniz rule
m m m k m-k
(a7fg)(x) = E € (&7 0)(x) (&7 "g)(x - k)
k=0
, _ 1 m m-1
Nol¥) = —m—mr & %
1

m m-2
= W A {X(X+ )}

Applying Leibniz rule,

m-2 }

N (x) 2 (1) -8k - 1)"

1]
H
"y

o]

[
xa

(m - 1)!

% {ﬁm—l

+

~1.,m-2 -2 _1 -
= W{X ij_m (xr: - (x._l)rr )} + muﬁm (X—l)T !

,m-1 m-2 o, m=1 m-2
Eieser L R C A N P
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= i % { ﬁmmle_z f(m - x)a™ g - 1)™2 }
m-1 m-1 .
1 1 m— P m-2
= ) (x TR x+ + (m X) (m—Z)S(X 1) J
_ X (m - x) _
Nm(x) T {m - 1) Npop (%) # (m - 1) wal(X 1)

Hence the property.
Property(9): Nm is symmetric with respect to the center of its

support,

m m
Nol 5=+ x ) = Nl - x )

Proof:We prove this result by method of mathematical induction

Step{l) We show that result is true for m = 1

1 .1
Nm( 5 + X ) = f 1 for 0 = —5— + x <1

- otherwise

Nm< —%- +x )= _ 1 for — % P %
{ 0 otherwise

Nm( —%— - X ) = [ 1 for 0 = ~%m - X <1
i 0 otherwise

Nm( ~%~ - X ) = ( 1 for — % <R < %
1
L 0 otherwise

Hence result is true for m = 1.
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Step(2) Let us assume that result is true for m-1 that is,

m-1 m-1
Mg (=5 — +x ) =N (—— - x)

Step(3) We prove that result is true for m

Let us start with

m m-1 1
Nm—l( 3t X A e i B )
m-1 1
- Nm—l( 7~ ~ 3 % )
m
=N (- -1-3%x) ---(1)
m m-1 1
Mot {2 ) = N (=7 - %)
m-1 1
- Nm—l( 7 "3 v X )
m ..
=N — -1 +x ) -——{1ii)
By Property (8)
My x m- (5 + x)
m 2 m 2
Nm(§ tX) = (m - 1) Nz %)+ (m - 1) Nm~—1(§ *x - 1)
By equation (i) and (ii), we have
LU m- (5 + x)
m 2 m 2 m
Nm(f tx) o= (m - 1) Nm—l( 2 -1-x) 4 (m - 1) Nm—1(§ - %)
m m
D 4 m—(-—-—x)
2 m 2 m
"me 1 M1z ¥t m T Mmoo
= N (m - x) for all x
" m'2
Thus
m m
Nm(§ + X) = Nm(i - x) for all x

Hence by method of principle of mathematical induction result
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is true for all =x.

Now we proceed to show that the cardinal B-Splines basis,

B = § Nm(x - k) t k= g} -—=(3.2.4)
is a Riesz basis for Vg in the sense that there exists

constant A and B with 0 < A £ B < « such that for any sequence

2,
{ Ck} = £ (&), we have

[t &

2 Ly 2
A Ck }ﬂxzaa) < HE Ch Nm(x - k) HL2(3

2
SN [N e
k=—w 1 ) K - (L)

---(3.2.5)

Condition (3.2.5) is equivalent to frequency domain condition
X ~

A = T I N (@ - 2nk) §2 < B a.e. ---(3.2.6)
K=—m; ‘ m

We will work with this frequency domain condition to obtain A

and B. Replacing & by 2x in above equation (3.2.6) we get,
(i ~ 2
A = ¥ i N (2x - 2#rk) 5 < B a.e.
i m
K= -

Since
Nm(x) = ( Nm~1 * N1 3(x)

= {{ N _ o, *N 3* Nl}(x) and so on

- * x . . . %k %
(N *N N 3 (x)
Thus Nm is an m-fold convolution of N1 and
~ oLy — st
Ni(s;;a) = } e Nl(t) dt
—iK:
. - Jtat .
= j e dat ( By the definition of Nl(t) )
“0
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. ~Jmt <1
- e

r - i!.s':i
- 1 -e
N ( peA) ) T }

We have,
N Ly E4 ot
g Nm(f.‘.‘) i = §

We have,

- 15 ~ Iy
. 1 -e 77 2 ro1 - Y[
: Lisk : 1 Tisk . g

pisy

= X Jess J i ~ Tt
1 - Ins me-lm 1
- 2
fak
e lhx + - if.t'.'t
) 2 -21 5
- 2
fad
_ 2 -2 - cos(m)
- 2
)
_ 2[1 - cos(w)]
- 2
sk
. 2,
_ 2-2-8in {(1/2)

