CHAPTER \
DESCRIPTION OF SYSTEM IN RUN MODE

System supporlt &t the RUM time could be logically subdivided

cihinngsl Lhree slages. |
.. (1) Borting the interpreter code (1C) blocks corresponding to

a proaogram index and Lhen arranging IC in the ascending order of
line number (LMNOY. AL this stage various tables for the
reterences of 1lseld or at the ltime of program execulion are
gy pareda

(&) A5 descrabed 1In previuug section a program indes could be
sliplted up wilhin up Lo three IC units (sec. 4.4, 5), starting
and ending poinlters of a unitl wilh stalus count 1 are determined
and recorded. Program execulion is initiated for Lhis unit
eeaping track of ending pointer of sel recorded.

{(3) Succesively the IC unit of the remaining staltus counl are
executed in & way as similar to the siage 2. These stages are

elaboraled in the present discussion.
5.1. Arvanging Program In Ascending Order.

As described in LRN mode each lime & progran area 1is opehed,
a appropriale stalus byle is recorded in PIT. Slructure of PIT i
shown in fig. 5.1. The counlt of stalus, maximum Lhree, specifies
number - of 1€ units (sec. 4.6) forms lhe complete program. #rom
PIT monitor confirms 1that the program is ended explicitly

(Table 5.1) and calculales segmenl and offsets of IC wunit

36

corresponding status count 10000001, Further i1t delermines Lhe
ending segment and offsel of the unil. Now monitor opens up three
reference areas.

1) Line Numbér Table (fig. 5.2), indicating line number of
firsl program stalement iﬁ a block of 254 byles.

2 Offset Table, indicaling lhe segmenl and offsel of a
sentence nol found in The ascending ordér (Fig. 5.3.7.

3) Buffer Area where the off ascending order statements will
be storcd. A memory location is initialized To poinl Lo starling
address of buffer and another location labelled ‘ATTACH_BYTE' 18
resetlied. These locapions are updalted while seqguencing lhe
program. Now monitor slartls confirming agcending order of the
sentences and makes entries in LNO table afler a bLlock of 256

bytes 135 checked. If a sentence is found off order then using the

LNO table appropriate block where the sentence is to be inserted-

15 delermined and pointed. If it is a over writlen slatement,
then{ Lhe previous statement is deleted and if space permils new

sentence will be added in that position. If space does nol permit

Lo insert lhe sentence or if the sentence ilself is an insertion.

then the altach byte field of nexl sentence (Table 4.11) is
loaded wilh the appropriate attach byte and pointing to the next

buffer address Lhe sentence is loaded into the buffer area.

This procedure puls a few constraintson ediling a program
Vil

1) Only.one sentence could be inserted between any two.

57

2y Total number of inserted sentence should be less than 254
(FEH:; is the limiting byle as FF is used as a delimeter

indicalting extension of the sentence in the next 8 byle block-
(Table 4.11).

3y Total lenglh of inserted codes should be less than 2 K
byles.

These constrainls are well observable for a professional

pragrammer.

Additlionally trade~off<?an alternative structure are also
eutlimated where in Lhe inlerpreter code structure (Table 4.11)
instead of @ atlach byle, a word informing segment and uff;wl
pointer fields of inlerposing sentences are loaded, which adds
one moré byle to the IC structure. As & byte blocks are used to
store 1C of a sentence, estimates of IC code lengths for & sample
control programs using bolh Lhe aiternatives work carried out. Itﬁﬁ
has been observed thatl the slructure w;th attach byled 1s space~
econocmical. Therefore, though altermative structure does not
impose any constraint on number of sentences 'to be inserled,
paying a badsed vote to space ecoromy. Furither analysis of a
situation where alternalive struclure is used are reserved ta be

carried ocul al the stage of detailed lrade-off comparisons.

The process of arranging a program in ascending order
continues till last address of sel for lhe last status count of

The program selecled.

'5.2. Reference Table For Pointing Datum.

