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CHAFTER III

STUUY COF PHCSFHORESCENCE DECAY

3-1 INTRODUCTION:

The study of phosphorescence decay provides infomation
about the nature of trapping states, energy levels of lumine-
scent materials and the type of kinetics involved in the
luminescence process. The aim of the present investigation
is to analyse the observations made at 300%% so as to derive

information about the following aspects:

1) the nature of decay law,

2) the time constant of decay,

3) the energy distribution of trap levels,

4) an insight into the mechanism responsible for
decay, and

5) the effect of activator Zn and a flux on decay

behaviour.

3=2  THEORETICAL BACKGROUND:

3=2.1 Decay Laws:

The phosphorescence decay may either be exponential
or hyperbolic depending upon the type of kinetics involved

in the luminescence process (1-6).

(a) Exponential Decav:

The exeponential decay occurs when the kinetics of
luminescence is of the Zirst order i.e., when electron traps

are situated close to che luminescence centres.
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N Let n be the number Of excited electrons at any time

t and if p 1is the transition probability then,

'g:'té‘ =—pdt —————— ( 3.1)
the transition probability p according to Randall and Wilkins

is given by (4,7)
Pp=Se T e aeae-a- ( 3.2)

where S 1s the attempt to escape frequency, E the trap
depth, K the Boltzman constant and T is the absolute

temperature at which the decay takes place.
On integration, equation ( 3.1 ) gives

n.=n, exp ( =pt ) = = = =« = (3.3)

where n, is the number of excited electrons at ¢+ = o, the

time when the excitation ceases.
The luminescence intensity is given by

I = - dn
dt
= P n_ exp ( -pt )

" I= I, exp (-pt ) = = = = = (3.4)

where IO is intensity at t = o.

The equation (3.4) shows that the rate of decay depends
only upon the transition probability p. This eguation is

useful in calculating the trap depth.

(B) Hyperbolic Decay:

This type of decay results when luminescence process
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is of the second order i.e., when electron traps are located

away from the luminescence centres.

Let there be n impurity centres with which only
n number of electrons combine at a time, If p is the
probability with which an electron combines with anv of the

centres in time dt, then

P = Andt; ------ (305)

A being a constant.

If all the n e_ectrons return to the ground states
at the centres through the conduction band with this probabi-

lity, the rate of decav will be

dn _ 2
% = An ------ (3.6)

and luminescence intensity is given by
2
I = I,/ (1+xXt )" ===« =~ (3.7)
where o< is another constant.

For large values of t ( t>> 1 ) the equation (3.7)

can be written as

I = I, /o<th = - ===~ (3.8)

Treating more generally in the light of different
capture cross-sections for electrons, empty centres and traps,
Andirowich (8,9) arrivad at an approximate Bequerel type

relation of the form

I = const. / (t + to )b ----- (3.9)

where b depends on the ratio of the capture cross-

irs ;g‘
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sections of traps and empty centres. However, this equation

fails in cases where well separated groups of traps exist.

3-2.2 Effect of Steady Excitation of a Fhosphor
on the Filling of Electron Traps:

when a phosphor is excited at a fixed temperature by
steady excitation, its luminescent intensity reaches to a
constant value. This state of phosphor is referred to as
equilibrium state and in this condjgtion the concentration of

filled electron traps is in equilibrium.

If the phosphor contains traps of one depth, then two

cases arise:

a) When Traps Are Located Close to the Luminescence

Centres (First Order Kinetics):

Let J be the intensity of excitation. Then the rate of
electrons raising to the excited state is proportional to
J, and is given by CJ, C being a constant of proportionality.
If there are n electrons in the N traps, the rate of
capture of excited electrons in traps is CJa (N-n), a being
the probability of capture per trap. The rate of escape of
electrons from traps is given by n s §E/KT' Under equilibrium
condition, the rate of capture of excited electrons in traps

and rate of electrons escaping from traps will be equal and

thus,
CadJ (Nlen) =n s é(E/KT) ————— (3.10)

from which we get,
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~E/KT - - - = = - (3,11)
A

1+ Se

where A= C a J 1is a factor directly proportional to the

intensity of excitation.