2

§1d

1 -e ;2 _ sinz(m/Z)
N
(e.¢f</2 )

proT—
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Thus,

2

; 1 - e 2 sin (w/2)
! i i -
w (/2)>

Using this relation, we get

R 2= A e ™ am _ sin®™u/2)

Pom : st : (%/2)2m
Therefore,

T - ey ., 2m

5 Nm(2x _ 20k) 22 _— sin” (x + zi)

K= - kR=—x (x + 7k)
o “ P
£ | N (2x - 2nk) 12 = sin®™x) ¢ = — —-=(3.2.7)
K= k=-m (X + nk)
Now we have,

Lim n 1
cot{x) = n - ryr o —— ---{3.2.8)
* ¥ k=-n (x + zk)
Differentiating equation (3.2.8) w.r.t. %, (2m ~-1) times we
get,
; ; = L dzmnl { cot(x) } (3.2.9)
- bl — ' — i - * -

k=-xm (x + ﬁk)2m (2m -1)1 dem 1
Using equations {(3.2.8) and {(3.2.9) in equation (3.2.7) we
get,

o . 2m 2m-1

o 2 _ —sin" (x) 4
T § Nm(2x 2nKk) [ = Zm = 171 TS ( cot(x) )
K=~ dx
-——{3.2.10)
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We evaluate R.H.S. of equation (3.2.10) for N, and N
I] For m = 1 in equation (3.2.10)

K}

sinz(x) d
> 1N (2x - 2mk) 17 = =

>
o8]

- sin®(x) [- cosec?(x) ]

Thus in this case when m = 1, A = B = 1 and the B-Spline basis

oy

are orthonormal basis of L2(

II7 For m = 2 in equation (3.2.10)

e " 2 sin4(x) d3
T 1 N (28 - 2sk) | = { cot(x) }
P2 i 3! 3
k=~ dax
But the value of

23 -2

a N 2
— { cot(x) } = —— (1 + 2 cos x )

3 .

ax sin (%)
4 ~ . -2
T IN_(2x - ka)iz . Tsin (%) [ (1L + 2 cos x)}

72 3! . 4
k=—n sin (x)
= E + 2 cos X
-3 3
. . 2 )
Since 0 <« cos (x) « 1 , we have,

1 i N 2

= & ! N_(2x - 28k) i =1

K H 2 g

k=—u

Although the formula (3.2.10) 1is explicit and provide a
formula for optimal Riesz bounds. In general it is quite

cumberscme to calculate, we therefore, use following theorem.
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Theorem(3.1) Let f = Lz(ﬁﬁ satisfies any one of the following

three conditions:

(1) £(x) = o(jx] ™), > 1; and £(x) = o(]x] ™), x> 3,

as ix] ——

H
~

(ii) f is of compact support, and bhelongs to class

Lip(y) for some y > 0, meaning:
Sup sup ., 7 _ 7 o ¥ +

(iii) f is a continuous function of compact support, and is
of bounded variation in its support.

Then if follows that

7 R 2 i £ i _ikx
T | flx+ 2ek)|° = T I fly + x) £(y) ay J e

1%

k= - k=-m
e

for all x = .

Now using the relation

[13] 1 1
J £(x) Nm(x) dx = J ‘..} f(x1+x2+...+xm)dxldx2...dxm
- 0 0
We take f(x) = Nm(x + k)
i 1 1

j Nm(x + k) Nm(x) dx }O...jO Nm(x1+x2+...+xm+k)dx1dx2...dxm
—%

Since,
1
Nm(x) =.j Nm(x - t)dt
0
X
= j N (Y) dy
x-1
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Thus we have,