Generalion of dala index table (DIT) has been described

{(sac. 4.4), making use of this lable monitor execules block aller
routine (sec. 4.3) and calculate segment and hase address of
gach lype of data elementst;éacribed in Table 4.4. These are
stored in a ltable referred Lo as data referente lable (DRT).

oth grdered

Additionally this table loads title (key code) of
variable for each data tlype. This makes runlime routine
convenient to point to variables, where the task lefl is medely a
program of deciding whal lype of variable is Lthe ‘presenl one.
Further Lhe monitor repoints tlo the PIT, (Table 5.1 and
calculates standing 'and ending offsel of slalus count 1,
remembers Llhe stalus counl of execulion in program, and stlarls
execuling Uhe sentences. While execuling a program the pointer
cantirms allach byfe Lo be zero and resolves group, subgroup uﬁg
the senlence and execule Lhe sentence. The program Lo execule
various senlences is nested call struciure, similar as in lhe LRN
mode; flow chart 4.1. If attach bylte is non-zero then the
approprialte senlence ih buffer area is pointed and executed{
after saving the present pointer., Afler execulion of each
sentence end point of lhe unilt is tested and if nal the end péint
next sentence is exécuted. Afler reaching lthe end point Yhw
monitor execules the remaining IC units. The program,?log resumas
Level O (flow charl 4.1) after execulion of end senlence in the

program.

5.3. Remark On Execution Of Interpreter Code.

13 INPUT, OUTPUT senlences

A group of sentence Lo inpul a byle to tlhe system has wider
range of subgroups. The IC field direclly or indirectly indicales
source and desiination of the subject.

IN AQ CARI are syntax is meant Lo enter a numeric constant
(MCY from KB. Here monitor unmasks the KBIRG and awails for
entries from KB. Upon nuneric enlries monitor executes KEBIRG
service rouline and upon delecting a ‘ENTER® key the flow relurns
Lo monitor. Now key entries in the key board buffer are convertled
into the internal forms of représentation, sematics is confirmed
and NC is loaded into the address of corresponding wvariable,
indicated within IC block as a destination pointer. The reméining
instrucltions of IN group are a bil straight forward. Here source

: Jw

address 1¢ loaded into the register DX. If the subgroup pointéf
éource to be ADC thenra OUT instruction is execuled to selecl Lhe
analog inputl channel and system halls for ADC IRG (sec. 3.2).
Otherwise a IN AL, DX instruction is executed to receive the byte
S in register AL. If subgroup demands transfer of the acquiséd byte
to memory Lhen 11 1is execuled after evalualing address af

destinalion pointer, using the DRT (sec. 5.2).

INW, 0QUT, QOUW instruclions are execuled an the similar

lines.

&0

S.4. Control Statements.

13 GTO LNO - After resolving the jump to be forward or
backward from subgroup index of the block of the source sentence‘
is evalualted. Using lhe index, an appropriate word in the LNO
table 1s pointed. The tlable is scanned for LNOs, forward or
backwards, Lo delermine index of the destination block, where lthe
program execution has to continue. This program structure 1is a
Bit complicated and reference to PIT are made to recalculated lLhe
ending segment and offsel values of destination IC unit, if the
jump makes program flow lo reéume within another IC unit than
that. of the source. Further destination block index is wused to
determine Lhe pointer of the deslination senlence, the LND‘ of

interesti.

§

2y FOR = NXT structure - As 'the allowed nesting is
confirmed at the LRN Lime itself at the RUN time synlax checking
overhead does nol exists, If FOR Q = n to m is eﬁcountered atl
Lhe RUN lime lhen the rouline calculales address of the parameler
G to be valid. Furlher the parameler is initialized at n and a
counl providing the regquired number of iteralions is calculated.
Program pointer i1s moved to the next senlence and program
pointer, dala poinlter and the éounts are saved (PUSHed) on the
slack. Upon encounter of NXT action group count is reloaded
(POPed) aﬁd whether 1he program flow is to exit oul of the
structure or nol is determined. If flow is to remain within the

structure Then data pointer and program pointer are poped,

&1

counter is decremented and ileralion parameters G .is increment&d,
Further 1the pointer and the couni is resaved an the stack. If-
program flow is to exil oul of Lhe struclture lhen slack pointer

ig readjusted accordingly.

