CONTENTS

CHAPTER I

INTRODUCTION TO FERRITES

1.1	Introduction
1.2	Historical
1.3	Structure of ferrites
1.4	Spinel structure
1.5	Classification of ferrites
	1.5.1 Normal spinel ferrites
	1.5.2 Inverse spinel ferrites
	1.5.3 Random spinel ferrites
1.6	Types of ferrites
1.7	Electrical properties of ferrites
	1.7.1 d.c. resistivity
1.8	Magnetic properties of ferrites
1.9	Theories of ferrimagnetism
	1.9.1 Neel's theory of ferrimagnetism
	1.9.2 Paramagnetic region
	1.9.3 Spontaneous magnetization
1.10	Yafet-Kittle theory
1.11	Applications of ferrites
1.12	Orientation of work

REFERENCES

CHAPTER II

PREPARATION and CHARACTERIZATION

SECTION - A: PREPARATION

- 2.0 Introduction
- 2.1 Methods of ferrite preparation
- 2.2 Sintering2.3 Preparation of ferrite samples (present case)

SECTION - B : X-RAY DIFFRACTION

- 2.4 Introduction
- 2.5 Relevance of x-ray diffraction to ferrite research
- 2.6 Experimental techniques
- 2.7 Results & discussion

SECTION - C : IR STUDIES

- 2.8 Introduction
- 2.9 Experimental techniques
- 2.10 Results & discussion

REFERENCES

CHAPTER III

ELECTRICAL PROPERTIES

- 3.1 Introduction
- 3.2 Conduction in oxides
- 3.3 Conduction in ferrites
- 3.4 Experimental techniques
- 3.5 Results and discussion

REFERENCES

CHAPTER IV

MAGNETIC PROPERTIES

SECTION - A : MAGNETIC HYSTERESIS

- 4.1 Introduction
- 4.2 Magnetization in ferrites
- 4.3 Magnetostriction
- 4.4 Magnetocrystalline anisotropy
- 4.5 Hysteresis and domain state
- 4.6 Calculation of Ms and nB
- 4.7 Experimental technique
- 4.8 Results and discussion

SECTION - B : A.C. SUSCEPTIBILITY STUDIES

- 4.12 Introduction
- 4.13 Experimental techniques
- 4.14 Results and discussion

SECTION - C : INITIAL PERMEABILITY

- 4.12 Introduction
- 4.13 Experimental techniques
- 4.14 Results and discussion

REFERENCES

CHAPTER V

SUMMARY AND CONCLUSIONS

LIST OF FIGURES

- 1.1 Crystal structure of spinel ferrites
 - (a) Tetrahedral(A) site
 - (b) Octahedral(B) site
- 1.2 (a) Inverse susceptibility vs temperature
 - (b) Spontaneous magnetization vs temperature
- 1.3 Triangular spin configuration
- 1.4 Applications of ferrite [tree]
- 2.1 Mechanism of solid state reaction
- 2.2 Flow chart of ferrite preparation
- 2.3 2.6 X-ray diffraction patterns of $Zn_xMg_{1-x+c}T_{1c}Fe_{2-2c}O_4(t=0.0,0.05,0.1,0.2)$ and x=0.3
- 2.7- 2.10 X-ray diffraction patterns of $Zn_xMg_{1-x+c}T_{1c}Fe_{2-2c}O_4(t = 0.05 \text{ and } x = 0.2, 0.3, 0.4, 0.6)$
- 2.11 a) Variation of lattice parameter for samples with t = 0.0, 0.05, 0.1, 0.2 and x = 0.3
 - b) Variation of lattice parameter for samples with t = 0.05 and x = 0.2, 0.3, 0.4, 0.6
- 2.12, 2.13 IR spectra of $Zn_{n}Mg_{1-n+\epsilon}T_{1\epsilon}Fe_{2-2\epsilon}O_{4}$ with t = 0.0, 0.05,0.1,0.2 and X = 0.3
- 2.14, 2.15 IR spectra of $Zn_xMg_{1-x+e}T_{1e}Fe_{2-2e}B_4$ with x = 0.2, 0.3, 0.4, 0.6 and t = 0.05
- 3.1 Log $vs 10^{3}/T$ for t = 0.0, 0.05, 0.1, 0.2 and x = 0.3
- 3.2 Log vs 10^{3} /T for t = 0.05 and x = 0.2, 0.3, 0.4, 0.6
- 4.1 Magnetization curve
- 4.2 Hysteresis loop tracer circuit diagram
- 4.3 Hysteresis loops for t = 0.0, 0.05, 0.1, 0.2and x = 0.3
- 4.4 Hysteresis loops for t = 0.05 and x = 0.2, 0.3, 0.4, 0.6

- 4.5 A.C. susceptibility apparatus Circuit diagram
- 4.6 Relation between normalized a.c. susceptibility and spontaneous magnetization
- 4.7 Variation of X_T/X_{RT} with temperature for t = 0.0, 0.05, 0.1, 0.2 and x = 0.3
- 4.8 Variation of X_T/X_{RT} with temperature for t=0.05 and x=0.2, 0.3, 0.4, 0.6
- 4.9 Crystal anisotropy K₁ shown Schematically
- 4.10 Variation of μi vs temperature for t = 0.0, 0.05, 0.1, 0.2 and x = 0.3
- 4.11 Variation of μi vs temperature for t = 0.05 and x = 0.2, 0.3, 0.4, 0.6