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CHAPTER - 1
FOURIER ANALYSIS

Introduction:

In process of communication, one often needs to 

represent and analyze an electrical signal or an image. A 

musical note, an electrical signal, satellite images are some 

of the examples of signals. When one think about Fourier 

analysis, one usually refers to Fourier transform and Fourier 

series. A Fourier transform is the Fourier integral of some 

function f defined on the real line IF:. When f is thought of as 

an analog signal, then its domain of definition 0? is called 

continuous time domain. In this case the Fourier transform f 

of f describe the spectral behavior of the signal f. Since the 

spectral information is given in terms of frequency, the 
domain of definition of the Fourier transform f, which is 

again E, is called the frequency domain. On the other hand a 

Fourier series is a transformation of bi-infinite sequences to 
periodic functions. Hence, when a bi-infinite sequence is 

thought of as a digital signal, then its domain of definition, 
which is the set 2 of integers, is called the discrete 
time-domain. In this case, its Fourier series again describes 

the spectral behavior of the digital signal and the domain of 
definition of a Fourier series is again the real line W: which
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is the frequency domain.

The importance of both the Fourier transform and Fourier 

series stems not only from the significance of their physical 

interpretation, but also from the fact that Fourier analytic 

techniques are extremely powerful. For instant, in the study 

of wavelet analysis the Poisson summation formula, Parseval 

identities for both Fourier transform and Fourier series, 

Fourier transform of Gaussian function and the delta 

distribution etc. are often encountered.

1.1) Fourier Transform
1Definition: The Fourier transform of a function f «= L (JR) is 

defined by
~ * _ ■ tf(*.,0 = -r{f(t)} = ,[ e f(t) dt —(1.1.1)

-oo
The Fourier transform is a mathematical procedure by 

which a function is split into its different frequencies, like 

a prism breaking lights into its component colours. But 

Fourier transform goes further and tells both how much of each 

frequency the function contain ( the amplitude of frequency) 

and the phase of the signal at each frequency.

The Fourier transform also describes the result of that 

operation. The Fourier transform of particular function (that 

varies with time ) is a new function ( that varies with 

frequency ).
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1Properties: If f <= L (OR) Then its Fourier transform f 

satisfies
1) f e L*(R) with || f < || f ||x

2) f is uniformly continuous on 0?
13) If the derivative F of f also exists and is in L (8?) 

then

F (to) = itof(to) and

4) f(to) —* 0 as to ± ®

Although, f(ot) --- * 0 as to --- ^ ± to , for every fe L (OR), it
~ 1 does not mean f is necessarily in L (0?:)

A counter Example:

Consider Heaviside unit step function defined by

u (x) a { 1 for x > a; 

0 for x < a.

where a <= R. Then the function f(x) = e uQ(x) belongs to

L (!R), but its Fourier transform
it*

if {/(X) } = J’ — 2toX . ,e f(x) dx
-to

J.0
«>I

-X -ItoX .e e dx

- (1 + ito) x „ e dx

(1 + ito)x -.to

-(1 + ito) JO
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(1 + i(>>) 

1
(1 + iio)

(1 + ) x

Jo

( 1 - o )

? {/(X) } (1 + iw)
-1which behaves likes 0(|«J )at m and hence, does not belongs 

to L1(K)
~ iDefinition: Let f s L (K) be the Fourier transform of some 

1function f e L (ffi!) then the inverse Fourier transform of f is

defined by,
J
«>

2 n
XiiX . ,e f {<>.s) d>v>

-m

Now important question is that, can f be 
from f by using the operator ,r~1 or under what

— (1.1.2)

recovered

condition
(y 1/)(x) = /(x) ?

This is possible only because of the following theorem.
~ 1Theorem(1.1): If f e L (R) be the Fourier transform of some

1 -1~function f e L (R;) then f(x) = (;F f))(x) at every point

x where f is continuous.