2y IF condition THEN LKNO - This senlence reguires magnitude
Lo be compared to be either inpulted from a specified port or to
be loaded from memory using the variable name in the 1IC field.
The procedure of inputting a byte is similar «nd i de:criﬁed
previously. Magnitude on RHS is loaded inside The processor
reglslers while Lhe maygnilude on LHb S 14 saved on STaCk.

n

Comparizon routines for cach Lype of data items are called and

Lhe resull of comparison is Lransmilled to (he @wain vouline

through regislers. LF condition is fulfilled Llhen program jJumps

o GTO LMD routine addiltionally, olherwise relurns.

43 GOSUER LNO -

i- While execuling this slructure IC
field pointers for the next line are saved on the stlack and jump
Lo GT0 LMNO routine is execulted. Prior Lo the jump register EH 1%
lovaded wilh ithe subgroup of forward jump upun RET the IC field

pointer are reloaded from stack.

g an additional feature, if alternate structure af
arvanging program in the ascending order had implEmentied, then
GOSUE s¢iruclture operaling within the IC field of anolher program

area would have been feasible (sec. 5.1).

5.%, Evecutlion of Arithmalic Egualions.

fe indicated in sec. 4.8 (&) the IC tield of LET statement
contains entries of variables, numeric conslant and operators in
Lhe post fiwxed rotaelional form. The hierarchy scheme used at
present form conversion of infix Lo posifix forms of expression
assorciates explicit values to /, #, -, + operaltors, Llhrough /, #
and -, + grouping iz allowable. Within furiher developmenls of

the languages where (',)" will bLe allowed in the edpression,

)
i
EH

fiierarchy at the level of group of operalors is proposed Lo

impl€mented.

The eguation (expression conversion operator (Table 4.87 =
Ltreated as an operalor 1lself) is execuled using Lhe slack. A

virtue of 8086 ofrering a way Lo access stack as normal

§
‘ e
data/mewory area iJusing &SP and BP), execuling arithmatic

operalions on data elements in the slack becomes most convenient.
Separate roulines execuling arilhmatic operations on each type of
data item, wviz. 24 Real, 1& Real, 16 Integer, & Integer are

developed and lesled.

The subprogram execuling the LET group determines subg}oup
of aperation. If the subgroup indicales ltargel program call, Lhen
program flow Jumps Lo execule a inter segment indirect _tall
instrucltion wusing tLThe parameler of tﬁe IC field and Lhrough
nested relturns the flow extends lo execule the next sentence in

the sequence (flow chart S.1).

If the subgroup indicales arithmatic oberationa, then
subgroup specifying lype of operands on RHS quadruplicates 1ihe
routline flow. If Lhe operand specification of RHS is 24 REal or
14 Integer type'theh micro cenverting 16 Real to 24 Real or &
Integer to 146 Integer are-addiiionally incorporated in Lhe flow,
as Lhese types are self accoq@dable {(sec.4.4). The IC is scanned
and offsel and segment of the variable on LHS are loaded on to
the stack. While scanning IC field {for entries on RHS of
expression, 1if a variable reference or a NC ié encountered then
Thike corvresponding values are loaded on Lo the stack. If an
operator 1s encountered lhen proper subprogram execuling the
operation "and returﬁing result to stack, after deletion of
operands on the sltack, is called. The process conlinues Lillva =
operator is encounterd. This oeperalor - . . . - . ldoads lhe
operand on Lhe sitack weing the segment and offsetl of variab;e oﬁ{

LHS stered on the slack itself.
Z.&4. Incorporating The Desired Delays.

