Chapter - 0

PRELIMINARIES AND NOTATIONS

- 0.1) Notations
- 0.2) Definitions
- 0.3) Results

CHAPTER - 0

PRELIMINARIES AND NOTATIONS

(0.1) Notations:

(X)	:	Infinity
********	:	Modulus
ŧ	:	Belongs to
=	:	equal
>	•	Greater than
<	:	Less than
<u>>-</u>	:	Greater than or equal to
<u> </u>	:	Less than or equal to
¥	;	Not equal to
`	:	Tends to
√	:	Square root
n	:	Intersection
U	:	Union
Σ	:	Summation
⊕ or ∑	:	Direct sum
Id	:	Identity
Ŧ	:	Fourier operator
	:	Set of real numbers
Z	:	Set of integers

1

🖉 : Epsilon

 $L^{p}(\mathbb{R})$: The class of measurable functions f on \mathbb{R} such that the (Lebesgue) integral

$$\left\{ \int_{-\infty}^{\infty} |f(x)|^p dx \right\}^{1/p}$$
 is finite.

- $L^{(0)}(\mathbb{R})$: The collection of almost everywhere (a.e.) bounded functions.
- $L^{P}(0,2\pi) : \text{ The Banach space of functions } f$ $\text{satisfying } f(x + 2\pi) = f(x) \text{ a.e. on } \mathbb{R} \text{ and}$ $\left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{p} dx \right\}^{1/p} \text{ is finite.}$ $I^{P}(\mathbb{Z}) : \text{ The space of square summable complex}$ $\text{ sequences indexed by } \mathbb{Z}.$

(0.2) Definitions:

1) The $L^{P}(\mathbb{R})$ norm of f is defined as, $\| f \|_{p} = \left\{ \int_{-\infty}^{\infty} |f(x)|^{p} dx \right\}^{1/p} \quad \text{for } 1 \le x < \infty$ $\| f \|_{\infty} = \frac{\text{ess. sup}}{0 \le x < \infty} |f(x)|.$ 2) Inner product in $L^{p}(\mathbb{R})$ is defined as,

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx$$
 for $f, g \in L^{p}(\mathbb{R})$.

3) Minkowski Inequality for
$$L^{p}(\mathbb{R})$$

$$\left\| f + g \right\|_{p} = \left\| f \right\|_{p} + \left\| g \right\|_{p}$$

4) Holder Inequality for $L^{p}(\mathbb{R})$

5) Schwarz Inequality for $L^{P}(\mathbb{R})$

$$\left\| f g \right\|_{1} = \left\| f \right\|_{2} \left\| g \right\|_{2}$$

6) The
$$L^{p}(0, 2\pi)$$
 norm of f is defined as,

$$\| f \|_{L^{p}(0,2\pi)} = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{p} dx \right\}^{1/p}$$

for
$$1 \leq x < \infty$$

$$\int_{L^{\infty}(0,2\pi)} f = \frac{\text{ess. sup}}{0 \le x < 2\pi} | f(x) | .$$

7) Inner product in $L^{P}(0,2\pi)$ is defined as,

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \overline{g(x)} dx$$

for
$$f$$
, $g \in L^{P}(0, 2\pi)$.

The inequalities of Minkowski, Holder and Schwarz for

- $L^{p}(\mathbb{R})$ are also valid for $L^{p}(0,2\pi)$.
- 8) The $l^{p}(\mathbb{Z})$ norm of f is defined as,

 $\| \{a_k\} \|_{I^{p}} = \left\{ \sum_{k \in \mathbb{Z}} |a_k|^{p} \right\}^{1/p} \quad \text{for } 1 \le x < \infty$ $\| \{a_k\} \|_{I^{p}} = \frac{\sup}{k} |a_k|.$

9) Inner product in $I^{p}(\mathbb{Z})$ is defined as,

$$\langle \{a_k\}, \{b_k\} \rangle = \sum_{k \in \mathbb{Z}} a_k \overline{b}_k$$

Again, the inequalities of Minkowski, Holder and Schwarz for $L^{p}(\mathbb{R})$ are also valid for $l^{p}(\mathbb{Z})$.

10) Riesz Basis

A function $\psi \in L^2(\mathbb{R})$ is said to generate a Riesz basis (or unconditional basis) { ψ_{b_0} ; j, k } with sampling rate b if both of the following two properties are satisfied,

(i) the linear span

< $b_0; j, k ; j, k \in \mathbb{Z}$ >
is dense in $L^2(\mathbb{R});$ and

(ii) there exists a positive constants A and B, with

 $0 < A \leq B < \omega \text{ such that}$ $A \| \{c_{j,k}\} \|_{I^{2}}^{2} \leq \| \sum_{j,k \in \mathbb{Z}} c_{j,k} \psi_{b_{0};j,k} \|_{2}^{2} \leq B \| \{c_{j,k}\} \|_{I^{2}}^{2}$ for all $\{c_{j,k}\} \in I^{2}(\mathbb{Z}^{2})$. Here A and B are called Riesz bounds of $\{ \psi_{b_{0}}; j, k \}$.

(0.3) Results:

Result(1): For any
$$a > o$$

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}.$$

<u>Result(2)</u>: If G is Hermitian operator on \mathbb{H} such that $\langle G^*Gf, f \rangle \ge 0$ for all $f \in \mathbb{H}$, then all the eigenvalues of G are necessarily nonnegative. We then say that the operator G itself is nonnegative and write this as an operator inequality $G \ge 0$.

<u>Result(3)</u>: If a positive bounded linear operator T on H is bounded below by a strictly positive constant α , then T is inversible and its inverse T^{-1} is bounded by α^{-1} .

<u>Result(4):</u>

$$\cot(x) = \lim_{n \longrightarrow \infty} \frac{n}{\sum_{k=-n}^{n} \frac{1}{(x + nk)}}$$