(B) When Traps Are Located Away From the

Luminescence Centres (Second Order Kinetics):

Let n Dbe the number of trapped electrons and m the
number in conduction band. Then ( m + n ) is the number ¢£f
empty luminescence centres and rate of electrons returnirg

from the conduction band is given by

dm _ . _ —~E/KT
= 0O=CJ -F m (mkn) n s e -mb (Nem)- - —(3.12)

and the rate of electrons escaping from traps is

%E =0=ns&”T _mp (Nn) = = - - - (3.13)

where F and b are the constants and CJ is the rate of

electrons rising to the excited state.

If the excitation is not of an appreciably low intensi-
ty, the number of electrons in the conduction band is much
greater than the number trapped and thus m + n = n. Hence

sz < R (3.14)

and therefore,

n =

the square root of the excitation intensity.

where B = b \fC J//B and thus is proportional tc¢ v -
{7
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32,3 The effect of ExXcitation Intensity on
the Filling of Traps With Complex Distribution:

The derivations of equations (3.11) and (3.15) may be
extended to cover comp_.ex trap distributions if the form of
the specific distribution is known. In most practical cases
the number of traps, N, of different depths does not vary
rapidly with E over rnost of the ranges of E wvalues. Thus
if N 1is assumed constant or slowly varying, the total
number of filled traps from a given excitation intensity can

be obtained. Let this number be e then in most cases
E

max

n, = S. n dE
0]

using the equation (3.11) we obtain

E

" n a (3.16)
—— E —————— * 6
nT B {
S

o—E/KT
O 1+ 3

For all practical exciting intensities A << S, and thus

equation (3.16) yields on integration

nT=NKTlog(A'+l) ————— (3.17)

E
where A' = A s™t e MAWKT 44 proportional to the

excitation intensity.

At high intensities when A' > 1 the number of filled
traps will be a linear function of the logerithm of the

excitation intensities provided that A<K S, when a approaches
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& a saturation state will be reached. A similar logarithmic

relation can be obtained by using equation (3.15), which

includes consideration of retrapping.

3-3 RESULTS ANLD DISCLSSION:

3-~3.1 Decay Curves:

FPigs. 3.1 to 3.3 show some typical decay curves of
samples studied at 3OOOK. They appear to be of the same
general nature as reported for alkaline earth sulphide

Shosphors by other workers (10.14).

The first step in the analysis of d;cay curves is to
determine which of the two main modes of decay, ise. exponetial
or hyperbolic, is operative. General shape of I - t plots,
log I versus t plots and log I versus log t plots can
give a useful insight into this and in addition can yield

information about the nature of kinetics involved,

To examine the possibility of simple exponential decay
with single trap depth given by equation (3.4), plots of log
I wversus t are plotted. It is found that they show deviation
from straight lines. This rules out the possibility of simple
exponential decay with a single trap. However, graphs of logl
®@ versus log t (Fig.3.4 to 3.7) are found almost linear,
suggesting that the decay is hyperbolic and could be represen-
ted by the equation of the form (4)

I = To t2 oo ao--- (3.18)

where I 1is the intensity at any time t, Io is at the start
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of the decay, and b 1is the decay constant. The value of
decay constant is indicative of decay rate. Faster the decay
higher is the value of b and vice-versa. It also provides
the information about relative population of traps at various

depths.

3-3.2 Decay Constant:

The values of decay constant are calculated by the

method of least sguares (15) using the relation

L = SXsYy ——r12x;f - - = = = = = (3,19)
(=x)° —nex

where X = log t, y = log I and n is the number of
observations. The values of b thus obtained are given in
Table 3-1l. It is seen that the values of b for all cases

are less than unity.

