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CH-4

MULTIRESOLUTION ANALYSIS

Introduction:

Wavelets have been found to be very useful in many
scientific and engineering applications 1including computer
graphics, scientific wvisualization, data compression and
signal processing. Our objective here is to introduce wavelets
via scaling function wusing the theory of multiresolution
analysis. In this chapter, we try to describe some examples
of scaling functions and their corresponding wavelets. The
two-scale reconstruction and decomposition relations. are
described in order to gain quick working knowledge of
wavelets.

4.1 Scaling Functions

Definition: A scaling function ¢ 1is essentially a function

$#(x) which can be written as a linear combination of #(2x - k)
which are 1/2 scaled and k/2 translated version of #(x). More
precisely,

g«»(x) = Z Pk 4-;_";(2x - k) ———'(4.1.1)

This is referred to as the two-scaled relation for the scaling

function and sequence {pk} is called the two-scaled sequence
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of i#. We shall restrict our attention to those scaling

functions for which only finitely many Pk's are nonzero in the

above relationship. These scaling functions have compact
support.

Suppose we define closed subspace VO be the linear span
of the integer translates of ¢ viz,

V =clos £ &(- - k) : ke &% -———(4.1.2)
o L2

and consider,

o { = & i - I = 7 _—
:ﬁ..j;k\X) #(2°x - K) : 3,k = . (4.1.3)

which are the scaled and translated version of #(x). Now we

define
= "‘x"’ '}"ﬁ‘", N = E ...-‘ ":AE - . .
Vj = clos 2% Ey k & s JE (4.1.4)
L
Because of two-scale relation in (4.1.1), we have V0 i Vl. In

fact two-scale relation generates a nested sequence of
subspaces

- V__1 o V0 “ V1 e e --—(4.1.5)

+~——— coarser finer

Furthermore, we would like that every function on real line ¥

should be representable in terms of $j-k for sufficiently
r

large j or in other words,

clos { U V.Y = LYE) -——(4.1.6)
L2 ez

This ©property generates Multirsolution Analysis ( MRA )
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defined below,

Definition: A function § = LZ(E) is said to generate a nested

sequence of closed subspaces V0 that satisfy,

1. - - -~ V_llc VO = V1 VBRI ( containment )
2. clos 2{ U Vj } o= L2(§) ( completeness)
L™ j=&
3. V. = 0 unique
JQZJ {0} ( que )

4. f(x) = Vj =3 [(2X) =V je & { scaling property )

j+1;

It is in general not true that any function ¢ satisfying
the two-scale relation (4.1.1) and property (4.1.6) generates
MRA with all the above desired properties. That ig why we
restrict our attention to only those scaling functions which
do generates MRA, that is, they do satisfy those properties

above.

Definition: The family ¢ forms an orthonormal basis if

o= o5 ﬁk n ¥ i,k,1,m e & -—~—(4.,1.7)
4.2 Wavelets

Given a nested sequences of subspaces Vj as in the containment
property of MRA, there exists subspaces wj , which are the
orthogonal complements of V., in V. , that is,

Jj j+1
V. =V, & W, Jj o=

&

---(4.2.1)

and
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AW, if o= i -———(4.2.2
WJ Wl if j i ( )

Since subspaces Vj are nested as (4.1.5) it follows that

vV, =V, & 7T Wj+k for 3 < i —-——{(4.2.3)

Where all these subspaces are orthogonal. From properties 2

and 3 of MRA, this gives rise to an orthogonal decomposition

of Lz(ﬁ),
L2F) =F W, o= - - - &W. @W W & - - - ———(4.2.4)
24 "",..ﬁ j— g _1 o O" 1 . .
Jed
and by the property 4 of MRA
f{x) = Wj =z f(2x) = Wj+1 ;e g -——(4.,2.5)

Given a scaling function 4 in Vo, the basis tenet of MRA is

that there exists another function w = WO called wavelet, such

that {wj'k :k = £} generates Wj where
¥y (%) = w(22%x - k) j, ke T ———(4.2.6)
Since V, =V & W ,
1 o} o

W Wb can be written in terms of #(2x - k), which forms basis
of Vl' Therefore, analogous to the two-gcale relation for
gscaling function (4.1.1), there exists the two-scale sequences