Now we prove an important result, Fourier transform of 

Gaussian function is again a Gaussian function. This is one of 

the function whose Fourier transform is of the same type. The 

Gabor transform is a window Fourier transform with any

Gaussian function g as the window function. For various/■*<*
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reasons other functions may be used as window function. But

they must have to satisfy window function condition 
2 2tw(t) e L (ER) for we L (!E), then we can use w as time

2window function. Now if w e L (SR) satisfies the window
~ 2condition then its Fourier transform w e L (SR) need not 

necessarily satisfies window function condition and hence it 

may not a frequency window function. Since Fourier transform 

of Gaussian function is again a Gaussian function, we can use

g and g for time - frequency localization.ct a.
Result:

Gt) . 2r -K..>x -ax j e e dx
-oo

fir -(to /4a)“ / ““ © y a -(1.1.3)

Proof: Consider the function

do 2,, , {■ -ax + xy .f(y) = J e dx
-oo

y e IF:

Now

-ax + xy = -a ( x -

-a ( x -

xy
a

xy

4a'
) +

4a

-a ( x - Y i2 + Y
2a 4a
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Therefore,

f(y) = J -a( x y }2 + y
2a 4a dx y € 0?:

-00

, 2. . . o> . y . 2= e(Y /4a) J e-a x - -25 > dx
-CO

Put t2 = a ( x---)2 4 dt = ■/ a dx
Z cl

(y2/4a) f" -t2 dt 
f(y) = ew j e ---

-i» y a

(y /4a) 1 f7= JV a -oo

to 2
e dt

y a
fir (y2/4a) 
y a

This can be extended to be entire ( analytic ) function and 

since they agree on ER, they must agree in the complex plane €. 

By setting y = -iw,

w . i. i---- . e. . , .- max -ax . / n -(« /4a)j e e dx = / - e
-i.O

Now we switch towards the important concept in Fourier 

analysis what is called as CONVOLUTION.
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Continuous - time convolution:
1Definition: Let f and g be function in L (HR). Then the

1(continuous time) convolution of f and g is also an L (OR)

function h defined by
h(x) = (f * g) (x) = j f(x - y) g(y) dy

09

-00

If h{x) = (f * g)(x) then h € L (0?). Moreover,

J * Jl - |f II I * I
Proof:

(1.1.4)

00
II h 111 = 1 I l*<x>l Sx-f.O

J | J f(x - y) g(y) dy | dx
-OO - 00

<0 <0
J J I f(x - y) g(y) | dy dx

J J j f(x - y) | • | g(y) J dy dx
-09 -00

09

~<Xs

09
J } g(y) | J | f(x - y) | dx

«- -00
dy

-00
f j g(y) | J | f(t) | dt

L -00
dy
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; i
L

g(y) | " iif dy
j

- I f h I 9 lli 
II * h s II f h II 0 111

We can prove
f * g = g * f for all f , g e L1(K) —(1.1.5)

{ f * g ) * u = f * ( g * u )

Thus convolution operator is commutative and associative. Now 

important question is that, does there exists some function 
d e L^(R) such that

f*d=d*f=f for all f e L1(R) ?-- (1.1.6)

The answer is NO, there does not exists such a function
1

d *= L (R) that satisfies (1.1.6). Since approximation of the

convolution identity is very useful technique in Fourier

analysis. We also wish to approximate d in (1.1.6).
1Consider the family { d } c L (R) that seeks to

a.

approximate identity,

d (^ 1 (it e E as os ---> 0 -- (1.1.7)
fjt.

In particular, we may use the normalization

d (0) = f d (x) dx = 1 —(1.1.8)
a J a

An excellent member is the family of Gaussian functions
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2
1 _JL

g. (X) =  e 4a a > 0  (1.1.9)
2^fno.