3=-3.3 Variation of Decay Constant (b):

(1) With Concentration of Zn:

The variation in b wvalues with concentration of Zn
is as shown in Fig.3.8. The variation is not strictly
systematic but in general, b increases with increase in
Zn content. This implies that the incorporaticn of Zn alone
does not give rise to new trapping levels but modifies the
relative importance of traps responsible for vhosphorescence
decay (16). An increase in amount of Zn has the effect of
populating the shallower traps in preference to the deerer

ones.
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However, when an amount of 2Zn is varied in presence of
flux (NaCl, 1.25 wt.), the variation in b wvalues is found
to be systematic ( see Fig.3.9 ). Thus indicating that the
Zn in presence of flux, introduces new trapping levels in a

phosphor (16,17).

(2)  With Concentration of Flux NaCl:

#ig.3.10 shows a variation of b with % of flux. It
may be seen that the variation, here too, is systematic and
indicates that the addition of flux creates new trapping

levels which contribute to the phosphorescence decay (16,17).

3-3.4 Variation of Starting Contribution (Io)
with Z2n and NaCl:

The variation of Io with concentration of Zn in absence
and presence of flux is shown in Figs. 3.11 and 3.12 respect-
ively, while its wvariazion with % of flux is given in Fig.3.13.
The Io values are calculated from the intercepts on log I
axis of plots between log I wversus log t. As Io represents
a phosphorescence intensity at 1 sec. it may be taken as a

measure of phosphorescence efficiency of a rhosphor.

It may be noted from the Fig.3.1ll that the variation
in Zn content in absence of f lux causes an increase in
efficiency. However, tae increase is not systematic. In
presence of flux, the =2fficiency first decreases and then
increases (Fig.3.12)s The observed decrease might be due to

the reduction in trapping levels for that concentration.
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This has been suprorted by b wvalues which also show minimum

at same concentration ( See Fig.3.9).

The variation observed in Io values with % of flux
exhibits a maximum followed by a continuous decrease. The
maximum is found at 1.25 wt.» of NaCl and is an optimum
concentration of flux for better luminescence. The same
concentraticn has been used during preparation of samples of

series III (Table 2-1).

3=3.5 ‘Peeling off' of the Decay Curves:

In the present case, the slopes of log I-log t plots
are not equal to two fort>>1, as required by the equation
(3.7). This excludes the possibility of hyperbolic decay with
single trap depth. However, the observed hyperbolic decay
could ke explained on tne basis of the monomolecular superposi-
tion theory. Randall and Wilkins (4, considered the hyperbolic
decay as a result of superposition of exponentials correspond-
ing to different traps. Such a decay can be expressed by an

egquation of the type

I = Iol exp -Py t) + IO2 exp ( -pzt) +

+ Ion exp (~p t) - = - - - (3.20)
where Ion is the phosphorescence .intensity due to electrons
in the traps of energy En and Pn is the transition probabi-

lity of an electron escaping from a trap of depth En.

It is possible to break up the decay cure intoc a set
of exponentials by the method of successive subtraction as

has been followed by Bube and Others (12,14,18). The same
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procedure is adopted in the present case and some typical

graphs are shown in Figs. 3.14 to 3.16.

All the decay curves were split into three exponentials
and the trap depth corresponding to each exponential was
determined. The values thus obtained are listed in table 3.1.
The wvalues of S used in the above calculations were obtained

from thermoluminescence studies to be described in chapter 4.

3=3.6 Activation Energ:-es:

The values of trap depths calculated for all samples

vary from 0.70 to 1.52 eV for slowest exponential, from 0.61
to 1.42 eV for middle exponential and from 0.53 to 1.36 eV
for fastest exponential. On comparison ¢of these values with

those determined from thermoluminescence carried out on the
same samples, it is found that the energies corresponding to
the slowest and middle exponential components show a good
agreement ( see Tables 3,1 and 4.1 ); the thermoluminescence
values having been calculated on the assumptiocn of the monomo-
lecular kinetics. ( EH3 values). The activation energies
corresponding to the faster exponential of the decay curves
are considerably smaller. This is to‘be expected, since for
recording the glow curvéﬁ, heating begins cnly after the
phosphorescence intensity has become negligible., By this time
the filled shallower traps éet élready empited.and the

remaining deeper ones are subsequently emptied with the supply

cf enexrgy.
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3-~3.7 Variation of Activation Energies with