[ty
lf“Nm(x + k) Nm(x) dx =

e

1 1
= j ...J Nm+1(x1+...+xm_1+k+1)dx1dx2...dxm_1
0 0
1 1
= j ...j Nm+2(x1+...+xm_2+k+2)dxldx2...dxm_2
0 0
= Nm+m(m + k)
= sz(m + k)
To evaluate sz(x + k) at k= & we use Nz(k} = @kl ke &

k n-k+1
Nn+l(k) = Nn(k) + — Nn(k - 1) for k =1, 2,

N (k) = 0 for ks 0 and k= n + 1
n+1
Therefore,

oy -1

m 13
N 2 - Ik
T N (w+ 27K)[" = T ;

sz(m + k) e s 1

S

k=—x k=-m+1
( By Property (5) and (6) )
This giveg the smallest upper bound B = 1
To determine lower bound A, coasider the Euler-Frobenious

polynomials
m-1
E (z) = (2m - 1)! sz—l L NZm(m + k) Zk

Zm-1 k=-m+1
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This is a polynomial of order (2m - 1) and has 2m - 2 roots

> Ao > A - > A . i ,
0 by a2> ﬁ2m—2 These are simple, real and

negative roots, that is ,

= A

A LA = .- o= 3 .
2 2m-3 m-1 m

SR
1 2m-2

Hence we have,

m-1 (1 + & )2
A = _,m,~£____ n ——— > 0
— 1 by
m {2m 1)! k=1 ik
Now, we can write
Y, 2m-2
- § 2 3- 5 ié‘ Y]
T PN (s + 2rk)IT = - S
£ H H - 1 ﬁ H i
il m (2m 1)1 ko= 1 k

Since ﬁi are simple roots in reciprocal pairs

Ao+ & =1 A = 1
17 Mom-2 T 7 T tope-2 T ~y
. _ 1
Ao famez T 1 * Aons 73
2
o1
Ao fmer T F Aol TR
m
s R 2
§ N (s + Zﬂk)g =
k=—x
= 7 | SRS - ==
(2m 1) k= 1 k }k
. m-1 § 1{4'."*(1 _ ;&ke"‘l{c?)g § ;{‘kelh _15
= - Rl 1
zm - 07 I, ]
. m-l | 1o 1ok e™
= - 1 ﬁ IS
(2m - 1)! k= 1 N
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1 §
= —1y7 N 5]
(Zm = D'y i8'S
_ i oy _1(5 - 3 i*‘.i:a . 2 §
) 1 g 1 ] 1 ﬁke ;ke + A
. T R g-" H
(2m 1)! K= 1 ;Akg
m-1 | 1 - 2-x _cos(wm) + %2 !
_ 1 i I.k X ).k H
- - i '
{2m 1)!¢ K = 1 !}.kg
Since § cos () § <1
pt ] ~ 2 X ~ 2
) | Nm(m +2rk){" > E i Nm(ﬂ + 2xk) " = Am
k=—mx k=—
Thus cardinal B-8pline basis B is a Riesz basis of Vg with

Riesz bounds A = Amand B = 1.

(3.3) THE TWO SCALE RELATION & INTERPOLATORY GRAPHICAL DISPLAY
ALGORITHM:
Since B = { Mm(x - k) : k=F } is a Riesz basis of VS , then

for any j = &, the collection

B, = { 297% M (27x
j m

is also a Riesz basis of V? with the same Riesz bounds as

- k) : ke &} —-—-(3.3.1)

those of B. Obviously, for j = 0, Bj reduces to B and in the
construction of computational algorithms, it is more

convenient to drop the normalization constant 23/2 in Bj' This

only changes the Riesz bounds by a factor of 2—3. Hence for

m

each j, since N (23x) = Vm and vW - v, .,
m j j j-1

We have from (3.3.1),
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j+1

Iy = _ —
Nm(2 X) = ﬁﬁ Pm,k Nm(z X k) (3.3.2)
Rz
where
—— } : n-2 —
{ Pm K : k= F } is some sequence in { (&).
]

Now, replacing 2 by y, we have,

Nm(Y) =k£E Pm,k Nm(ZY - k)
Taking Fourier transform of both the side,

-,y 1 —ike/2 0 e L
N () = > [ L P e N (%) } (3.3.3)

k=l !