It has been épeci?ied while discussing hardware
con€1gﬁratiun (zec. 3.2);'tha1 the counter 1 and 2 of 8254_1 are
loaded with approprialte count and mode worde Lo generale a square
wave of 1 KHz outl of QUT 2, while DUT_E is fed back as CLK Q.
Mow, monilor supporls Lhree subgroups for delay where BCD countl .
down with CLK rates of 1 KHz, 100 Hz, or 10 Hz 1is t§ be
tmpl€mented. 1f subgroup specifies'clock rate of 1 HKHz tlhen

counler O "of 82341 is simply loaded with count in IC field in

&4

mode O and BCD counlting. For clock rates of 100 Hz and 10 Hz
counter 2 and counler O are loaded wilh appropriale counl and

mode words. INT output of counter O lerminales the delay.
3.7« Mull Senlences And Exil From RUN.

A null sentence indicates thal lhe monitor should poinlt Lo
nexl senlence, imply#ng no action sequence to be executed. The
corresponding acltion groups are 00h and FFH. The action group OQ
indicates an oplian

1) 1the aclion group could be 00 1f the selected program
index area is QOh. Further;this entry occurs oanly 1in .the
beginning where the pfogram area 1s opened.

2) Aglion group 00 is encounter anywhere bul not in a IC
field in The beginning of a 256 byle block.

If action group is Q0 and of type (1) then correclness Q%J
program index and dala area are confirmed. If action group of
Lype (2) is encounlered then the IC field counter is incremented

to point to the next 2%& byle houndry, Level 2 (flow chart S.1).

If FFH appears as an action group then Llhe flow contihues to
point to lthe next sentence the inlerpreler code slruclture. for
these senlences 1s given in fig. 5.3. If aclion group indicaling
physical end of program is enéounteredAthen RAM BUFFER POINTER
and 81 TQB POINTER are reinitialized. Furlher using tlhese twab
tables the sentences from BUFFER area are reloaded 1intlo phe

places from where lhese senlences were brought in BUFFER area.

Finally, all the attach bytes wilhin the IC field of “Llhe
current program area are resetied and program flow jumps o

Level_ 0.

fis a concluding remark Lhe struclure deQeloped for execuling
interpreter code 1s undergoing or gelling subjecled a thorough
evaluation of speed and code optimizalion, redesign etc. Furlher,
validity of the stlructure in the environments of impl@mentalion

of the kil is¢ to be lested.

eroe e et e e T St Avre ot S48 daset S S SR RS FOORE P oSS S iy A et Y SO AP P S 521 11005 Mt St e oo o S AdaS el $o003 i Pk Snpan e Feeae AP Shvee S S S o SO et o St S Sl ey b SO0 A Sosun S be. My S P

b&

Table 5.1 & PIT.

e cme oo e oo St 412 St e P SO St S0 4808 . SRS o A e SRS PR L Wi Sk SR b 90 S8 S T S St . A For St R S A1 S S0 Yo R Y 8908 A e, ot RS A Sl O R e SO . b O SO S TR e o S e

GEMNERAL INFORMATION

BASE_ADD_PIT + 00 Total areas (Rlocks of 254 used)
01 used by all the program.

0z Count indicaling lotal number of IC units.

3 Program indices sequentially
correspanding to IC units.

- (O3

SFECIFIC INFORMATIONM

INDEX O
Q0 Total area used
01 :
oz Data select index
03 Status count
04 Starting block
05 tar status 1
1) Ending block
o7 for status 1
08 Starting block

09 for status 2

0A Ending block
OR for status 2

oC Startinyg block
oD faor status 3

OE Ernding block
OF tfor status 3

s CVire A saste it coint P o o 008 S A ol i NS IS S9SS iAST s R L A Pt S Mt Aot Ml it b St ST ST A b e S T Ok P vt B WS SR S e R L WP b S s i Pl e M S YN e MO B Py RS N S PO

