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CHAPTER III

STUDY OF PHDSPHO RBSCSNCE DECAY

3-1 INTRODUCTION:

The study of phosphorescence decay provides information 
about the nature of trapping states# energy levels of lumine­
scent materials and the type of kinetics involved in the 
luminescence process. 'The aim of the present investigation 
is to analyse the observations made at 300°K so as to derive 
information about the following aspects:

1) the nature of decay law#
2) the time constant of decay#
3) the energy distribution of trap levels#
4) an insight into the mechanism responsible for 

decay, and
5) the effect of activator Zn and a flux on decay 

behaviour.

3-2 THBDRETICAL BACKGROUND:

3-2.1 Decay Laws:

The phosphorescence decay may either be exponential 
or hyperbolic depending upon the type of kinetics involved 
in the luminescence process (1-6).

(A) Exponential Decay:

The exeponential decay occurs when the kinetics of 
luminescence is of the first order i.e.# when electron traps 
are situated close to uhe luminescence centres.
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* Let n be the number of excited electrons at any time 
t and if p is the transition probability then,

iS =-pdt ---------- < 3*1}

the transition probability p according to Randall and Wilkins 
is given by (4,7)

p = s e-^1---------- < 3.2)

where S is the attempt to escape frequency, E the trap 
depth, K the Boltzman constant and T is the absolute 
temperature at which the decay takes place.

On integration, equation ( 3.1 ) gives

n = nQ exp ( -pt ) ----- (3.3)

where nQ is the number of excited electrons at t = o, the 
time when the excitation ceases.

The luminescence intensity is given by

I s= - dn 
dt

= P nQ exp ( -pt )
I = I exp ( -pt ) ----- (3.4)• • o* .

where I is intensity at t = o. o
The equation (3.4) shows that the rate of decay depends 

only upon the transition probability p.* This equation is 
useful in calculating the trap depth.

(B) Hyperbolic Decay:

This type of decay results when luminescence process
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is of the second order i.e., when electron traps are located 

away from the luminescence centres.

Let there be n impurity centres with which only 

n number of electrons combine at a time. If p is the 

probability with which an electron combines with any of the 

centres in time dt, then

p » Andt,-------------------(3.5)

A being a constant.

If all the n electrons return to the ground states 

at the centres through the conduction band with this probabi­

lity, the rate of decay will be

fjr = An2------------------- (3.6)

and luminescence intensity is given by

I = Ic / (1 +<Kt )2-------------------(3.7)

where c< is another constant.

For large values of t ( t>> 1 ) the equation (3.7) 

can be written as

I = IQ /<X t2-------------------(3.8)

Treating more generally in the light of different 

capture cross-sections for electrons, empty centres and traps, 

Andirowich (8,9) arrived at an approximate Bequerel type 

relation of the form

I ss const, / ( t t to ) ---- - (3.9)

where b depends on the ratio of the capture cross-

•fciVMji u 44* flf * i.
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sections of traps ana empty centres. However, this equation 

fails in cases where well separated groups of traps exist.

3-2.2 Effect of Steady Excitation of a Phosphor 
on the Filling of Electron Traps:

When a phosphor is excited at a fixed temperature by 

steady excitation, its luminescent intensity reaches to a 

constant value. This state of phosphor is referred to as 

equilibrium state and in this condition the concentration of 

filled electron traps is in equilibrium.

If the phosphor contains traps of one depth, then two 

cases arise:

a) When Traps Are Located Close to the Luminescence 
Centres (First Order Kinetics):

Let J be the intensity of excitation. Then the rate of 

electrons raising to the excited state is proportional to 

J, and is given by CJ, C being a constant of proportionality. 

If there are n electrons in the N traps, the rate of 

capture of excited electrons in traps is CJa (N-n), a being 

the probability of capture per trap. The rate of escape of 

electrons from traps is given by ns e ' x * Under equilibrium 

condition, the rate of capture of excited electrons in traps 

and rate of electrons escaping from traps will be equal and 

thus,

C a J (N-n) = n S ----------------(3.10)

from which we get,
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1 + (3.11)

where A = C a J is a factor directly proportional to the 
intensity of excitation.

