
CHAPTER IV

DESCRIPTION OF SYSTEM IN LRN MODE.

The present discussion elaborates the environment supported

by the system for user to create software structures of desired

control instrumentation. Programming level offered by the system

has also been described.

As an overview of the system-software support, the system

allows user to create programs under as many as 10 indices. All

these areas could be opened irrespect of order of the index and

the flexibility offered allows user to develope a program segment

within an area and complete it, after developing a segment in any

other area.

The programming levels offered is very much similar to the
/ no \Microsoft Inc. Basic - 86 interpretable version , however a

few curtailments and/or additions have been incorporated keeping

in mind the control environment of the instrumentation

(sec. 2.1). Further, the facilities offered by the system are

much more exclusive compared to the version of Basic implemented

on kits, e.g. MPF - I Basic (CPU Z-80, 4 KB version) and
(40)Tiny Basic (CPU 8085, 10 KB version). The language allows

arithmatic manipulation on signed integer or signed, real numbers,

and a data area allows maximum 6656 variable reference to be

used. Four such independently accessible data areas are

supported.

28

4.1. Input And Output Statements.

Multifold accesses offered by the system allow user to

access numeric entries from keyboard (KB) to be referenced there

further with a variable name or a digital entry from KB (key

codes) and to be loaded in register AL of the CPU. Additionally 8

bit or 16 bit ports could be directly accessed in accumulator or

with a variable reference. Further analog data from specified

channel also could be accessed in register AL or under variable

reference directly. At present this facility is limited to 8 bit

ADC and for 8 channels.

Output facility allows transmitting 8 bit or 16 bit data

from accumulator or memory to any desired port. Further desired

messages and/or numeric values also could be transmitted to the

display. The numeric quantities transferred to the display are

back converted from their internal forms of representation. Real

numbers are displayed as floating point numbers while the

integers ar'e odtputted he> rubbles with their sign. Messages

are constraint to follow the numeric values, if both combined

together form field of the current display.

Syntax associated action group, subgroup and cor responding

actions have been tabulated in Table 4.1. A point of observation

could be the comparison of Table 3.4 and 4.1. The action groups

associated with these statements, except for in case of END

statement, is a left shifted byte that corresponds to the

function key entries. While the subgroups are allocated in view

29

of ease indifferentiation of action sequences at run time.

4.2. Control Statements.

Conditional statements form a group of measure emphasis. All
non-Boolean conditional operators have been accomodated in the
present structure and are listed in Table 4.2. Not only
comparisons between two variables or a variable and immediate
numeric entry is allowed but comparison between bytes accessed
from the addressed port with a variable (memory) or a numeric
constant is also allowed. Similarly bytes accessed from ADC ports
could also be compared. To manipulate program flow, comparison of
a entry from KB is given a separate status, which relieves user
from entering actual port address of 8279. In this statement
comparison with immediate bytes only is allowed. Syntax,
associated group, subgroup and action are tabulated in Table 4.3.
The policy adopted for associating groups and subgroups is the
same as discussed in sec.4.1.

The software supports use of FOR - NXT type of structure
where the parameter of eteration is allowed to be any 8 bit
integer variable, without index. (Scheme of using variable names
and data memory management are discussed further in this
chapter). The system allows a stack area of maximum 512 bytes
(Table 3.1), which results tQ be a constraint on the nesting of
FOR - NXT structures. Though actual order of nesting depends upon
the length of arithmatic statement in the structure. As no
brackets are allowed in the definition of arithmatic expressions,

30

the 6 to 7 order of nesting would not be a over estimate.
Remaining conditions of' nesting are similar to standard Basic
version . The allowed range of parameter variation in this
structure is between 0 to +127. The syntax and associated group
is tabulated (Table 4.3).

Unconditional branching is allowed through GTO (GO TO),
statement. At the time of interpreter code conversion the jumps
are estimated whether back or forth and from subgroups of GTO
statement. The syntax, associated group, subgroup and actions for
GTO statement also listed in Table 4.3.

GSB (GO SUB), RET structure is also supported for coding
subroutines and managing calls to these modules. At present
subroutines from the same program area could be called and not
from any other (Refer sec. 5.).

As per strategy adopted to store the interpreter code (IC)
the 1C blocks of all the programs are stored in the RAM without
attempting to arrange the program in ascending order at the LRN
time. Further the program sequence is arranged temporarily in the
ascending order at the run times (sec. 5.). Therefore,
accommodating inter program area subroutines is postponed for
later stages of development of the system.