{ 9 } such that,

¥(x) = % 9 #(2x - k) -——=(4.2.7)

e
KeF

This relation (4.2.7) 1is <called 1two-scale relation for

wavelet.
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4.3 Reconstruction and decomposition relations
Both of the two-scale relations (4.1.1) and (4.2.7)

together are called the reconstruction relations. On the other

hand since both #(2x) and #(2x - 1) are in V1 and V1 = VO% Wo
there are four sequences which are denoted by {a_2k}, {b_Zk},
{a1“2k}, {bl«Zk}’ k = & such that

i = ¥ o - w - _—— .3,

4 (2%) LI a_2k B (X k) + b_2k (X k) ] (4.3.1)

ked
(22 - 1) =¢L [ a

k i
Vb

(X = k) + b w(x - k) ] ———(4.3.2)

1-2 1-2k
Above two formulae (4.3.1) and (4.3.2) can be combined into a

single formula, for 1 = &

P #(x - k) 1 ---(4.3.3)

#(2x - 1) = ;ﬁ[ ) ok g{x - k) + bl—2

kiga¥
which is called decomposition relation for ¢ and w%. The two
pairs of sequences ({pk} , {qk}) and ({ak} , {bk}) are used to
formulate reconstruction and decomposition algorithms
described below. { pk} and {qk} are called reconstruction
sequences, while {a_} and {bk} are called decomposition

k

seqguences.

4.4 Reconstruction and decomposition algorithms
Let us consider the general structure of multiresolution
analysis and wavelets as discussed in (4.2.3), where { Vj } is

genarated by translates of some scaling function 4. = LT(&)

bl
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and { Wj } is generated by translates of some wavelet
wj += LZ(EJ. In this case, by the property 2 of MRA, every

function f in LZ(E) can be approximated as closely as is

degsired by an fﬁ = V_ for some N = &.

N
Since V. = ij_1 e Wj—1 for any 3 = &, fﬁ has unique
decomposition
fﬁ = fﬁmi + gﬁ—l -—-—{(4.4.1)
where, fﬁ—l = VN—l and 9&_1 = WN_1
By repeating this process, we have,
I = 91t 9y2 a3t Iy P gy (44 2)

i

Where fj = Vj and gj = wj for any ] =& and M 1is so chosen

that fﬁ—M is sufficiently "blurred" called "wavelet

decomposition”". In the following, we will discuss an
algorithmic approach for expressing fN as a direct sum of its

components g g and b and

g N-M N-M'

N-1" In-27 IN-30 T

recovering fN from these components.

To describe decomposition and reconstruction algorithms,
let us first note that both fj = Vj and gj = Wj have unigque
geries representation.

- I s(29x -
f.(x) =E ¢ #(2°x - k) 1

J ke ———(4.4.3)

with ¢J = { ci}elz(E) j
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_ i w(27%x - k) 3
j o ———(4.4.4)

with a7 = { di}&lz(E)

In the following decomposition and reconstruction algorithms,

the function fj and gj are represented by the seguences cJ and
dJ as defined in (4.4.3) and (4.4.4)
- Decomposition Algorithm:
By using (4.3.3), (4.4.3) and (4.4.4) we have
f.(x) =7% cj e;l’s-(zjx - k)
J e k
- x j N} j_l . [ j"‘l —
= zﬂ L gm[ a o $(2 X 1) + bk—Zl w27 Tx 1) 1
o (1 .. .1
=T [E ak*Zl c]:i :;.4(23 x-1) + ) {E bk—Zl CIJ{ }5‘.’?‘(2] X ~- 1)
1:=7F SR - 1=F k= -
-———(4.4.5)

Since fj(x) = fj_l(X) + g. . (x)

j-1
Therefore, using the equations (4.4.5), (4.4.3) and (4.4.4) we

have,
v, .31 i1, 3-1
z [ £ a, .1 ¢ }@(2 x -1y + & ( b .ciiw(2” "x - 1) =
L= Mgl k=21 7k 17 k=T k-21 "k
= A e oy v g @0 2N -0
i l oo

Led led
« ] 3=1% 5371
%w[ gwak—ZI L ¢l #(27 "x-1) +
1=F Ykl -

j 3_1. nj_l -
+ { Ly p - 9 w21 = o
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From 12—linear independence of { . : k

31k e &£} and
{ ;j—l;k k = F } and the fact that Vj—l N wj__1 = {0}
b j-1
o« - =
L 3 21 %k T C1 0
K=
j-1 b
=% c = ¥ a c -——{4.4.56)
1 kel k-21 k
and
j j-1 _
Eby g% ¢4 =0
K=
, j-1 _ J —_—
=% dl = Eﬁbk—Zl ck (4.4.7)
ked
N-1 N-2 -3 N-M
a d a d A dN » a d
N fff N-1 ;”E N-2 fﬁf N-3g’£ ffﬁ N-M
C “w— C s C —s C — - —s
Here both ch1 and dJ“1 are obtained from CJ by moving average

schemes using the decomposition sequences as '"weights" with
the exception that those moving averages are sampled only at
the even integers. This is called down sampling. Therefore,
each of the arrows in above figure indicates a moving averages
followed by down sampling at the even indices.

