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CH-4

MULTIRESOLUTION ANALYSIS

Introduction:

Wavelets have been found to be very useful in many 

scientific and engineering applications including computer 

graphics, scientific visualization, data compression and 

signal processing. Our objective here is to introduce wavelets 

via scaling function using the theory of multiresolution 

analysis. In this chapter, we try to describe some examples

of scaling functions and their corresponding wavelets. The

two-scale reconstruction and decomposition relations are

described in order to gain quick working knowledge of

wavelets.

4.1 Scaling Functions

Definition: A scaling function $ is essentially a function 

f*(x) which can be written as a linear combination of #(2x - k) 

which are 1/2 scaled and k/2 translated version of #(x). More 

precisely,

:Mx) = £ Pk #(2x - k) ---(4.1.1)
kSkiiL

This is referred to as the two-scaled relation for the scaling

function and sequence (p } is called the two-scaled sequence
&

80



of We shall restrict our attention to those scaling
functions for which only finitely many P 's are

IV
nonzero in the

above relationship. These scaling functions have compact

support.

Suppose we define closed subspace V be the linear spano
of the integer translates of viz,

V = clos _< #(- - k) : k <& Z >0 L2 '
and consider,

-- (4.1.2)

# (x) = #(2Jx - k) : j,k € 2
J / K

— (4.1.3)

which are the scaled and translated version of $(x). Now we 

define

V. = clos _< 4> . , : k -e Z >j*=Z
3 " J ,k — (4.1.4)

Because of two-scale relation in (4.1.1), we have V c V.. Ino 1
fact two-scale relation generates a nested

subspaces

sequence of

- - - c V . c V c V, c ■ • - -1 o 1
4---- coarser finer ---- *

— (4.1.5)

Furthermore, we would like that every function on real line IF: 

should be representable in terms of $ ^ f°r sufficiently
large j or in other words,

clos ( U V ) = l2(R)
L2 3 — (4.1.6)

This property generates Multirsolution Analysis ( MRA )
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defined below,

Definition: A function >p <= L (0?) is said to generate a nested 

sequence of closed subspaces Vq that satisfy,

1. c V Vrt c V„ 0 1
2. clos ( U V . ) = L (SR)

l jsZ 3

3. n v-i = {0}
JtaiL.

( containment ) 

{ completeness)

( unique )

4. f{x) <£ Vj •$==» f( 2x ) =: j 2 ( scaling property )

It is in general not true that any function $ satisfying

the two-scale relation (4.1.1) and property (4.1.6) generates 

MRA with all the above desired properties. That is why we 

restrict our attention to only those scaling functions which 

do generates MRA, that is, they do satisfy those properties 

above.

Definition: The family $ forms an orthonormal basis if

j ; k '' 1; m s
j , 1 " k, m V j ,k, 1 ,m <= Z -(4.1.7)

4.2 Wavelets

Given a nested sequences of subspaces as in the containment

property of MRA, there exists subspaces , which are the

orthogonal complements of V . in V . , that is,1 J + l
V. = V. # W. j *= 2 —(4.2.1)1+1 1 1

and
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w. i w. if j j* i 
3 1

— (4.2.2)

Since subspaces V. are nested as (4.1.5) it follows that

i-j-1
V. = V. ft V w. , i J , „ n+k k=0

for j < i ---(4.2.3!

Where all these subspaces are orthogonal. From properties 2

and 3 of MRA, this gives rise to an orthogonal decomposition
of L2(E),

L2(R) = £ W. = - - - « W « WQ # W # ' • *---(4.2.4)
jeZ

and by the property 4 of MRA

f(x) <b W_. #=# f( 2x) e ^j+j_ ; j <e Z (4.2.5)

Given a scaling function 4> in V , the basis tenet of MRA iso
that there exists another function ^ *= W called wavelet, such1 o
that {$<? :k e 2} generates W. where 

3 / k 1
■^ . (x) = -ff (2J x - k) j , k <£ Z ---(4.2.6)

3 r K
Since V. = V # W ,1 o o
up e Wq can be written in terms of «£(2x - k), which forms basis 

of V . Therefore, analogous to the two-scale relation for 

scaling function (4.1.1), there exists the two-scale sequences 

{ q } such that,

V(x) = £ q. #(2x - k) —(4.2.7)
ksZ

This relation (4.2.7) is called two-scale relation for 

wavelet.
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4.3 Reconstruction and decomposition relations

