
\

CHAPTER V

DESCRIPTION OF SYSTEM IN RUN MODE

System support at the RUN time could be logically subdivided

amongst three stages.

. . (1) Sorting the interpreter code <IC) blocks cor responding to

a program index and then arranging IC in the ascending order of

line number (LNO). At this stage various tables for the

references of itself or at the time of program execution are

prepared.

(2) As described in previous section a program index could be

sliptfed up within up to three IC units (sec. 4.6, 5), starting

and ending pointers of a unit with status count 1 are determined

and recorded. Program execution is initiated for this unit

keeping tract: of ending pointer of set recorded.

(3) Succesively the IC unit of the remaining status count are

executed in a way as similar to the stage 2. These stages are

elaborated in the present discussion.

5.1. Arranging Program In Ascending Order.

As described in LRN mode each time a program area is opened,

a appropriate status byte is recorded in PIT. Structure of PIT is

shown in fig. 5.1. The count of status, maximum three, specifies

number of IC units (sec. 4.6) forms the complete program. From

PIT monitor confirms that the program is ended explicitly

(Table 5.1)' and calculates segment and offsets of IC unit

56

corresponding status count 10000001. Further it determines the
ending segment and offset of the unit. Now monitor opens up three
reference areas.

1) Line Number Table (fig. 5.2), indicating line number of
first program statement in a block of 256 bytes.

2) Offset Table, indicating the segment and offset of a
sentence not found in the ascending order (Fig. 5.3.).

3) Buffer Area where the off ascending order statements will
be stored. A memory location is initialised to point to starting
address of buffer and another location labelled 'ATTACH_BYTE' is
reset.ted. These locations are updated while sequencing the
program. Now monitor starts confirming ascending order of the
sentences and makes entries in LNO table after a block of 256
bytes is checked. If a sentence is found off order then using the

} tLNO table appropriate block where the sentence is to be inserted-?
is determined and pointed. If it is a over written statement,
then the previous statement is deleted and if space permits new
sentence will be added in that position. If space does not permit
to insert the sentence or if the sentence itself is an insertion
then the attach byte field of next sentence (Table 4.11) is
loaded with the appropriate attach byte and pointing to the next
buffer address the sentence is loaded into the buffer area.

This procedure puts a few constraint*on editing a program
viz.

1) Only-one sentence could be inserted between any two.

57

1

2) Total number of inserted sentence should be less than H54
<FEH) is the limiting byte as FF is used as a delimeter
indicating extension of the sentence in the next 8 byte block
(Table 4.11).

3) Total length of inserted codes should be less than 2 K
by te s .

These constraints are well observable for a professional
programmer.

Additionally t rade-of f an alternative structure are also
estimated where xri the interpreter code structure (Table 4.11)
instead of a attach byte, a word informing segment and offset
pointer fields of interposing sentences are loaded, which adds
one more byte to the IC structure. As 8 byte blocks are used to
store IC of a sentence, estimates of IC code lengths for 6 sample
control programs using both the alternatives work carried out, It3
has been observed that the structure with attach byte<& is space-
economical. Therefore, though alternative structure does not
impose any constraint on number of sentences to be inserted,
paying a bldtsed vote to space economy. Further analysis of a
situation where alternative structure is used are reserved to be
carried out at the stage of detailed trade-off comparisons.

The process of arranging a program in ascending order
continues till last address of set for the last status count of
the program selected.

3.2. Reference Table For Pointing Datum.

58

Generation of data index table (D1T) has been described

(sec. 4.6), making use of this table monitor executes block alter

routine (sec. 4.3) and calculate segment and base address of

each type of data e 1 emerfts ^ciescribed in Table 4.4. These are

stored in a table referred to as data reference table (DRT).

Additionally this table loads title (key code) of 0*" 1 ordered

variable for each data type. This meikes runtime routine

convenient to point to variables, where the task left is meisTfly a

program of deciding what type of variable is the present one.

Further the monitor repaints to the PIT, (Table 5.1) and

calculates standing and ending offset of status count 1,

remembers the status count of execution in program, and starts

executing the sentences. While executing a program the pointer

confirms attach byte to be zero and resolves group, subgroup of/

the sentence and execute the sentence. The program to execute

various sentences is nested call structure, similar as in the LRN

mode, flow chart 4.1. If attach byte is non-zero then the

appropriate sentence in buffer area is pointed and executed,

after saving the present pointer. After execution of each

sentence end point of the unit is tested and if not the end point

next sentence is executed. After reaching the end point the

monitor executes the remaining IC units. The program flow resumes

Level__0 (flow chart 4.1) after execution of end sentence in the

program.

59

\

5.3. Remark On Execution Of Interpreter Code.

1) INPUT, OUTPUT sentences :
A group of sentence to input a byte to the system has wider

range of subgroups. The IC field directly or indirectly indicates
source and destination of the subject.