Concentration of Z2n and HaCl:

The values of activation energies were plotted against
the concentration of 2n as well as NaCl. The plots obtained
for E wvalues of slowest exponential are as shown in Figs.
3.17 and 3.18. Similar were the nature of plots for E wvalues
corresponding to middle and faster expontials. From graphs
it appears that there is no systematic change in trap depths
with addition of 2n alone ( see Fig.3.17 (a) ). Whatever
change gbserved,i.e. increase in E value with Zn concentr-
ation, could be due to influence of activator on distribution
of trap densities (13,.9,20). The variation observed in E
values with Zn in presence of flux and with % of flux is
however systematic in nature (Figs.3.17 (b) and 3.18),
inplying thereby that the introduction of 2n in presence of
flux and addition of flux gives rise to new trapping levels

in the phosphor (16,17!. The result is in accord with the

inference drawn from the b wvalues,.

3-3.5 Rate Constants and life times:

The slopes of the three straight lines obtzined on
the log I-t plot are Pl' P2 and Pj and represent the transition
probabilities. The reciprocals of these transiticn probakili-
ties give the values oI life times Tye TE and T of a trapped
electron contributing zo slowest, middle and fastest exponen-
tial components respeczively. The observed values are listed

in Takle 3.2.
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-3=3.9 Kinetics of Decav:

The order of kin=tics involved in the decay process may
be understood as follows: The defay process may be governed
by monomolecular, bimclecular or intermediate kinetics
depending upon the relative location of traps and luminesc-
ence centres. The monomalecular decay is expcnential and is
expresented by the equation (3.4), whereas the bimolecular
process involves power low and is represented by eguation
(3.7). Thus according =0 these equations, a straight line on
seni-log plot between I and t pepresents the first order
kinetics, whereas straight line between the reciprocal of
the sguare root of intensity and time, indicates the second
order kinetics. Further, for second order kinetics, a plot
between log I wversus log t assumes a slope of -2 at large
values of t. An examination of the decay curves obtained in
the present work indicates that their form is not as ver

equations (3.4) or (3.7).

However, the observed nature of decay is well explained
on the basis of monomolecular superposition theory,indicating
that the kinetics involved is likely to be monomolecular.
Thus, it may be concluded that the kinetics involved in the

decay process is likely to be monomolecular.

3-3.10 Distribution of trapping levels:

The trapping levels in a phosphor are distributed in

their depths. The distribution may be uniform, quasi-uniform,
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non-uniform or exponential (21), For the present system the

distribution is ascertained as follows:

For uniform trap distribution, over a wide range, the
relation between phosphorescence intensity I and time +t

is given by the equation
1. L [} - exp. (St{] ----- (3.21)

where N 1s the number of traps with activation energies
lying between E and E + dE, Phosphorescence in present
case lasts for few minutes. Also the frequency factor S is
of the order of 1014 SeE1 ( see section 4.34). Hence, we have

St >»> 1, and above equation reduces to

Jdk T

I = T
= Nk T 321
= ot oo oo (3.22)

The relation is similar to I = Io t-b, and for uniform trap
distribution b should be unity. However, the observed values
of b are not unity or even close to unity (see Table 3.1).
This rules out the possibility of uniform or quasi-unifcrm trap
distribution. On the other hand, the values of b are less
than unity indicating thereby that the trap distributioan is
likely to be non-uniform. Now refering to eguation I = constant.
£ (}3}<cr4bl),for an exponential trap distribution

b = (P k T 4+ 1), which means b3 1 (22). For our samples, b

fluctuates between ¢.24 and 0.73 and thus excludes the
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‘probability of exponential trap distribution.