Both of the two-scale relations (4.1.1) and (4.2.7)

together are called the reconstruction relations. On the other

hand since both #(2x) and #(2x - 1) are in V„ and V. = V m W ,1 loo
there are four sequences which are denoted by {a_2]C^

{ai-2k}' {bl-2k^' k e Z such that

p(2x) = £ [ a_2k #(x - k) + b_2k -f(x - k) ] -- (4.3.1)
ksZ

#(2x -!)=£:[ al-2k #(x - k) + bx_2k W(x - k) ] —(4.3.2)

Above two formulae (4.3.1) and (4,3.2) can be combined into a 

single formula, for 1 *= 2

#(2x - 1) = £ [ a1_2k #(x - k) + b1_2k -f-(x - k) ] —(4.3.3)
tosZ

which is called decomposition relation for 4 and #. The two 

pairs of sequences ({p } , {q,}) and ({a } , {b }) are used to
K K Jv K.

formulate reconstruction and decomposition algorithms 

described below. { p } and {cj } are called reconstruction
Jv, HI

sequences, while {a, } and {b. } are called decompositionk k
sequences.

4.4 Reconstruction and decomposition algorithms

Let us consider the general structure of multiresolution

analysis and wavelets as discussed in (4.2.3), where { V_. } is
2generated by translates of some scaling function e L (S?)
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of some waveletand { Wj } is generated by translates 
2

*= L (if-.,1). In this case, by the property 2 
2function f in L (HR) can be approximated as

desired by an f„ *= V„ for some N e Z.N N
Since V. = V, „ * W. „ for any j x= Z,

3 3-1 j-l
decomposition

of MRA, every 

closely as is

f has unique

fN ~ fN-l + gN-l 4.4.1)

where, f e„ , v and g WN-l N-l yN-l N-l
By repeating this process, we have,

fN = Vl + ?N-2 + 9H-3 + " ' + ^N-M + VM (4.4.2)

Where f, V . and g. *= W. for any j e I and M is so chosen 
3 3 3 3

that f w is sufficiently "blurred" called "wavelet N-M
decomposition". In the following, we will discuss an 

algorithmic approach for expressing / as a direct sum of its

components gr , gr 2, #N-3' g and yN-M fN-M' and

recovering / from these components.

To describe decomposition and reconstruction algorithms,

let us first note that both f. <= V. and g. €
3 3 3

series representation.

have unique

f .(x) = H cl #(2jx - k)
k^TAV.-

with cj = { chi=l2(Z)
Jv

— (4.4.3)
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— (4.4.4)
9. (x) = £ dl <f(2jx - k)

bsZ
with = { d^}r=i^(Z)

JC

In the following decomposition and reconstruction algorithms, 
the function fand g_, are represented by the sequences c3 and 

d"5 as defined in (4.4.3) and (4.4.4)

Decomposition Algorithm:

By using (4.3.3), (4.4.3) and (4.4.4) we have
VX) =E #(2Jx - k)

E cl Z L a
l<sZ k-21

#(2J 1x - 1) + bk_21 W(2:l Xx - 1) 3

1( i'v -i -1
V a, c, #(2 x
*-i lr_ O 1 lr i v '

1 ““W ^ f

1) + E f £ b cj’L(2J'1x
LeZ^tos2 -1 1)

— (4.4.5)

Since f.(x) = f. „(x) + g. „(x)i i-1y ' ■ j-i
Therefore, using the equations (4.4.5), (4.4.3) and (4.4.4) we

have,

E j E ak-2l “k
^ ""(js -|jj; Ai £t J- A

1) + = L?„bk-

-Lfeiil KfeiiL 21 k
c1Ji^(2j Xx - 1)

= £ cl 1 - 1) + £ dj"1 ^(2j"1x - 1)
1-eZ 1*=2

E E a
ltea£l k>S£l k-21 c 3 1J#(23 Vl) +

I £ b
vk'&£ k-21

i-11 i-1d^ b(2J x-1)
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From 1 -linear independence of { $. : k *= Z } and
3 l! k

{ ^. . . : k e 2 } and the fact that V. . n W. . = {0}1 j-l;k 3-1 • * j-l

4 - ci_1 * °

.j-i E aksZ k-21 k — (4.4.6)

and

£ b, c,j - dj 1 = 0 
k-21 k 1

a?'1 = £ V .3

te=Z k-21 k (4.4.7)

N ,

.N-l .N-2d ^ d » a”-3 J-M 
n d

N-l ./ N-2
-+ C --- » C

/ rN-3/
--- j. C '--- * - ■

./ N-M
• ■ •--- » c

Here both c3 1 and d"3 1 are obtained from C"* by moving average 

schemes using the decomposition sequences as "weights" with 

the exception that those moving averages are sampled only at 

the even integers. This is called down sampling. Therefore, 

each of the arrows in above figure indicates a moving averages 

followed by down sampling at the even indices.