IN AQ CQR3 are syntax is meant to enter a numeric constant
(NO from KB. Here monitor unmasks the KBIRQ and awaits for
entries fyb-vn KB* Upon numeric entries monitor executes KBIRQ
service routine and upon detecting a 'ENTER* key the flow returns
to monitor. Now key entries in the key board buffer are converted
into the internal forms of representation, sematics is confirmed
and NC is loaded into the address of corresponding variable,
indicated within IC block as a destination pointer. The remaining
instructions of IN group are a bit straight forward. Here source

" *

address is loaded into the register DX. If the subgroup points
source to be ADC then a OUT instruction is executed to select the
analog input channel and system halts for ADC IRQ (sec. 3.2).
Otherwise a IN AL, DX instruction is executed to receive the byte
in register AL. If subgroup demands transfer of the acquised byte
to memory then it is executed after evaluating address of
destination pointer, using the DRT (sec. 5.2).

INW, OUT, QUW instructions are executed on the similar
lines.

60

-i.4. Control Statements.

1) GTO LNO After resolving the jump to be forward or

backward from subgroup index of the block of the source sentence

is evaluated. Using the index, an appropriate word in the LNO

table is pointed. The table is scanned for LNOs, forward or

backwards, to determine index of the destination block, where the

program execution has to continue. This program structure is a

bit complicated and reference to PIT are made to recalculated the

ending segment and offset values of destination IC unit, if the

jump makes program flow to resume within another IC unit than

that of the source. Further destination block index is used to

determine the pointer of the destination sentence, the LNO of

interest.
9 r

«*.

2) FOR - NXT structure s- As the allowed nesting is'

confirmed at the LRN time itself at the RUN time syntax checking

overhead does not exists. If FOR Q = n to rn is encountered at

the RUN time then the routine calculates address of the parameter

Q to be valid. Further the parameter is initialized at n and a

count providing the required number of iterations is calculated.

Program pointer is moved to the next sentence and program

pointer, data pointer and the counts are saved (PUSHed) on the

stack. Upon encounter of NXT action group count is reloaded

(PQPed) and whether the program flow is to exit out of the

structure or not is determined. If flow is to remain within the

structure then data pointer and program pointer are poped,

61

counter is decremented and iteration parameters Q .is incremented..

Further the pointer and the count is resaved an the stack. If

program flow is to exit out of the structure then stack pointer

is readjusted accordingly.

3) IF condition THEN LNO This sentence requires magnitude

to be compared to be either inputted from a specified port or to

be loaded from memory using the variable name in the IC field.

The. procedure of inputting a byte is similar . arid is described

p r evio u s ly. I'i a g n i t u d e o n R H S is load e d inside VI1 e p r o c e s % a r

registers while the magnitude on LHo is saved on stack.

Comparison routines for each type of data items are called and.

the result of comparison is transmitted to the main routine

through registers. IF condition is fulfilled then program jumps

to GTQ LNO routine additionally, otherwise returns. f,

4) GOSUB LNO ~ RET s- While executing this structure 1C

field pointers for the next line are saved on the stack and jump

to GTG LNO routine is executed. Prior to the jump register BH .is

loaded with the subgroup of forward jump upon RET the IC field'

pointer are reloaded from stack.

As an additional feature, if alternate structure of

arranging program in the ascending order had implemented, then

GOSUB structure operating within the IC field of another program

area would have been feasible (sec. 5.1).

62

\

5.5. Execution of Arithmetic Equations.

As indieated in sec. 4.6 (6) the IC field of LET statement

contains entries of' variables, numeric constant and operators in

the post fixed rotational form. The hierarchy scheme used at

present form conversion of infix to postfix forms of expression

associates explicit values to /, *, + operators, through /, *

and + grouping is allowable. Within further developments of

the languages where ' (" , ')* will be allowed in 'the expression,

hierarchy at the level of group of operators is proposed to be

i m pi? i'ii e n ted.

The equation (expression conversion operator (Table 4.6) -

treated as an operator itself) is executed using the stack. A

virtue of 8086 offering a way to access stack as normal

data/memory area (using SP and BP), executing arithmatic*

operations on data elements in the stack becomes most convenient.

Separate routines executing arithmatic operations on each type of

data item, vis. 24 Real, 16 Real, 16 Integer, 8 Integer are

developed and tested.

The subprogram executing the LET group determines subgroup

of operation. If the subgroup indicates target program call, then

program flow jumps to execute a inter segment indirect call

instruction using the parameter of the IC field and through

nested returns the flow extends to execute the next sentence in
the sequence (flow chart 5.1).

63

1

If the subgroup indicates arithmatic operations, then

subgroup specifying type of operands on RHS quadruplicates the

routine flow. If the operand specification of RHS is 24 REal or

16 Integer type then micro converting 16 Real to 24 Real or 8

Integer to 16 Integer are additionally incorporated in the flow,

as these types are self ac comjodabl e (sec.4.4). The IC is scanned

and offset and segment of the variable on L.HS are loaded on to

the stack. While scanning IC field for entries on RHS of

expression, if a variable reference or a NC is encountered then

thhe corresponding values are loaded on to the stack. If an

operator is encountered then proper subprogram executing the

operation and returning result to stack, after deletion of

operands- on the stack, is called. The process continues till a *

operator is encounter'd. This operator i . .. , loads the

operand on the slack using the segment and offset of variable oi^;'1

LHS stored on the stack itself.