4.3. Allowed Data Types And Variable Allocations.

Within Intel 8086/8088 systems trade-offs of hardware
overhead and time and code implementation lead to the

31

(41)adoption/exclusion of Maths processor Intel 8087, within the
domain of specific requirements. For the sake of comparison the
arithmatic function which eat up 2 ms of time on 8086 are
executed in a few microseconds fay 8087. Further arithmatic logic
units like Intel 8231, 8231A, utilising Chebyshev
polynomials for implementing the ALU algorithms, or 8087
do offer a choice of representing number in the formats offered
by 8087. Further if 8087 is excluded from the system Intel
library listed opcode modules are linked to higher level language

(5)programs for numeric crunching

As the present system is intended to be added - on to a PC,
while defining/implfmenting the data formats a care is taken not
to reduce the system through-put drastically. This has been
achieved as at the cost of allowed ranges numbers and limited
choice of accuracy. If additional accuracy is intended the data
items could be very well be down loaded to the PC and operated
standard formats through higher level languages.

Allowed data formats, range, accuracy and length are
tabulated (Table 4.4). With a sufficient care and valid
approximations control are line fitting routines could be
developed with these data formats. As a sample case a 12 bit
intelligent self tuning, recurssive PID algorithm acting on a
single variable is in the process of developed. Syntax of the
number entries within thest categories is also given in
Table 4.4.

32

Regarding use of variable names, characters from A to P
represent real numbers while characters from Q to Z represent
integers? no over ride is permitted. The variables could be
indexed and the dimensions allowed are 0, 6, 16 or 256. The
variables without index are referred to as Individual . elements
and could be only of 16 integer or 24 real types. The variable
with dimension 6 could be 8 integer or 16 real type. 16 or 256
dimensional arrays could be of any declared types. Further except
for 6 dimensional (default variables) all other variable types
could be from a specified data area. Maximum 4 such data areas
could be used and variable references within these are mutually
independent. Further a program, with its area index, is
restricted to use and specify a single data area only.

The default area is common to all programs and need not be
specified while entering a program segment. After selection of a
program area 5 statements specify (1) Index of data area (between
1 to 4), (2) Variables with dimension 256, referred as Extended
Area, (3) Variables with dimension 16, referred as Normal Area,
(4) 16 Integer variables and (5) 24 Real variables. Syntax of
these statements is given in Table 4.5. Combination of statements
(2) and (5) specify 16R and 24R extended area variables while
combination of 2 and 4 specify 81 and 161 Extended Array
variables. Further, variables within Normal Array declaration are
also differentiated on the similar lines of extended arrays. This
has been emphasized with an example in Table 4.6.

33

4.4. Arithmatic Operations.

At present only + (addition), - (subtraction),
■# (multiplication), / (division) operations are supported. The
key statement LET defines the group. Variable on the left hand
side could be of any type defined in Table 4.4. While the
variable on the right hand side have to be either real or integer
and of the type allowed. The allowed types of variables on RHS
for a variable type on LHS is tabulated in Table 4.7.
Additionally the table specified conversion to take place before
actual value for the variable on LHS is loaded in memory, these
conversion operators are determined and loaded as a byte in the
IC field. Subgroups are decteted by the variables on RHS. On RHS

r'vif real type of variablesare accom^odable then the real are also
allowed but not vice-versa. Similarly allowed 16 integer type on
RHS accomodated 8 integer type of variables but not vice-versa.
This leads to four subgroups of LET statement vis. 1) 24 Real or
16 real (011B) !, 2) 16 real (100B) !, 3) 16 integer or 8 integer
(10IB) !, 4) 8 integer (110B) ! types. Syntax of LET statement is
given in Table 4.8.

Another form of LET statement is used to call user written
target program and is refe^ed as LET-CONVERT at present upto 16
target sub programs could be refered through the language. The
convert routines are mainly intended for determination of
parameters of physical, where transduced data is acquired through
ADC ports. Therefore, two types of convert statements, one

34

operating on implicit accumulator to provide input data and
another where a variable reference provides the input data are
supported (Table 4.1, ,). Matching data type on LHS and RHS
is left to the target subroutine themselves. Syntax of LET-
CONVERT is also given in Table 4.8. INR (increment) and DCR
(decrement) operating on integer variable only are also
supported and are designed to provide sequential indices while
acquiring data sets of experimental parameters, e.g. Thermo emf
and Tcs, differential temperature, Tc, with time (Q and Cp
measurements, sec. 2.1).

4.5. Delay Statement.

Unique feature of present language is software detectable delay
time. Delay times of 999.9 seconds to O.OOI second is selectable.
Only four BCD entries are allowed as delay parameter and position
of the decimal point specifies whether 1 ms or 10 ms or 100 ms
least count (clock frequencing) is to be used for the count down.
Delay suspends normal state of operation for the specified time.
Syntax group and subgroups of these statements is given in
Table 4.9.