Reconstruction Algorithm:

Using two-scale relation (4.1.1) and (4.2.7) we have

+ st i(x> = E c c^"1#(2;3"1x - l) + a.3"1 f(23~1x - 1)]
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= E 1 E Pk^(2jx - 21 - k) + £; dij 1 £ q #(2jx - 21 - k) 
LsZ 1 keZ K 1-eZ keZ

= E E C cf1 pk_21 + dj-1 qk_21 ] #(2jX - k)
1-jSc k€£

= E f E
k-eZ lleZ 

Since

j-1 , j-1 ') ., „ j , »Pk-21 C1 + qk-21 dl 45(2 X " k)

f. . (x) + g. (x) = f. (x)
J-1 J-1 J

E f r p, c? 1 + q* k-21 1
kSiSL '•l€iL

.3k-2i dl p(2 x ~ k) = E ck #(2 x ~k)

and because of I -linear independence of { # : k *= Z }
3 / k

I E pk-2i + V21an -(4.4.8)

N-M \ N-M+ld \ dN--M+2 J-1\ a\
N-M 'N-M+l

V
Vif---- 4 cN--M+2 \ N-l

---- >- - • c

\

-»CN

Here C? is obtained from O'1 1 and dJ 1 by two moving averages,

using the reconstruction sequences as "weights" with the

exception that an upsampling is required before the moving
averages are performed. More precisely, the samples 1 and 

j —1d^ are used at the even indices m = 21 and zeros are used at 

the odd indices m = 21 + 1, when the (discrete) convolutions

are taken with respect to {p } and {q }n n
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4.5 Examples

1) Haar Wavelets 

1.1) Scaling function

We discuss first example as Haar function and Haar wavelet 

which are very simple but useful to illustrate many nice 

properties of scaling functions and for practical use. Haar

scaling function is defined by 
1 for 0 < x <1#(x) (4.5.1)
0 otherwise

The subspace V is spanned by scaling functions $(x - k) which o
are integer translates of piece-wise constant functions on

unit interval. The subspace is spanned by #(2x - k) which

are k/2 translates of piece-wise constant on 1/2 interval. In
jgeneral, is spanned by k/2 translates of piece-wise 

constant functions on 1/2"3 interval. The two-scale relation 

(4.1.1) for Haar scaling function is,

#(x) = E K #(2x -
ksZ

$ (x) = ip (2x) + A( 2x - 1) -- (4.5.2)
Therefore, the two-scale sequences { p, } for Haar scalingk
function have non-zero values p = p. = 1 and 0's for othero 1
p.'s.

3

89



1.2) Wavelets
The Haar wavelet -f(x) corresponding to the Haar scaling 

function <#(x) is given by
1 for 0 < x < 1/2

for 1/2 < x < 1
otherwise

We can easily construct the two-scale sequences { q } inK

(A.2.1) are 0's except for q = 1 and q„ = -1o 1
1.3) Decomposition Relations:

The two-scale relations (4.5.2) for Haar scaling 

functions express #(x) in terms of #(2x) and $(2x - 1), while 

the two-scale relation (4.5.4) for Haar wavelets express $*(x) 

also in terms of #(2x) and $(2x - 1). Both of the two-scale 

relations together are called the reconstruction relations.
#(X) ’ = 1 1 - #(2x)
¥' (x) 1 -1 4>( 2x-l)

Where as, uhe decomposition relation for Haar wavelets are the 

expression of $(x) and sf(x) which are the inverse of the 

reconstruction relations (4.5.5).

Since the support of the scaling function and the wavelets 
are within the same interval, the decomposition relations are 

easily derived by just inverting the reconstruction relation 

as follows;
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' #(2x) 
■&{ 2x-l)

= '1/2 1/2 - -#(x) '
1/2 -1/2 F (x)

Hence the non-zero elements of decomposition sequences { a
Jv

}
and { b, } are a = 1/2, b = 1/2, a„ = 1/2, b„ = -1/2.