(B) yJhen Traps Are Located Away From the
Luminescence Centres (Second Order Kinetics):

Let n be the number of trapped electrons and m the 
number in conduction band. Then ( m + n ) is the number cf 
empty luminescence centres and rate of electrons returning 
from the conduction band is given by

= Q = C J - jPm (m+n) n s e£'/^T - mb (N-m)- - -(^.12)

and the rate of electrons escaping from traps is
~ = 0 = n s eE/KT - mb (N-n)--------- (3.13)

where jB and b are the constants and CJ is the rate of 
electrons rising to the excited state.

If the excitation is not of an appreciably low intensi­
ty# the number of electrons in the conduction band is much 
greater than the number trapped and thus m + n » n. Hence

jBm2 = CJ --------------(3.14)

and therefore#

n = N

1 + S e uE/KT
B

where B = b \j~C J/ J& and thus is proportional to
the square root of the excitation intensity.

• ' • < \3 Vi
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3-2,3 The effect of Excitation Intensity on

the Filling of Traps With Complex Distribution:

The derivations of equations (3.11) and (3.15) may be 
extended to cover complex trap distributions if the form of 
the specific distribution is known. In most practical cases 
the number of traps, N, of different depths does not vary 
rapidly with E over most of the ranges of E values. Thus 
if N is assumed constant or slowly varying, the total 
number of filled traps from a given excitation intensity can 
be obtained. Let this number be n^, then in most cases

n,T
Er max

n d£

using the equation (3.11) we obtain
Emax N

"t " dE

0 1 + S. e-E/XT
(3.16)

For all practical exciting intensities A « S, and thus 
equation (3.16) yields on integration

nT = N K T log (A* +1)--------- (3.17)
where A' = A e maJ{/KT is pxx>portional to the 

excitation intensity.

At high intensities when A' ^ 1 the number of filled 
traps will be a linear function of the logerithm of the 
excitation intensities provided that A«S. When a approaches
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relation can be obtained by using equation (3.15)/ which 
includes consideration of retrapping.

3-3 RESULTS AND DISCUSSION;

3-3.1 Decay Curves:

Figs. 3.1 to 3.3 show some typical decay curves of 
samples studied at 300°K. They appear to be of the same 
general nature as reported for alkaline earth sulphide 
phosphors by other workers (10.14).

The first step in the analysis of decay curves is to 
determine which of the two main modes of decay, i*e. exponetial 
or hyperbolic, is operative. General shape of I - t plots, 
log I versus t plots and log I versus log t plots can 
give a useful insight into this and in addition can yield 
information about the nature of kinetics involved.

To examine the possibility of simple exponential decay 
with single trap depth given by equation (3.4), plots of log 
I versus t are plotted. It is found that they show deviation 
from straight lines. This rules out the possibility of simple 
exponential decay with a single trap. However, graphs of logl 
ft versus log t (Fig.3.4 to 3.7) are found almost linear, 
suggesting that the decay is hyperbolic and could be represen­
ted by the equation of the form (4)

I = Io t“b ---------- (3.18)
where I is the intensity at any time t, Io is at the start
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of the decay, and b is the decay constant. The value of 
decay constant is indicative of decay rate. Faster the decay 
higher is the value of b and vice-versa. It also provides 
the information about relative population of traps at various 
depths.

3-3.2 Decay Constant:

The values of decay constant are calculated by the 
method of least squares (15) using the relation

b = .. n, S x y _ _ _------------------ (3.19)
C^xr -- n ^ x

where x = log t, y = log I and n is the number of 
observations. The values of b thus obtained are given in 
Table 3-1. It is seen that the values of b for all cases 
are less than unity.