&7

Table 5.2 ¢+ LND Table.

e et bedes Satn o o oent S Sse Cobed $2m TN LS WA SIS SAANY CHLE $ekin SSfrs . SV St oo A PP VY A Seake feen Sias SAS M M SemRS Shars $93e AR PR PETRS APRC Snte S4008 S O o 5200 SR SRl MR LB Y Yl i S T ekt e A R S St e S s

BASE _ADD_tNO + 00 . FF LND Firel program block
01 FF LNO
02 Second program block
03

]
1]
3
{

FF indicates block does not corresponds Lo program index
gseleclted.

i o se10% serme saent Sevhe AL eeaeh et Wk AL S o et B SRy St o St A WSS S S AN oot et S . VS et SAvns HOOeE SO SUMD SN e SO W S0 AU TS Vet S NSRS SRS Gubae MY P S YO0 SOTRR WRSD Wele MO SOV S Bueh Ao WA N v Wonet S

e S et sosin st Moke mopde oo Tt et fovrs Mhads OB PN (o St Wt e e SO e el i GU SO Semed G Supan Sy e e ek b A e Y Lt P PO S) et e Vo A O S S SRt WY ARV SIS . by SHAVE GRS N T e WO NS T T (et

M%p of g%e word representing OFFSBET specifies
1 .

segment, whelher
) or 1 remaining 15 bit represent OFFSET.

BASE _ADD_OFFSET + 00 OFFSET Corresponding to first program

line transferred to RAM buffg}
o1 DFFSETH

vres ot ive o v o W s Saiah o D e WAbR SO St oot W S L Sogth bt St (e W L S e Wt P POTY ey Aot doman Pt T M o e M (B S AR e Gt ML Ale A e et S e s Loy o et M S S Y i e S e

68

MODULS ¢+ IMITIALISE RUN ACTION., [LEVEL 2

ffirs g & muliipurpose module.

Part_1 arranges Lhe program slatements in ascending
order. The editing facility allows, 1) Lf a slatement
number is repealed, then the initially writlen statement
is replaced by new slatement. 11! Insertiaon of progran
slatemenle is carried put. Unly @ single statemenl entlry
is allowed between two conszeculive slalemenls.

Pari 7 prepares line number tLtables to detlermine
deslinatlion al run lime. Dala reference lable Lo
determine run time data addresszes i1z prepared.

Part_3 initialises lhe run aclion by delerminalbion of IC
unit popinter, corresponding Lo the status count.

MODULE ¢ INTEGRATION AT RUN, LEVEL 3

While arranging the statements in ascending order, Lhe
stalementis 1o be inserted are wrillen in & buffer space.
The point where an inserted statlement is Lo be executed
by Ffield, the attach bylte. Making use of Lhe attach bvle
The next senlence in Lhe sequence is pointed.

SR 4

s =T wo

MODULE @ SUE, RSLY RUN GEOUP EXEC, LEVEL_ 3 (1)

The action group and subgroup of inlerprelter code field
g used Lo determine call 1o a rouline meant Lo 2xecule
the desired action. The subroulines here concerned are
indicatled as sublevel roulines. Upon return next senlence
in the szequence is pointed. 1f the IC unil is completely
greculed Lhen the refercnce paramelers are adiusted for
MODULE ¢ INITIALISE RUN ACTIONM, LEVEL_Z. PART_3 1o
calculate pointers for nexl IC uniti. N

The subrouline calls, execuling Lhe aclions, accommodale
execulion of the IC fields loaded by the inlerpreter for itz
refarence. Ths aclion groups resglved are listed below @

1) END: 2) 0Q; 32y FF3 4) RET: 30 LEY: &) INB; 7 DLY
8) QUNs 9) IMRy 10) INWy 11) QUB: 12y DSEP:13) DCR: 14) IF
123 GBRy16) FORs 17 GTO: 18) WXT.