K O O 1 1

Now we see a PASCAL program for Haar wavelet, 

program Haar; 

uses crt; 

var

i,j,l,k,n : integer;

x : real;

3/b/P/q : array [-200..200] of real;
c,d : array [0..50,0..50] of real;

fl : text;

function power{base,index : integer): integer; 

var

temp,ii : integer; 
begin

temp := 1;
for ii := 1 to index do 

temp := temp * base; 

power := temp;

end;
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Begin
Assign(f1,'\mphil\haar.op');

rewrite(f1);

clrscr;

x := -2; n := 4;

writeln(fl, '---------------------------------------- ' );
writeln(flGiven input data,that is,the sequence {c }');

rL

writeln(fl,' X ':6,* F(x)':13);

writeln( f 1, 1---------------------------------------- 1 );

j := power(2,n)-l; 

for i := -j to j do 

begin

a[i] := 0;b[i] := 0; 

p[i] := 0;q[i] := 0;
end;

a[0] := 0.5; a[l] := 0.5;b[0] := 0.5; b[l] := -0.5; 
p[0] := 1; p[l] := l;q[0] := 1; q[l] := -1; 

for i := 0 to j do 
begin

c[n,i] := exp(-x);
writeIn(fl,x:6:2,c[n,i]:15:7);
x ;= x + 0.25;
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end;

clrscr;

writeln(fl/ '------------------------------------------- ' );

writeln(flDecomposition of given data into sequences 

{c } and {d } using the formulae (4.4.6) and (4.4.7)');K K

writeIn(fl,' C(i,k)':11,'D(i,k)':13);

writeln( f 1, 1------------------------------------------- ' );

for j := n-1 downto 0 do 

begin

i := power(2,j) - 1; 

for k := 0 to i do 

begin

c[j,k] := 0;d[j,k] := 0;

for 1 := 0 to power(2,j+1)-l do

begin

c[j,k] := c[j,k] + a[l-2*k]*c[j+1,1]; 

d[j,k] := d[j,k] + b[l-2*k]*c[j+l,l];

end;

writeln(fl,c[j,k]:ll:8,d[j,k]:15:7);

end;

end;

clrscr;
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writeln( f 1,'--------------------------------------- ' );

writeln(flReconstruction by using the formula(4.4.8)'); 

writeln(f1,' C(i,k)':ll);

writeln( f 1, '--------------------------------------- ' );
writeln(fl,c[0,0]:0:8,' ');

for j := 1 to n do

begin

i := power(2,j)-l; 

for k := 0 to i do 

begin

c[j,k] := 0;

for 1 := 0 to power(2,j - 1) - 1 do

c[j,k] := c[j,k] + p[k-2*l]*c[j-1,1] +

+ q[k-2*l]*d[j-l,l]; 
writeln(f1,c[j,k]:0:8,' ');

end;

end;

close(f1);
end.
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Output of the above programme:

Given input data, that is, the sequence {c^}
F(x)

-2.00 7.3890561
-1.75 5.7546027
-1.50 4.4816891
-1.25 3.4903430
-1.00 2.7182818
-0.75 2.1170000
-0.50 1.6487213
-0.25 1.2840254
0.00 1.0000000
0.25 0.7788008
0.50 0.6065307
0.75 0.4723666
1.00 0.3678794
1.25 0.2865048
1.50 0.2231302
1.75 0.1737739

Decomposition of given data into sequences {c } and {d }
iV Ji

C(i,k) D(i,k) using the formulae (4.4.6) and (4.4.7)

6.57182939
3.98601601
2.41764092
1.46637334
0.88940039
0.53944861
0.32719212
0.19845205
5.27892270
1.94200713
0.71442450
0.26282209
3.61046492
0.48862329
2.04954410

0.8172267
0.4956731
0.3006409
0.1823479
0.1105996
0.0670821
0.0406873
0.0246781
1.2929067
0.4756338
0.1749759
0.0643700
1.6684578
0.2258012
1.5609208
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Reconstruction by using the formula (4.4.8)
c(i,k)

2.04954410

3.61046492
0.48862329

5.27892270
1.94200713
0.71442450
0.26282209

6.57182939
3.98601601
2.41764092
1.46637334
0.88940039
0.53944861
0.32719212
0.19845205

7.38905610 
5.75460268 
4.48168907 
3.49034296 
2.71828183 
2.117000C2 
1.64872127 
1.28402542 
1.00000000 
0.77880078 
0.60653066 
0.47236655 
0.36787944 
0.28650480 
0.22313016 
0.17377394
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2) General Order B-Spline wavelet 