3-3.3 Variation of Decay Constant (b):

(1) With Concentration of 2n:

The variation in b values with concentration of Zn 
is as shown in Fig.3.8. The variation is not strictly 
systematic but in general, b increases with increase in 
Zn content. This implies that the incorporation of Zn alone 
does not give rise to new trapping levels but modifies the 
relative importance of traps responsible for phosphorescence 
decay (16). An increase in amount of Zn has the effect of 
populating the shallower traps in preference to the deeper
ones.
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However, when an amount of Zn is varied in presence of 

flux (NaCl, 1.25 wt »/<0, the variation in b values is found 
to be systematic ( see Fig.3.9 ). Thus indicating that the 
Zn in presence of flux, introduces new trapping levels in a 
phosphor (16,17).

(2) With Concentration of Flux NaCl:

Fig.3.10 shows a variation of b with % of flux. It 
may be seen that the variation, here too, is systematic and 
indicates that the addition of flux creates new trapping 
levels which contribute to the phosphorescence decay (16,17).

3-3.4 Variation of Starting Contribution (Io)
with Zn and NaCl:

The variation of Io with concentration of Zn in absence 
and presence of flux is shown in Figs. 3.11 and 3.12 respect­
ively, while its variation with % of flux is given in Fig.3.13. 
The Io values are calculated from the intercepts on log I 
axis of plots between log I versus log t. As Io represents 
a phosphorescence intensity at 1 sec. it may be taken as a 
measure of phosphorescence efficiency of a phosphor.

It may be noted from the Fig.3.11 that the variation 
in Zn content in absence of flux causes an increase in 
efficiency. However, the increase is not systematic. In 
presence of flux, the efficiency first decreases and then 
increases (Fig.3.12)*- The observed decrease might be due to 
the reduction in trapping levels for that concentration.
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This has been supported by b values which also show minimum 
at same concentration ( See Fig.3.9).

The variation observed in Io values with % of flux 
exhibits a maximum followed by a continuous decrease. The 
maximum is found at 1.25 wt.% of NaCl and is an optimum 
concentration of flux for better luminescence. The same 
concentration has been used during preparation of samples of 
series III (Table 2-1).

3-3.5 'Feeling off' of the Decay Curves?

In the present case, the slopes of log I-log t plots 
are not equal to two for-t>.?'l# as required by the equation 
(3.7). This excludes the possibility of hyperbolic decay with 
single trap depth. However, the observed hyperbolic decay 
could be explained on the basis of the monomolecular superposi­
tion theory. Randall and Wilkins (4; considered the hyperbolic 
decay as a result of superposition of exponentials correspond­
ing to different traps. Such a decay can be expressed by an 
equation of the type

I = Io^ exp ( -p1 t) + log exp ( -p2t) +

+ Ion exp (-p t) ----- (3.20) 
where Ion is the phosphorescence .intensity due to electrons 
in the traps of energy En and F^ is the transition probabi­
lity of an electron escaping from a trap of depth En.

It is possible to break up the decay cure into a set 
of exponentials by the method of successive subtraction as 
has been followed by Bube and Others (12,14,18). The same
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procedure is adopted in the present case and some typical 
graphs are shown in Figs. 3.14 to 3.16.

All the decay curves were split into three exponentials 
and the trap depth corresponding to each exponential was 
determined. The values thus obtained are listed in table 3.1. 
The values of S used in the above calculations were obtained 
from thermoluminescence studies to be described in chapter 4.

3-3.6 Activation Energiesi

The values of trap depths calculated for all samples 
vary from 0.70 to 1.52 eV for slowest exponential, from 0.61 

to 1.42 eV for middle exponential and from 0.59 to 1.36 eV 
for fastest exponential. On comparison of these values with 
those determined from thermoluminescence carried out on the 

same samples, it is found that the energies corresponding to 
the slowest and middle exponential components show a good 
agreement ( see Tables 3.1 and 4.1 ); the thermoluminescence 
values having been calculated on the assumption of the monomo- 
lecular kinetics. ( 2H3 values). The activation energies
corresponding to the faster exponential of the decay curves