Above conclusion is supported by a plot between I.t
and log t obtained fcr present samples. Typical plots
are shown in Fig.3.19. The curves are neither straight lines
paiallel to log t axis nor exponential as reguired by uniform
and exponential trap distributions respectively. However, they
are increasing ones, suggesting thereby the trap distribution
to be non-uniform. The curves also give an idea about the
density traps at various depths. This is since, I.t is a

measure of trap density while log  t of trap depthe.
34, SUMMARY:

1) Phosphorescence decay is of the fomm I = Io £

2) The decay is hyperbolic in nature and can be
explained in terms of superposition of various

exponentials.

3) The possible kinetics of decay process is monomo-

lecular.

4) The distribution of traps responsible for the

rhosphorescence is likely to be non-uniform.

5) Addition of zn in absence of flux only influences
the distribution of trap densities while its
introduction along with the flux gives rise to

new trapping levels.

6) Incorporation of flux, NaCl, into the host lattice
creates new trapping levels which contribute to the
phosphorescence decay.

~0=0=0-
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TABLE - 3,1

Decay Characteristics of Samples

Series Sample Value Decay Value of E from 'Peeling
No. HNo. To constant off' of decay curves, eV
b Slowest  Second Fastest
exponen-  exXponen- exponen-
tial. tial. tial.
1 2 3 4 5 6 7

B1 3.80 0.29 0.70 0.61 0.59

B, 3.71 0.28 0.84 0.75 0.73

B, 5.68 0.34 0.79 0.70 0.65

B, 15.14 0.54 0.98 0.93 0.88

I BS 6.33 0.42 1.18 1.10 1.06
Bg 6.53 0.43 $.15 1.01 1.01

B, 14,45 0.50 1.18 1.02 0.96

Bg 15.67 0.52 1.08 1,01 0.97

By 10.00 0.47 1.46 1.37 1.34

BlO 31.62 0.58 0.88 .80 0.76

Bll 80,35 0.73 1.23 1.13 1.11

By 10,47 .42 1.04 0.96 0.20

Bys 37.15 0.65 1,01 0.94 0.88

Big 13.18 0.49 1.52 1.42 1.36

It Byg 4,26 0.30 1.15 1.04 1.01
B 3.09 .25 1.24 1.13 1.08



Table 3.1 cont.
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1 2 3 4 5 6 7
Blg 4,02 0.31 1.22 1.14 1.15
Blg 3.93 0.24 1,07 0.98 0,92
Byy 30455 0.63 0.96 0.8 0.33
By, 28.18 0.54 1.11 1.04 0.98
ITT B,, 14.79 0.48 0.84 0.76 0.72
By, 22.39 0.55 1.12 1.03 0.97
By, 27.54 0.59 1403 0.83 0.88
BARR. Hatavanin e e, treng

K-’i"f' i(’m',{ 3
»ad
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TAELE 3,2

Life times of samples

e T e e . T — e O Y S R R ey

Sample T, ﬁ[é T
o Set L osedl  sed!
B1 563.18 17,77 8.05
82 895,65 21,08 13,63
B3 927,81 25.40 4,14
B4 | 375,36 43,89 . 7 .94
B5 513%.26 21.38 5.55
86 7547.16 35,10 10,18
B7 2123%1.42 42.28 6.08
B8 685.40 40,25 757
B9 1137.65 42 .68 11.41
BlO 1262 ,65 55.52 12,59
Bll 3343,36 883,65 35.01
B12 1997.60 91.32 S«96
813 808.40 50.58 5643
B14 2020,20 41,63 4,16
Bis 2415.45 42,60 12.35
Bl? 26€4,53 48 .48 6+56
818 918,27 49.28 706
B 29%9.73 68.82 S.24



Table 3.2 cont.

P I - .. S S Y, e = o e e e e e e

s en s s e et e et e s e ewn e e e o e A em  eme == et e o= e et e

1335.29 78467 10.24
B, 1481.48 8l.16 9.31
1053,40 50.05 8e17
1793.07 56.85 5.20

1093.90 56.62 4.63

I T I T I I R o R e S S
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