Reconstruction Algorithm:

Using two-scale relation (4.1.1) and (4.2.7) we have

-1 -1
£, (x) + g. i (27

j-1 -1 S

(0) =g [ 2 e - 1) 4 a

1=
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‘.

. | - |
- vt ek -21-k) +p @7 poaa2’x - 21 - x)
1k P L
Le& ked lef kel

j-1 j-1 s nd
= o -
L L D] Pegp vd] g py 12272 -K)
led kel
_ 3-1 31 Y29 -
= E__n {Eﬁ Py 1 * Yo & #(2°x - k)
kel MleF ;
Since
f. X) + g. X) = f.(x
o (R + g (%) = £(x)
j-1 -1} ., 53 J ., 57
£ Fi - — Ferd -
ém{ L Ppoy 1 " %o l“(z * - k) =L o #(27x k)
Kz Mlead - k=f
and because of lz—linear independence of { gj_k ke &}
. 3o j-1 -1y ___
i { lzf_ Peoo1 1 P %1 9 } (4.4.8)
dN—M . dN—M+1 - dN--M+2 . dN-l .
CN"M;» %CN—M+1 4 CN~M+2 ¥ CN-l JCN

j-1

Here CJ is obtained from C and d3_1 by two moving averages,

using the reconstruction sequences as '"weights" with the

exception that an upsampling is required before the moving

3-1

averages are performed. More precisely, the samples C1 and
di—l are used at the even indices m = 21 and zeros are used at

the odd indices m = 21 + 1, when the (discrete) convolutions

are taken with respect to {pn} and {qn}.
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4.5 Examples

1) Haar Wavelets

1.1) Scaling function

We discuss first example as Haar function and Haar wavelet
which are very simple but wuseful to illustrate many nice
properties of scaling functions and for practical wuse. Haar

scaling function is defined by

S(x) = ( 1 for 0 = x <1
“{ ——(4.5.1)
0

otherwise

The subspace VO is spanned by scaling functions #(x - k) which
are integer translates of piece-wise constant functions on

unit interval. The subspace V., is spanned by #(2x - k) which

1
are k/2 translates of piece-wise constant on 1/2 interval. In
general, Vj is spanned by k/2J translates of piece-wise

constant functions on 1/2J interval. The two-scale relation

(4.1.1) for Haar scaling function ig,
#(x) = }:qu #(2x - k)

#(x) = f(2x) + #(2x - 1) --—{4.5.2)
Therefore, the two-gcale sequences { pk } for Haar scaling
function have non-zero values po =p, =1 and 0's for other

1

!
. S,
pJ
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1.2) Wavelets
The Haar wavelet w(x) corresponding to the Haar scaling

function $#(x) 1s given by

< <
S(x) = 1 for 0 = x 1/2
-1 for 1/2 =« x < 1
0 otherwise
We can easily construct the two-scale sequences { qk } in
(4.2.7) are 0's except for qO = 1 and q1 = -1

1.3} Decomposition Relations:

The two-scale relations (4.5.2) for Haar scaling
functions =xpress $(x) in terms of #(2x) and #(2x - 1), while
the two-scale relation (4.5.4) for Haar wavelets express w(X)
also in terms of #(2x) and 4#(2x - 1). Both of the two-scale
relations together are called the reconstruction relations.

#(x) = il 1 - #(2%)
w(X) 1 -1 #(2x-1)
Where as, the decomposition relation for Haar wavelets are the
expression of #(x) and w(x) which are the inverse of the
recenstruction relations (4.5.5).