Since,

N 1 - e *
Nm( w) = [ Tt }

Then by the equation (3.3.3)

-4 e—lm m ) l , e—ima/2 1 - e—lm/2
{ i T2 . m,k I/ 2
. ke -
Therefore,
1 7 . e—ikm/Z f1- e—lm ém - g - e~1m/2 ]—m
2 { kgf m,k J { Jise } [ I/ 2 )
_ { (1_e—ﬂﬁ/2) (1+e—1m/2) }m N /2 m
L l#w t (1“6“1{(:/2) _§

. 5 m
- 2-—m { 1 4+ e"li.a.‘ﬁ/z ]
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Thus

m
-ika/2 _ _-m+l m - 1kss/ 2

2ﬁ Pm,k e = 2 T Ck e

=5 k=0
Therefore,

P = ™ML eor 0 k< m ———(3.3.4)

m,k { k - 0= T

- 0 otherwise

Consequently,

- , -m+1l m -ikie/2

Nm(x) = ¥ 2 C, e Nm(2x k) (3.3.5)

k=T

which is called "two-scale relation" for the cardinal splines
of order m.

Consider a cardinal spline function

j 3

£, (x) =7 a,° N (2 %% - i) ~-=(3.3.6)
J = 1 m
o i .
of order m with knot segquence 2 & where jo is any (fixed)
J
integer. Suppose that { aio} is a " Causal " sequence of known
J
real numbers, where causality means that aiO = 0

for all 1 < io(some constant).

The object is to compute all the values of the sequence

f., (—— ) ke F for all j1 o jo

To display the graph of f(x), it is adequate to display the

sequence fﬁ (—~%~ } k= & , provided that the real (fixed)
e} 1
2
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integer jl is sufficiently larger. For each j = jolet us the

notation

3 . ]
f.(x) C N (27 - 1)
J i i m } ---{(3.3.7)

I
L
o

By applying the two-scale relation is the identity

j+1 j+1 . b] J .
=% E ai Nm(2 X i) = 2 ai Nm(z X - i)
i i
Using (3.3.2)
j+1 j+1 oL j j+1 .
2 ai Nm(2 X i) = E a.l ) Pm,k Nm(2 X 2i k)
i i k
i+l b ( - _ j i+l
g ai Nm(z X i) = Z]L Pm,i 2k ak Nm(2 X i)
i =k
. ) j+1 . . - .
Hence, since the collection Nm(z X - 1) : 1= & 1is a Riesz
basis of V?+1 the identity f5+1(x) = fs(x) 1g precisely
described by the formula
o v -2k ald) ~—=(3.3.8)
1 m,i k
k
where
aJ = { a;J) } and a3+1 = { aéj+1> } are the
coefficient of sequences of fj(x) and fj+1(x) respectively.
. j1 1 .
Finally, from the sequence a = { a } we still have to

k
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compute the values of fj (-§— ) k= F,
o 9 1
Since
Nz(k) =a'k'1 k= &
k m—-k
Nm(k) = — Nm—l(k) + —3 Nm_l(k—l) k=1,2,3, ,m-1
For k & & we have,
(i) j
£, (— ) =T a, . N_(2 1k ) ~-=(3.3.9)
o J1 i 271
2
(3,)
:za Nm(k“ l)
i
(3,)
1
=
& wm,k—l a4
i
where Wh’k = Nm(k), ke & --=-(3.3.10)

Note that both (3.3.8) and (3.3.9) are only "moving
average'"(M.A.) formulae except that the sequence aj in (3.3.8)
needs "upsampling". This means that a zero term must be
inserted in between any two consecutive terms of the sequence

aJ. To be precise, let us set

faj = {ai} ie T; with

Vad = o —=(3.3.

i a2k ak and (3.3.11)
T o
azk_l— 0 , k e F

Then the formula (3.3.8) becomes

j+1 _ _ “(3) A .
ai = E Pm,i~k 2k ak i1i& & (3.3.12)
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Algorithm: (Interpolatory graphical display algorithm)

Let fs be a cardinal spline function with causal coefficient

o)
sequence
J j
a®=17a%° :i=4i,i+1, ...}
i o' 7o
' .3.6). o> 3 . i = 3 ,...,3.-1,
as in (3.3.6). Select any 31 Jo Then for j 30 J1 1
compute
s, a’ using (3.3.11)
s : al*! using s, and (3.3.12)
Finally,
k - .
S.:{ f. (-, ) : k=& }. using (3.3.9) and
3 J J
0 270
S, for = 3, -1

2

(Skip S1 and 82 if J1 = JO).
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