Theorem(1.2 ): Let f e L^([R). Then

lim n+ ( f * g ) (x) = f(x) —(1.1.10)

at every point where f is continuous

Hence { g } is an approximation of the convolution identity.
o

1 2Theorem(1.3 ): If / e L (0?) L (fR). Then the Fourier transform 
~ 2/of f is in L (Q?) and satisfies the following "Parseval

Identity"

JJ / |^ = 2n | / ||2 —(1.1.11)

From above theorem 3" may be considered as, bounded linear 
operator on L^(!R) pj L2(K) with range in L2(ER), that is,

3" : L^([R) pj L2([R) ----- * L2(!R) such that

II * » - VTi?
12 2Since L (!R) pj L (ER) is dense in L (IR), 3' has a norm preserving

2 2extension to all of L (K). More precisely, if f s L ({R)/ then 

its truncations

fN(x) = f(x) for jxj < N

0 for otherwise 
where N may be any positive integer

are in L1(K) n L2(K). So that / «= L2((R).
1 1 N

~ 2 Moreover, { f } is a Cauchy sequence in L (ER),

---(1.1.12)

and by the

14



2 2 completeness of L (BE), there is a function f e L (BE) such00
that

lim n }
N -----* m * N - f» II:

Definition: The Fourier transform f of a function f <= L (R) is

defined to be the Cauchy limit f of { f„ }, and the notationoo N

Z, , l.i.m.o.t. Zr i \
N ------- > oo N

. . . Nl.i.m.o.t. r km . ,{ e f(x) dx
" -NN -> oo

which stands for 'limit in the mean of order two' will be

used.

Obviously, the definition of f of f e L (£R), should be
1 2independent of choice of f e L (E:) L (R). And thus

m
f(«) = J e lu'x/(x) dx for f e L2(E)

-oo

Some important results and theorems in Fourier analysis. 

Theorem(1.4):
>'Xi n oo ^

J’ f(x) g(x) dx = j’ f(x) g(x) dx
- ill - 00

Parseval Identity:

< f , 9 > = < f > g>

Where,
< f , g> = J /(x) JCF) dy

-00
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Theorem(1.5): For fixed real number a and b if f <= L (Of?) then
1) f (t+a)) = eia<d f<«>
2) ,F"4(f(te+b)) = e"lbt f(t)

(1.2) Fourier Series:

A Fourier series is a special case of Fourier transform

representing a periodic or repeating function. Let 
2L (0,2-rc) denotes the collection of all measurable functions

f defined on the interval (0,2rr) with
2n j

I' j f(x) J dx < m 
0

where, f is a piecewise continuous function. It will always be
2assumed that functions in L (0,2n.) are extended periodically 

to the real line.

W: = namely f(x) = f(x + 2n) for all x
2Hence the collection L (0,2n) is often called the space of

22/r-periodic square integrable functions. L (0,2fr) is a vector
2space. Any / e L (0,2?i) has a Fourier series representation

a:* ?ny
f(x) = T C e ---(1.2.1)u nn=—iX>

where, the constants C , called the Fourier coefficients of f,n
are defined by,

2 n
C = f f(x)e~inx dx —(1.2.2)n 2n J

2The convergence of the series in (1.2.1) is in L (0,2/r),

1
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meaning that, 
lim

M,N --
2 n*,» I. I f(x) NE _ mx , 2 ,C e dx = 0n 10 n=-M

From the equation (1.2.1) we notice that f decomposes into a

sum of infinitely many mutually orthogonally components

g (x) = C e n n
mx where orthogonality means that,

1 r
2 n

<g ,g > =n m 2n j "n ’ ' "m■f g^(x)'g (x) dx = 0 for all 
j - n m m # n

— (1.2.3)

inXSince g (x) = C e is combination of sinusoidal waves n n
sin(nx) and cos(nx). We may say that Fourier series expansion 

of f is equivalent to resolving the function in terms of its 

various frequency components. It may however be noted that 

this spectrum of / (description of amplitude at various 

frequency levels) exists only at a discrete values of 

frequencies. It is therefore, a discrete spectrum some time 

referred to as line spectrum. It is due to this reason that 

the Fourier series representation (1.2.1) is called Discrete 

Fourier Transform.
2 2Analogous to the Hilbert space L (R), and space L (0,2*7), 

2the space £ (Z) are also a Hilbert spaces with the inner 

product

< { ak } ' { bk } >
keZ

a ■ b k k -- (1.2.4)
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We know that the Fourier transform of an analog signal f with

finite energy describes the spectral behavior. Similarly the
*'discrete Fourier transform' of a digital signal