Since the support of the scaling function and the wavelets
are within the same interval. the decomposition relations are

easily derived by just inverting the reconstruction relation

as follows;
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#(2x) = {1/2 1/2 - (x)
#(2x-1) 1/2 -1/2 w(X)

Hence the non-zero elements of decomposition segquences { ak }

and { b, } are ao =1/2, bO =1/2, a, = 1/2, b, = -1/2.

k 1 1

Now we see a PASCAL program for Haar wavelet.
program Haar;

uses crt;

var

i,3,1,k,n : integer;

X : real;

a,b,p,q : array [~-200..200] of real;
c,d : array [0..50,0..50] of real;
f1 : text;

function power{base,index : integer): integer;
var

temp,ii : integer;

begin
temp := 1;
for ii := 1 to index do
temp := temp * base;
power .= temp;
end;
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Begin
Assign{fl, '\mphil\haar.op');
rewrite{(fl);

clrser;

"
N

X 1= -2; n :
writeln(fl, ' ——————mm e ")

writeln(fl,'Given input data,that is,the sequence {ck}');
writeln(fl,' X ':6,' F(x)':13);

writeln(fl, == ");

j := power(2,n)-1;

for i := -j to j do

begin
afil := 0;b[i] := O;
pli]l := 0;q[i] := O;
end;
a[0] := 0.5; a[l1] := 0.5;b[0] := 0.5; b[1] := -0.5;
pl0] :=1; pl1] := 1;ql[0] := 1; q[l] := -1;
for i := 0 to j do
begin
cln,i] := exp(-x);

writeln(fl,x:6:2,c[n,1]:15:7);

X 1= X + 0.25;
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end;

clrscr;

writeln(fl, === e e e ");
writeln(fl, 'Decomposition of given data into sequences
{ck} and {dk} using the formulae (4.4.6) and (4.4.7)"');

writeln(f1,' C(i,k)':11,'D(i,k)':13);

writeln(fl, '———m e ")
for j := n-1 downto 0 do
begin

i := power{(2,3) - 1;
for k := 0 to 1 do
begin
c¢l[ji,k] := 0;d4[j,k] := 0;
for 1 := 0 to power(2,j+1)-1 do

begin

]

cli, k] cli,k]l + all-2*k]l*c[j+1,1];

alj, k] dlj,k]l + b[1-2*%k]*c[j+1,1];

end;
writeln(fl,c[j,k1:21:8,d[j,k]:15:7);
end;
end;

clrscr;
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writeln(fl,'-——--—e—mmmm o

writeln(fl, 'Reconstruction by using the

writeln(f1,' C(i,k)':11);

writeln(fl,'-=——-——mmm e

writeln(f1,c[0,0]:0:8,' ');
for 3 = 1 to n do
begin

1 := power(2,j)-1;
for kK := 0 to i do
begin

cli, k]l := 0;

for 1 := 0 to power{(2,j - 1) - 1 do

clj, k]l := clj,k] + plk-2*1]*c[j-1,1] +

+ qlk-2*1]1*d[j-1,11;

writeln(fl,c[j,k}:0:8,"

end;
end;
close(fl);

end.
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Output of the above programme:

X F(x)
-2.00 7.3890561
-1.75 5.7546027
-1.50 4.4816891
-1.25 3.4903430
-1.00 2.7182818
-0.75 2.1170000
-0.50 1.6487213
~0.25 1.2840254
0.00 1.0000000
9.25 0.7788008
0.50 0.6065307
0.75 0.4723666
1.00 0.3678794
1.25 0.2865048
1.50 0.2231302
1.75 0.1737739

.8172267

6.57182939 0

3.98601601 0.4956731
2.41764092 0.3006409
1.46637334 0.1823479
0.88940039 0.1105996
0.53944¢61 0.0670821
0.32719212 0.0406873
0.19845205 0.0246781
5.27892270 1.2929067
1.94200713 0.4756338
0.71442450 0.1749759
0.26282209 0.0643700
3.61046492 1.6684578
0.48862329 0.2258012
2.04954410 1.5609208
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C(i,k)

2.04954410

w

.561046492
.48862329

<

.27892270
.94200713
. 71442450
.26282209

O O W:n

.57182939
.98601601
.41764092
.46637334
.88940039
.53944861
.32719212
.19845205

OO0 O N WO

.38905610
.754602¢8
.48168907
.49034296
.71828183
.117000C2
. 64872127
.28402542
.00000000
.77880078
.60653066
.47236655
.36787944
.28650480
.22313016
17377394

O OO OO O O = o 1 8o W s O <
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2) General Order B-Spline wavelet

2.1) Scaling function

th

We have already defined m order B-S8pline Nm
recursively by convolution
i
N (x) =*£ N, N(t)at
where
N (x) = { 1 for 0 & x <1
1
- 0 otherwise
1
N (x) = 0§ N (x - t)dt ---(4.5.3)