•>

are considerably smaller. This is to be expected, since for 
recording the glow curves# heating begins only after the

m

phosphorescence intensity has become negligible. By this time 
the filled shallower traps get already empited and the 
remaining deeper ones are subsequently emptied with the supply 
of energy.
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3-3.7 Variation of Activation Energies with

Concentration of Zn and HaCI:

The values of activation energies were plotted against 
the concentration of Zn as well as NaCl. The plots obtained 
for E values of slowest exponential are as shown in Figs.
3.17 and 3.18. Similar were the nature of plots for E values 
corresponding to middle and faster expontials. From graphs 
it appears that there is no systematic change in trap depths 
with addition of Zn alone ( see Fig.3.17 (a) ). Whatever 
change observed, i.e. increase in E value \rith Zn concentr­
ation, could be due to influence of activator on distribution 
of trap densities (13,19,20). The variation observed in E 
values with Zn in presence of flux and with % of flux is 
however systematic in nature (Figs.3.17 (b) and 3.18), 
implying thereby that the introduction of Zn in presence of 
flux and addition of flux gives rise to new trapping levels 
in the phosphor (16,17). The result is in accord with the 
inference drawn from the b values.

3-3.8 Rate Constants and life times?

The slopes of the three straight lines obtained on 
the log I-t plot are P_, F2 and and represent the transition 
probabilities. The reciprocals of these transition probabili­
ties give the values of life times and of a trapped
electron contributing to slowest, middle and fastest exponen­
tial components respectively. The observed values are listed 
in Table 3.2.
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-3-3.9 Kinetics of Decay:

The order of kinetics involved in the decay process may 
be understood as follows: The defcay process may be governed 
by monomolecular, bimolecular or intermediate kinetics 
depending upon the relative location of traps and luminesc­
ence centres. The monomolecular decay is exponential and is 
expresented by the equation (3.4), whereas the bimolecular 
process involves power low and is represented by equation 
(3.7). Thus according to these equations, a straight line on 
semi-log plot between I and t pepresents the first order 
kinetics, whereas straight line between the reciprocal of 
the square root of intensity and time, indicates the second 
order kinetics. Further, for second order kinetics, a plot 
between log I versus log t assumes a slox^e of -2 at large 
values of t. An examination of the decay curves obtained in 
the present work indicates that their form, is not as jjer 
equations (3.4) or (3.7).

However# the observed nature of decay is well explained 
on the basis of monomolecular superposition theory,indicating 
that the kinetics involved is likely to be monomolecular.
Thus, it may be concluded that the kinetics involved in the 
decay process is likely to be monomolecular.

3-3.10 Distribution of trapping levels:

The trapping levels in a phosphor are distributed in
their depths. The distribution may be uniform, quasi-uniform,
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non-uniform or exponential (21). For the present system the
distribution is ascertained as follows:

For uniform trap distribution, over a wide range, the 
relation between phosphorescence intensity I and time t 
is given by the equation

I Mk T
t 1 - exp (3.21)

where N is the number of traps with activation energies 
lying between E and E + dE. Phosphorescence in present
case lasts for few minutes. Also the frequency factor S is

14 —1of the order of 10 Sec ( see section 4.34). Hence, we have
St t>> 1, and above equation reduces to

T H k T
t

= £?k T I1

= Io t"1 ----------- (3.22)

The relation is similar to I = Io t”^5, and for uniform trap 

distribution b should be unity. However, the observed values 
of b are not unity or even close to unity (see Table 3.1).
This rules out the possibility of uniform or quasi-uniform trap 
distribution. On the other hand, the values of b are less 
than unity indicating thereby that the trap distribution is 
likely to be non-uniform. Now refering to equation I = constant, 
t v r , for an exponential trap distribution
b ss (|B k T + 1), which means b > 1 (22). For our samples, b 
fluctuates between o.24 and 0.73 and thus excludes the
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probability of 'exponential trap distribution.