2.1) Scaling function
t hWe have already defined m order B-Spline Nm

recursively by convolution
N (x) = r N N (t) dt m .f m-1 1

where
„ , . t 1 for 0 < x <1Vx> = i

0 otherwise
1

N (x) = f N . (x - t) dt -—(4.5.3)m J m-1

The two-scale relation (4.1.1) for B-Spline scaling functions
of general order m is written as

m
N x = V P N 2x - k — 4.5.4m , k mk=2

Where the two-scale sequence { p } for B-Spline scaling 

function are given by
p = 2~m+1 mC' for 0 < k < m -- (4.5.5)
k vk

2.2) Wavelets

Since B-Spline N are scaling functions, it follows them
general theory that the B-Spline subspaces V form a nested
sequence. Moreover, the complimentary subspaces W_. are
mutually orthogonal and any function m L (m) can be

represented as a linear sum of function in W_..
In general, ^ = W. are not unique. For the moment we

■ m j
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focus on the unique wavelets i# *= W that has the smallest‘ m o
support. These will be referred to as B-Spline wavelets for

general order m and is given by 
3m-2

y (x) = £ q N (2x - k)m , . k mk=0
— (4.5.6)

where
m/ . . k ,.1 m m ,. .

% = (-1) 2 £ Cx N2m(k + 1
1=0

1) — (4.5.7

2.3) Decomposition Relations:
thThe decomposition relation for m order B-Spline is

# (2x - 1) = £ [a1_2kMx-k) + b1_2k^(x-k)] 1 *= Z —(4.5.8) 
keZ

Where, the decomposition sequences { a } & { b } are given

in following forms

ak = 2 ) ^_q-k+2m-l-21 Cl,2m
1

, 1 , , ,k+l _
bks-2("1) J/- k+2m-l-21 1,2m

— (4.5.9)

— (4.5.10)

and { p } and { q } are two-scale sequences given by (4.5.5)

and (4.5.7).

3) Linear B-Spline Wavelets 

3.1) Scaling function:

Linear B-Spline N2(x) is derived from the recurrence 

(4.5.3) and (4.5.4) as the case of m = 2 for general B-Splines
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as follows.

N2(x) ^(x) = { 2 - x 

0

for 0 ^ x < 1 
for 1 1: x < 2 
otherwise

— (4.5.11)

Then the functions 4(2x - k) in subspace are expressed

explicitly as
2x-k for k/2 < x < (k+l)/2 

#(2x - k) = 2+k-2x for (k+l)/2 < x < (k+2)/2 —(4.5.12)
0 otherwise

The linear B-Spline N (2x - k) that is #(2x - k) in V
Z _L

subspace for k e Z. Since the support of #(x) is [0 , 2], its 

two-scale relation is in the form

#(x) = £ p. #(2x - k! 
k=0

—(4.5.13)

By substituting the expressions (4.5.11) and (4.5.12) for each 

1/2 interval between [0 , 2] into (4.5.13) the coefficients 

{ p } are obtained and the two-scale relation for Linear
a*

B-Spline is given by

#(x) = ~ ip( 2x) + #(2x - 1) + j ip( 2x - 2) ---(4.5.14)

Here { p p p } = { 1/2 7 1 , 1/2 }0,1,2
3.2) Wavelets:

Now, let us study Linear B-Spline wavelets denoted by

T 2 (x).

-2 (x) = £ 
k=0

qk N2 ( 2x k) — (4.5.15)
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where

q = (-l)k 2 1 Z 2C, N (fc +1-1)
1=0

(-l)k
qk = -Hr-* N4(k+1) + 2 N4(k) + N4(k - > —(4.5.16)

The term N,(k) in above equation (4.5.16) can be calculated by 4
using relation

U + x>m ,m- + x m„ , m . 2 „ . m .Nml2 + X) = -T7in-nNm-l(2 + X> + iT N .(? +m-1 2 x 1)