The two-scale relation (4.1.1) for B-S8Spline scaling functions

of general order m is written as

m
Nm(x) = Equ Nm(2x - k) --—(4.5.4)
k=F
Where the two-scale sequence pk } for B-S8Spline scaling
function are given by
P, = g+l ch for 0 < k < m ——=(4.5.5)

2.2) Wavelets

Since B-8Spline Nm are scaling functions, it follows the
general theory that the B-Spline subspaces Vj form a nested
sequence. Moreover, the complimentary subspaces Wj are
mutually orthogonal and any function in Lz(ﬁ) can be

represented as a linear sum of function in Wj‘

In general, wmzs Wj are not unique. For the moment we
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focus on the unique wavelets Wm = WO that has the smallest
support. These will be referred to as B-Spline wavelets for

general order m and is given by

3m-2
wm(X) = T 9 Nm(zx - k) ——(4.5.6)
k=0
where
kK 1-m O p
q = (-1) 2 * ¢, N (k+ 1 - 1) -——(4.5.7)
k 120 1 2m

2.3) Decomposition Relations:
L . th . .
The decomposition relation for m order B-8pline is

#(2x - 1) = ¢ [al_Zk@(x—k) + b

keF

Lt (xK)1 1= T ——-(4.5.8)

Where, the decomposition sequences { ak } & { bk } are given

in following forms

1 k+1 _
% 72 M E Cgeong-21 ©12m —m(4.5.9)
1 k+1 _
B = =3 U1 L Poyion-1-21 C1,2m mom(4.5.10)

-
=¥
lef

and { pk } and { qk } are two-scale sequences given by (4.5.5)

and (4.5.7).

3) Linear B-Spline Wavelets
3.1) Scaling function:
Linear B-S8Spline Nz(x) is derived from the recurrence

(4.5.3) and (4.5.4) as the case of m = 2 for general B-Splines
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as follows.

f X for 0 &£ x < 1
Nz(x) = $(x) = % 2 - x for 1 £ x < 2 -——{4.5.11)
- 0 otherwise

Then the functions #(2x - k) in V1 subspace are expressed

explicitly as

. 2x-K for k/2 & x < (k+1)/2

#(2x - k) = {2+k-2x for (k+1)/2 & x < (k+2)/2 --—(4,5.12)
0 otherwise

The linear B-Spline N2(2x - k) that is #(2x - k) 1in V1

subspace for k = £. Since the support of (x) is [0 , 2], its

two-scale relation is in the form

2
#(x) =L P

b, #(2x - k) ——-(4.5.13)
k=0

By substituting the expressions (4.5.11) and (4.5.12) for each

1/2 interval between [0 , 2] into (4.5.13) the coefficients

{ p. } are obtained and the two-scale relation for Linear

X
B-Spline is given by

#(x) = % #(2%) + #(2% - 1) + % #(2% - 2) - (4.5.14)
Here { p_ P, P, } = {12 ,1,1/2}

3.2) Wavelets:

Now, let us study Linear B-8Spline wavelets denoted by

wo(X).
2 4

w(x) =% q N (2x - k) ---(4.5.15)
2 k=0 k 2
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where
2 2
2 Cl N4(k + 1 - 1)
1=0

q = (-1)F 271

(-1)%

Kk - T 2

{ N4(k+1) + 2 N, (k) + N4(k - 1)} ---(4.5.16)

4

The term N4(k) in above egquation (4.5.16) can be calculated by

using relation

m
.m 2
m

T I -1

m m
" ( (§ + X) + e~ N (= + x - 1)

]
3%
w
b
V1]
L}
®

We have non-zero Nm(k) values for m

k
1 2 3 4 5

0

2 0 1/2 0
0
0

N (k)

1/2 1/2 0
1/6 2/3 1/6 0

3

Non-zero values of Nm(k) ; ko= for some small m are

summarized in above table. Then the two-scale sequence { qk }
for ¥2(x) is computed_as follows:

qq = (1/2) {N4(1) + 2 N4(0) + N4(~1) } = (1/2) - (1/6) = 1/12
q = (-1/2) { N4(2) + 2 N4(1) + N4(0) = (-1/2) - (1) = -1/2
q4, = (1/2) | N4(3) + 2 N4(2) + N4(1) } = (1/2) - (5/3) = 5/6
a; = (-1/2) { N4(4) + 2 N4(3) + N(2) } = (-1/2) - (1) = -1/2
q, = (1/2) { N4(5) + 2 N4(4) + N4(3) }o=(1/2) - (1/6) = 1/12