Above conclusion is supported by a plot between I.t 
and log t obtained for present samples. lypical plots 
are shown in Fig.3.19. The curves are neither straight lines 
parallel to log t axis nor exponential as required by uniform 
and exponential trap distributions respectively. However, they 
are increasing ones, suggesting thereby the trap distribution 
to be non-uniform. The curves also give an idea about the 
density traps at various depths. This is since, I.t is a 
measure of trap density while log t of trap depth.

3-4. SUMMARY:

1) Phosphorescence decay is of the form I = lo t~.

2) The decay is hyperbolic in nature and can be 
explained in terms of superposition of various 
exponentials.

3) The possible kinetics of decay process is monomo- 
lecular.

4) The distribution of traps responsible for the 
phosphorescence is likely to be non-uniform.

5) Addition of Zn in absence of flux only influences 
the distribution of trap densities while its 
introduction along with the flux gives rise to 
new trapping levels.

6) Incorporation of flux, NaCl, into the host lattice 
creates new trapping levels which contribute to the 
phosphorescence decay.

-0-0-0-
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TABLE - 3.1

Decay Characteristics of Samples

Series
NO.

Sample
No.

Value
Io

Decay-
constant
b

Value of E from 'Peeling 
off' of decay curves, eV
Slowest Second Fastest
exponen- exponen- exponen­
tial. tial. tial.

1 2 3 4 5 6 7

Bi 3.80 0.29 0.70 0.61 0.59

B2 3.71 0.28 0.84 0.75 0.73

B3 5.68 0.34 0.79 0.70 0.65

B4 15.14 0.54 0.98 0.93 0.88

I Bc5 6.33 0.42 1.18 1.10 1.06

B6 6.53 0.43 $.15 1.01 1.01

Brj 14.45 0.50 1.18 1.02 0.96

B8 15.67 0.52 1.08 1.01 0.97

B9 10.00 0.47 1.46 1.37 1.34

B10 31.62 0.58 0.88 0.80 0.76

B11 80.35 0.73 1.23 1.13 1.11

B12 10.47 0.42 1.04 0.96 0.90

B13 37.15 0.65 1.01 0.94 0.88

B14 13.18 0.49 1.52 1.42 1.36

II B15 4.26 0.30 1.15 1.04 1.01

B17 3.09 0.25 1.24 1.13 1.03
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Table 3.1 cont.

1 2 3 4 5 6 7

B18 4.02 0.31 1.22 1.14 1.15

B» 3.93 0.24 1.07 0.98 0.92

B20 30.55 0.63 0.96 0.88 0.83

B21 28.18 0.54 1.11 1.04 0.98

iii b22 14.79 0.48 0.84 0.76 0.72

B23 22.39 0.55 1.12 1.03 0.97

B24 27.54 0.59 H03 0.83 0.88

__ _ ^ __ — _ __ ttmt
o_

tm.
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TABLE 3. 2

Life times of samples

Sample
No.

^ -

__ _ S«2,cr* _ ____ S_4jC1_

Bi 563.18 17.77 8.05

B2 896.85 21.08 13.03

B3 923.81 25.40 4.14

B4 375.36 43.89 7.94

B5 515.26 21.38 5.55

B6 7547.16 39.10 10.18

B7 21231.42 42.28 6.08

B8 685.40 40.25 7.97

B9 1137.65 42.68 11.41

B10 1292.65 55.92 12.59

B11 3343.36 88.65 35.01

B12 1997.60 91.32 8*96

B13 808.40 50.58 5.43

B14 2020.20 41.63 4.16

E15 2415.45 42.60 12.35

B17 2664.53 48.48 6.56

B18 918.27 49.28 7.06

®1Q 2979.73 68.82 9.24
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Table 3.2 cont.

-1
X 2 3 4

E20 1335.29 78.67 10.24

B21 1481.48 81.16 9.31

B22 1053.40 50.05 8.17

B23 1793.07 56.85 5.20

B24 1093.90 56.62 4.63
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Fig. 3*13
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Fig. 3.15
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