We have non-zero N (k) values for m = 2 , 3 , 4 are

I N ! m (k) k
0 1 2 3 4 5

ii 2 0 1/2 0
11 m 3 0 1/2 1/2 0
1 4 0 1/6 2/3 1/6 0_ _ _ _ _ _ _ _ _ _ _ _ _ _ i

Non-zero values of N (k) ; k s 2 for some small m arem
summarized in above table. Then the two-scale sequence { q }K
for (x) is computed as follows:

qQ = (1/2) {N4(1) + 2 N4(0) + N4(-l) } = (1/2) - (1/6) = 1/12 

qt = (-1/2) { N4(2) + 2 N4(l) + N4(0) } = (-1/2) - (1) = -1/2 

q2 = (1/2) { N4(3) + 2 N4(2) + N4(l) } = (1/2) - (5/3) = 5/6 

q3 = (-1/2) { N4(4) + 2 N4(3) + N4(2) > = (-1/2) - (1) = -1/2 

q4 = (1/2) { N4(5) + 2 N4(4) + H4(3) } = (1/2) - (1/6) = 1/12 

Thus the two-scale relation for linear B-Spline wavelet is
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r-V2* - 2)
- 4-N2l2x - 3> + 4i n2(2x - 4) -(4.5.17)

3.3) Decomposition relation:

The decomposition sequences {a,} and { b } given inK K

(4.5.9) and (4.5.10) are written for m = 2 as,

— (4.5.18)r q C-k+3-21 1,4leZ

£ P-k+3-21Cl,4 — (4.5.19)

We already know the reconstruction sequences { p } and { q }K. K
for linear B-Spline ( m = 2 ) and above { a } and { b } are 

decomposition sequences for linear B-Spline.

4) Daubechies Wavelets:

4.1) Scaling functions

Another example of compactly supported wavelets defined 

on real line is Daubechies wavelets. Daubechies scaling 

function is defined by the following two-scale relation;

2) +

3) — (4.5.20)
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that is, non-zero values of the two-scale sequence { pfc } are

{ P , P. , P~ , Po > O 1 2 3
i + y 3 3 + yr 3 - VT

i 3

Here p + p_ = 1 and p. + p„ = 1. In general, two-scaleO 2 13
sequence { p } for any scaling functions has the propertyK

E p2k E P
k k

4.2) Wavelets:

2k+l = 1 — (4.5.21)

The two-scale relation for the Daubechies wavelets is in the

form

V®(x) = E \ #3(2x - k) 
k

(4.5.22)

where

\ - <-1)k p-k+i (4.5.23)

and p is the complex conjugate of p . Since the two-scaleJv K
Dcoefficients { p } ar all real for ip (x), we simply have& o

p . „ = P , „ . Therefore the non-zero values of the two-scale -k+1 -k+1
sequence { q } are

{ q.2, q_r q0, % ) = < p3- -p2- p^ -p0 > =
, i - y 3
l 7 f

3 - ■/ 3 3 + / 3
/

1 + /3
4 4 ' 4

explicit formula for (4.5.22) is

}, and the

y 3 (x) = £ qfe #2 ( 2x “ k)
k=-2
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^(x) = 1.J.. 3. ^(2x + 2) V 3 DP,(2x +1) +

3 + y 3 ,D. . 1 + /3 ,D._ ..+ ----^---- #3(2x)------1---- f‘3(2x - 1)
(4.5.24)

4.3) Decomposition relations:

The decomposition relations for Daubechies Wavelets are 

rather simple and given by;

<^(2x - 1) = E [ a12k *3<x
k

k) + bl-2k »‘3(X ' k) !
1 « Z
— (4.5.25)

where

l-2k 2 Pl-2k (4.5.26)

bl-2k = 2 qi-2k (4.5.27)

Since only four { Pk } and { qk } are non-zero, the 

decomposition relation (4.5.25) is written in the following 

more explicit form;

D,. . 3-/3 D. „ . 1 + / 3 .D . .■?3(2x) = ---- -----  c*3(x + 1) + ---- -----  #3(x) +

3 + / 3 D. . 1-/3 D+ ---=--- + ---q---  - 1)8 (4.5.28)

D/0 „ . 1-/3 D. . . 3 + / 3 ,D. .13 (2x - 1) = ---- §---- #3(x + 1) + ---- g----  <£3(x) +

1 + / 3 D. . --- 8---- *'3(X> 3 - /~3~ c,--- 8---- *3{X - 1} (4.5.29)
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Hence the non-zero elements of decomposition sequences { a }

and { b, } are k

a = o
i + / 3 

8 ' al= 3 + 1/3 ■/ a. 3-/3
8 ' a3 = 1-/3_

1-/38 ' b-l 3-/38 ' bo 3 + / 3 
8

1 + / 3
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