{ C } *= i (Z) to describe its spectral behavior as follows,
Jv

( & { Ck) ) (X) = £ Ck e1KX -- (1.2.5)
n=-o'.t

The 'discrete Fourier transform' of (C } is the "Fourier 

Series" with "Fourier coefficient" given by { C }. We do not
JV

know whether the series (1.2.5) is convergent or not, but, for 
2{ Ck } e / (2) series is absolutely and uniformly convergent,

therefore we considered this series as a "symbol" of sequence 
X X{ C. }. Since e = cos(x)+isin(x) the series in (1.2.5) can x

also be written as,
oo a oof(x) = £ C eZ X = — + £ [ a cos(kx) + b. sin(kx)]

n=-i» 2 k=l K
— (1.2.6)

where,
2 n

a =o n J f(t) dt
0

1 .2fTa, = --  | f( t) cos(kx) dtk n

1 r

-(1.2.7)
0
2n

b. = --  f f(t) sin(kx) dtk n J„
The f(x) in (1.2.6) can be used as a notation for Fourier
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series . Set
N ikx(V){X) = E ck ek=-N 
a N

= —- + £ [a cos(kx) + b sin(kx) ] ---(1.2.8)
2 k=l

where, N is positive integer.

This is called partial sum of the Fourier series f. 
thThe N degree trigonometric polynomial 

1 <K'

D (x) = 2 + E cos(kx)
k=l

Since,
1 - sin(x + -)
- + £ cos(kx) = ------------£

k=l
x is not multiple of 2n

2 sin(x/2)

® sin(x + -)
= o + £ cosW = -----------------£~ (1.2.9)

k=l 2 sin(x/2)

D„(x) is called as Dirichlet kernel of degree N. Here x must N
not multiple of 2n. If it is, i.e., x = 0, ±2n , ±4n, ±6n., ■ ■ • 

then we interpret Dn(x) = N + 1/2, so that will be

continuous on (-oo , as)

N
(SNf) (x) + £ [ a, cos(kx) + b, sm(kx) ], *•„ k kk=l
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1_
2n

2n
I’ f (t )dt+ 
0

1
rr

<Xi

E
k=l

2 FT
cos(kx) J’ fit) cos(kx)dt + 

0

2rr
+ sin(kx) j' f(t) sin(kx)dt 

' 0

1 r
rr

2n
fit)

Oil

- + 2 cosk(x - t)
k=l

dt

2 n
- r f(t) D (x - t) dt
n JQ N -(1.2.10)

This shows that function f can be obtained by the

"convolution" of f with the Dirichlet kernel of degree N. The
1

integral (1.2.10) is meaningful if f <= L (0,2-rr). On the other

hand, if f is any function in Ir(0,2?r) 1 1' p < >», then we
. -1

can define the "Inverse discrete Fourier transform" .ffi" of f

by

-1
f > (k> * Vf> = 2n

“I

„ 2n -1 1 r ... -rkx ,j f(x)e dxJo

* PThat is, takes f e L (0,2rr) to a bi-infinite sequence

{ c^if) : k e Z }. This sequence defines the Fourier series

E C, (f) • e 
keZ

ikx ■—(1.2.11)

and is called sequence of Fourier coefficient.

Theorem( 1.6): Let fe L^(0,2rr). Then the sequence { C (f) } of
K

2
Fourier coefficient of f is in t (Z) and satisfies Bessel’s 

inequality.
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— (1.2.12)Z |ck(^)|2 * II
keZ

Theorem(1.7): Let {
2f *= L ( 0,2n) such that C Jv

r H 2L (0,2n )
} e 7^(Z). Then there exists

t llis the k Fourier coefficient of f.

Further more,

Z lck|2 s II f ||2, —d.2.13)
keZ L (0,2n)

*From this Theorem, we have, discrete Fourier transform maps 
^ (Z) into f e (0,2n).

The Parseval Identity is given as,

£
JasZ

1
2n

f | f(x) |2 dx 
‘ 0

fe L (0,2n ) —(1.2.14)
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