4.6. Overview Of The System Operations.

Flow chart 4.1 describes overall system operations. During
POST (Power on self test) the system checks for the configuration
as defined in sec. 3.2 and decides the strategy of initialization
of I/O devices and memory as indicated in Chapter III. Interrupt

35

vector table is at present assumed to be a battery backed memory
or a ROM and no suppovfr "to uMits 1 n 'efr upt' ve ct o r s is accomodated
in the present software. Further, bytes which decode the key

entries for displaying the key mnemonics is also assumed loaded
in permanently. The ROM occupies a page of 1 K X 8 of segment 0.
Further during POST a -ew memory locations forming a part of

treference parameter table are resejted or loaded with desired
values. e.g. Configuration switch specifies to monitor that the
total program and data area (RAM) available on the board and
monitor accordingly loads a appropriate word in memory location
referred with offset identifier 'AV_MEM_BLOCKS*. Predefine
(Table 3.1) offsets in the segment_0 are reserved for monitor to
create various tables for its reference at LRN or RUN time.
System memory is assumed batery backed as a whole. Program area
is referred in terms of block of 256 bytes, while the data area=
are treated in terms of blocks 128 bytes. POST displays default
LRN index, data area and available memory blocks of 256 bytes for
programmers reference. Further monitor confirms the program
storage and if found mismatching with the reference program index
table it reset all the program and data area. The POST or RESET
are equivalent and leaves monitor in Level_0 (L_0)
(Flow chart 4.1). At this stage the system expects to enter in
one of the following action sequences. The facilities for listing
or deleting the source program or reseting the data area forms a
group while invoking software supports for entering or running a
program becomes another group. These facilities are elaborated
below.

36

1) Deleting a program area t- Interpreter codes
corresponding to a program area are stored from top to bottom in
system RAM (Table 3.1). Monitor allows pointing to a program area
(index) for maximum 3 number of times, after developing programs
in other areas (indices) intermittently. The program area is
treated in terms of blocks of 256 bytes and the interpreter codes
corresponding to program area index are stored sequentially after
making an entry in Program Index Table (PIT). Thus a program area
gets subdivided into maximum 3 units, where each unit has its
corresponding status in PIT indicating the count of reopening the
area. 'DEL’ 'SEL' 'O' 'ENTER', or 'DEL' 'ENTER', refering to all
the program areas, are the two al1 owed‘syntaxes. Further, making
use of PIT the monitor resets the corresponding units, rearranges
the interpreter code storage and PIT and program flow resumes
Level_Q (Flow chart 4.1). (Listing of software for these actions
is enclosed).

2) Resetting data areas Similar to PIT, Data Index
reference table (DIT) are also generated in the LRN mode,
(described later in the Chapter). Table 4.10 indicates DIT. Now
as per the command, similar to DEL command a specific non-default
data area or all data areas are resetted and the remaining data
areas and DIT is rearranged. The monitor returns to Level_0 (Flow
chart 4.1). (Listing for software for these actions is enclosed).

3) Listing Facility s-
i) Storage of key entries : Interrupt from 8279 (KBIRQ)

37

invokes a support which loads the key entries in Key Board Buffer
(KBB) and display buffer. The flow returns to monitor upon
detection of 'ENTER' key. Upon 'ENTER' the system preserves key
entries in a file of width 2 K in the system RAM. If this file
gets completely failed then the system down loads the file with
proper identifier field, to a cassette tape recorder. The
communication is achieved through 8251 and FSK modem MC 14412,
described briefly in sec. 3.2

ii) Retrieval of program files : LST command specifies the
index of the program monitor loads the appropriate file on the

thRAM buffer and displays 0 sentence of the program, again
through a software call to KBIRQ. The desired part of any
sentences could be brought in the display field using cursor
control keys and could be altered. Processor 'ENTER' key suspends
the operation and monitor returns to Level_0. A module
interfacing 8251 (+ FSK MC 14412) and cassette tape recorder
control port 8212_2 fig. 3.2, is too standard routine and is at
present left undeveloped. Software for mainly, part of action
sequences is developed. (For details refer listing enclosed with
the dissertation).

4) Selecting a program area Upon RESET or POST monitor
offers a program area index as default one. If user does not
intend to use the default area to develop his/her program then he
is allowed to invoke any other area for program development.
Monitor receives the index entered by user and scans PIT to

38

calculate starting segment (DS) and offset (SI) for the
interpreter code storage. If the program area is opened
previously then status of the current open up is recorded. If the
program area is getting opened for first time then only the
system allows to specify data area to work with. Further if new
data area is to be specified the flow continues to Level_H
otherwise the monitor expects a program statement entry.

5) Specifying contents of an data area s- If monitor is at
Level_2 (Flow chart 4.1) then it expects a index entry to specify
the data area. Further, it loads 4 arrays with the entries
corresponding to the data specification statements given in
sec. 4.4. Combining these arrays DIT is prepared which specifies
type of individual variables names used and total number of 128
byte blocks required for storage. Refering to the DIT's of
remaining indices the required data area is provided by making
block movement of data within memory. (Block Alter Module in
listing). Use of 4 data areas allows user to develop programs
using common or isolated data items depending on requirements. In
essence the desired data files could be coupled to any programs.

As a separate Chapter is devoted for the discussion of
facilities for running interpreter codes corresponding to a
program index, we elaborate generation of interpreter codes from
the key entries, in this Chapter.

6) Resolving key entries into interpreter codes s— General
structure of interpreter code blocks is shown in fig. 4.11. The

39