5.6. Incorporating The Desired Delays.

It has been specified while discussing hardware

configuration (sec. 3.2). that the counter 1 and 2 of 8254_1 are

loaded with appropriate count and mode words to generate a square

wave of 1 KHz out of OUT 2, while OUT 2 is fed back as CLK 0.

Now, monitor supports three subgroups for delay where BCD count

down with CLK rates of 1 KHz, 100 Hz. or 10 Hz is to be

implemented. If subgroup specifies clock rate of 1 KHz then

counter 0 of 82541 is simply loaded with count in IC field in

64

mode 0 and BCD counting. For clock rates of 100 Hz and 10 Hz

counter 2 and counter 0 are loaded with appropriate count and

mode words. 1NT output of counter 0 terminates the delay.

5.7. Null Sentences And Exit From RUN.

A null sentence indicates that the monitor should point to

next sentence, implying no action sequence to he executed. The

corresponding action groups are OGh and FFH. The action group 00

indicates an option

1) the action group could he 00 if the selected program

index area is OOh. Further this entry occurs only in the

beginning where the program area is opened.

2) Action group 00 is encounter anywhere but not in a IC

field in the beginning of a 256 byte block.
If action group is 00 and of type (1) then correctness o,feJ

program index and data area are confirmed, if action group of

type (2) is encountered then the IC field counter is incremented

to point to the next 256 byte boundry, Level__2 (flow chart 5.1). '

If FFH appears as an action group then the flow continues to

point to the next sentence the interpreter code structure, for

these sentences is given in fig. 5,3. If action group indicating

physical end of program is encountered then RAM BUFFER POINTER

and SI TAB POINTER are reinitialized. Further using these two

tables the sentences from BUFFER area are reloaded into the

places from where these sentences were brought in BUFFER area.

\

Finally, all the attach bytes within the IC field of the

current proyram area are resetted and program flow jumps to

Level_0.

As a concluding remark the structure developed for executing

interpreter code is undergoing or getting subjected a thorough

evaluation of speed and code optimisation, redesign etc. Further,

validity of the structure in the environments of implementation

of the kit is to be tested.

66

Table 5.1 : PIT

GENERAL INFORMATION
BASE_ADD_PIT + 00 Total areas (Blocks of 256 used)

01 used by all the program.
02 Count indicating total number of 1C units.
03 Program indices sequentially
! corresponding to IC units.
r

SPECIFIC INFORMATION
INDEX 0 o

■?-

o
 o To La1 area used

02 Data select index
03 Status count
04 Starting block
05 for status 1
06 Ending block
07 for status 1
oa Starting block
09 for status 2
OA Ending block
OB for status H
oc Starting block
0D for status 3
0E Ending block
OF for status 3

67

Table 3.2 : LNO Table.

BASE ADD LNO + 00 FF LNO First program block
01 FF LNO

02 Second program block
03

FF indicates block does not corresponds to program index
selected.

Table 3.3 OFFSET Table.

MSB of the word representing OFFSET specifies segment, whether
' or 1s remaining 15 bit represent OFFSET.

BASE_ADD_QFFSET + 00 QFFSET|_ Corresponding to first program
line transferred to RAM buffer

01 QFFSETH

66

FLOW CHAR I

110DULL ■ initialise: run ACTION, LEVEL_2 .

i'his is a multipurpose module.
Part__1 arranges the program statements in ascending
order. The editing facility allows, 1) If a statement
number is repeated, then the initially 'written statement
is replaced by new statement, ii) Insertion of program
statements is carried out. Only a single statement entry
is allowed between two consecutive statements.
Part__? prepares line number tables to determine
destination at run time. Data reference table to
determine run time data addresses is prepared.
Part_3 initialises the run action by determination of IC
unit pointer, corresponding to the status count.

____________________________ JK_____________________________
MODULE : INTEGRATION AT RUN, LEVELJ3

While arranging the statements in ascending order, the
statements to be inserted are written in a buffer space.
The point where an inserted statement is to be executed
by field, the attach byte. Making use of the attach byte
the next sentence in 7 he sequence is pointed.

......____________ _____________________ _
MODULE » SUB, R S L V __ R U N__G R 0 UP _ £ X E C , LEVELJ3 (1)

The action group and subgroup of interpreter code field
is used to determine call to a. routine meant to execute
the desired action. The subroutines here concerned are
indicated as sublevel routines. Upon return next sentence
in the sequence is pointed. If the IC unit is completely
executed then the reference parameters are adjusted for
MODULE : INITIALISE RUM ACTION, LEVEL_Z, PART_3 to
calculate pointers for next IC unit. ____ ; |

1L 3

? The subroutine calls, executing the actions, accommodate
* execution of the IC fields loaded by the interpreter for its
;reference. The action groups resolved are listed below :
f 1) END; 2) OQ; 3) FF? 4) RET; 5) LET; 6) 1MB; 7) DL.Y
; 8) QUW; 9) INR; 10) INW; 11) QUB? 12) DSP;13) DCR? 14) IF
;15) GSB;16) FOR; 17) GTO; IS) NXT.

