$$
C h \text { apter-0 }
$$

PRELIMINARIES AND NOTATIONS

0.1) Notations
0.2) Definitions
0.3) Results

CHAPTER - 0
 PRELIMINARIES AND NOTATIONS

(0.1) Notations:

0	:	Infinity
$1 \cdot 1$:	Modulus
\pm	:	Belongs to
$=$:	equal
>	:	Greater than
$<$:	Less than
2-	:	Greater than or equal to
\leq	:	Less than or equal to
7	:	Not equal to
\longrightarrow	:	Tends to
$\sqrt{ }$:	Square root
ก	:	Intersection
U	:	Union
Σ	:	Summation
* or Σ	:	Direct sum
Id	:	Identity
\%	:	Fourier operator
F	:	Set of real numbers
?	:	Set of integers

2 : Epsilon
$\mathrm{L}^{\mathrm{p}}(\mathbb{F}) \quad: \quad$ The class of measurable functions f on \mathbb{E}
such that the (Lebesgue) integral
$\left\{\int_{-\infty}^{\infty}|f(x)|^{p} d x\right\}^{1 / p}$ is finite.
$\mathrm{L}^{(\omega)}$ (E) : The collection of almost everywhere (ale.)
bounded functions.
$L^{\mathrm{p}}(0,2 \pi)$: The Banach space of functions f
satisfying $f(x+2 \pi)=f(x)$ ale. on \mathbb{E} and
$\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p}$ is finite.
$I^{p}(\mathbb{Z}) \quad: \quad$ The space of square summable complex
sequences indexed by \mathbb{Z}.
(0.2) Definitions:

1) The $L^{p}(\mathbb{R})$ norm of f is defined as,

$$
\begin{aligned}
& \|f\|_{p}=\left\{\int_{-\infty}^{\infty}|f(x)|^{p} d x\right\}^{1 / p} \text { for } 1 \leq x<\omega \\
& \left.\|f\|_{\omega}=\begin{array}{l}
\text { esse. } \sup \\
0 \leq x<\omega
\end{array} f(x) \right\rvert\, .
\end{aligned}
$$

2) Inner product in $L^{p}(\mathbb{E})$ is defined as,
$\langle f, g\rangle=\int_{-i x}^{\infty} f(x) \overline{g(x)} d x \quad$ for $f, g \in \mathrm{~L}^{\mathrm{p}}(\mathbb{E})$.
3) Minkowski Inequality for $L^{p}(\mathbb{G})$
$\|f+g\|_{\mathrm{p}}=\|f\|_{\mathrm{p}}+\|g\|_{\mathrm{p}}$
4) Holder Inequality for $L^{p}(\mathbb{E})$

$$
\|f g\|_{p}=\|f\|_{p}\|g\|_{p(p-1)^{-1}}
$$

5) Schwarz Inequality for $L^{p}(\mathbb{E})$
$\|f g\|_{1}=\|f\|_{2}\|g\|_{2}$
6) The $L^{p}(0,2 \pi)$ norm of f is defined as,

$$
\begin{aligned}
& \|f\|_{L^{p}(0,2 \pi)}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p} \\
& \text { for } 1 \leq x<m \\
& \|f\|_{L^{m}(0,2 \pi)}=\begin{array}{l}
\text { ess. } \sup ^{0 \leq x<2 \pi}|f(x)| .
\end{array}
\end{aligned}
$$

7) Inner product in $L^{p}(0,2 \pi)$ is defined as,
$\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{g(x)} \mathrm{dx}$

$$
\text { for } f, g=L^{p}(0,2 \pi) \text {. }
$$

The inequalities of Minkowski, Holder and Schwarz for $L^{\mathrm{p}}(\mathbb{E})$ are also valid for $\mathrm{L}^{\mathrm{p}}(0,2 \pi)$.
8) The $I^{p}(\mathbb{E})$ norm of f is defined as,

$$
\begin{aligned}
& \left\|\left\{a_{k}\right\}\right\|_{L^{p}}=\left\{\sum_{k=w^{2}}\left|a_{k}\right|^{p}\right\}^{1 / p} \text { for } 1 \leq x<\omega \\
& \left\|\left\{a_{k}\right\}\right\|_{L^{m}}=\sup _{k}\left|a_{k}\right|
\end{aligned}
$$

9) Inner product in $I^{p}(\mathbb{Z})$ is defined as,
$\left\langle\left\{a_{k}\right\},\left\{b_{k}\right\}\right\rangle=\sum_{k=\bar{Z}} a_{k} \bar{b}_{k}$
Again, the inequalities of Minkowski, Holder and Schwartz for $L^{p}(\mathbb{R})$ are also valid for $I^{p}(\mathbb{Z})$.
10) Riesz Basis

A function $w \in L^{2}(\mathbb{F})$ is said to generate a Riesz basis (or unconditional basis) \{ $\left.W_{b_{o}} j, k\right\}$ with sampling rate b_{o} if both of the following two properties are satisfied,
(i) the linear span
$\left\langle W_{o}{ }_{j}, k ; j, k=\mathbb{Z}\right\rangle$
is dense in L^{2} (${ }^{(r)}$); and
(ii) there exists a positive constants A and B, with $0<A \leq B<\infty$ such that
$A\left\|\left\{c_{j, k}\right\}\right\|_{l^{2}}^{2} \leq\left\|\sum_{j, k \in \mathbb{Z}^{2}} c_{j, k}{ }_{b_{o}} ; j, k\right\|_{2}^{2} \leq B\left\|\left\{c_{j, k}\right\}\right\|_{1^{2}}^{2}$ for all $\left\{c_{j, k}\right\} \in I^{2}\left(\mathbb{Z}^{2}\right)$. Here A and B are called Riesz bounds of $\left\{\psi_{b} ; j, k\right\}$.

(0.3) Results:

Result(1): For any a > 0

$$
\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} .
$$

Result(2): If G is Hermitian operator on H such that $\left\langle G^{*} G f, f\right\rangle \geq 0$ for all $f \in H$, then all the eigenvalues of G are necessarily nonnegative. We then say that the operator G itself is nonnegative and write this as an operator inequality $\mathrm{G} \geq 0$.

Result(3): If a positive bounded linear operator T on H is bounded below by a strictly positive constant a, then T is inversible and its inverse T^{-1} is bounded by a^{-1}.

Result (4):

$$
\cot (x)=\operatorname{Lim}_{n \xrightarrow{n}}^{\sum_{k=-n} \frac{1}{(x+n k)}, ~}
$$