Thug the two-scale relation for linear B-S8Spline wavelet is
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3 1 1 _ 5 3 _
@Z(X) = 33 N2(2x) —5 N2(2x 1) + s N2(2x 2)
1 1
- -—-'2— NZ(ZX - 3) + ——i—§ N2(2X - 4) “""“"(4.5.17)

3.3) Decomposition relation:

The decomposition sequences { ak} and { b } given in

k
(4.5.9) and (4.5.10) are written for m.= 2 as,

1 k+1 _
% =7 (DK 9391 %4 —o(4.5.18)
=&
1 k+1
P = 3 1) lgﬁp—k+3~2101,4 —m(4.5.19)

We already know the reconstruction sequences { pk } and { qk }

for linear B-Spline { m = 2 ) and above { ak }and { b, } are

k
decomposition sequences for linear B-Spline.
4) Daubechies Wavelets:
4.1) 8caling functions

Another example of compactly supported wavelets defined
on real 1line 1is Daubechies wavelets. Daubechies scaling

function &D is defined by the following two-scale relation;

3
D ] 1++% 3 D
#,(x) = F p #(2x - k) = 1 #4(2%) +
k=0
3+ v 3 3-Y3 D
+ 7 Fa (2% - 1)+ 1 #4(2x - 2) +
+ *3~%¥f-3~ #o(2x - 3) ——-(4.5.20)
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that is, non-zero values of the two-scale sequence { pk } are

1+ 3 3+ ¥ 3 3 -%3

{ pol pll p2[ p3 } = { 4 4 4 4 ’
1-v3

4 b
Here po + p2 = 1 and p1 + p3 = 1. In general, two-scale

sequence { pk } for any scaling functions has the property

E’pZK = E Pope1 = 1 --~(4.5.21)

4.2) Wavelets:

The two-scale relation for the Daubechies wavelets is in the

form
D
w () =T a #.(2%x - k) ---(4.5.22)
3 k 73
k
where
= (-1)% B -——(4.5.23)
9% Pyt T
and Ek ig the complex conjugate of pk. 8ince the two-scale

coefficients { pk } ar all real for @?(x), we simply have

=P . Therefore the non-zero values of the two-scale

p-—k+1 k+1

sequence { qk } are

1 -9 3 3 -% 3 3 +7¢ 3 1 + v 3
= { — - 7 , i , - 7y }, and the

explicit formula for (4.5.22) is

1
D D
wB(X) =7 qk $3(2x - k)
k=-2
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D 1 -3 . 3-93 D
Jgﬂa(X) = 1 :,;;;3(2}( + 2) — a 33-'3(2}( +1) +
3+ 3 D 1++ 3 D
+ 2 '.;:3(2}() - i :.;r‘3(2 - 1)

4.3) Decomposition relations:
The decomposition relations for Daubechies Wavelets

rather simple and given by;

D D D
s - =T i - i -
?3(2x 1) =% I ay_ok yB(X k) + bl—2k bs(x k) 1
k -
1l & &
~—=(4.5
where
a =15 -——(4.5
1-2k - 7 P12k "2
b - 13 --~(4.5
1-2k - 7 Y1-2k P2
Since only four { } and { g } are non-zero,

Py K

.24)

are

.25)

26)

27)

the

decomposition relation (4.5.25) is written in the following

more explicit form;

D 3 -3 D 1 +¥3 D
@B(ZX) = @3(x + 1) + 5 @3(x) +
3 +7¢ 3 D 1 -+ 3 D

+ -——§4~w~ @s(x) + — w3(x - 1) -——(4.5.
D 1 -9 3 D 3+7v3 D
,@:3(2}{ - 1) = 5 .;f,:B(X + 1) 8 ~ﬁ*3(x) +

1 +7 3 D 3-¥3 D

- 5 wB(x) - 5 ws(x - 1) -(4.5.
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Hence the non-zero elements of decomposition sequences { ak }
and { bk } are
a 1 +7 3 3+ 73 3-73 _ 1 -+93
o 8 A 8 r %2 7 8 * %37 T8

1 -% 3 3 -+ 3 3+%F 3
b, F 5 Pq 7 - A —

1 +79 3

by = - 8
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