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The analysis of wave propagation in optical fibers is

1carried out normally by the standard approach of wave theory. 

The ray theory is also useful for this purpose :hough it is

less general. The latter theory is advantageous in making the 

physical process of the picture more clear and comprehensible.

At the outset we shall briefly summarize, the salient features 

of the ray theory. Next we will consider the wave theory or 

mode theory in somewhat more detail.

2.1 RAY THEORY1 :

This theory can be applied to uniform core multimode

fibers and relatively thin graded-core fibers. However, the 

theory cannot be applied to single-mode or monomode fibers. 

The progapation of light is considered in terms of total internal

reflection. The structure of optical fiber allows the core 

refractive index (n ) be more than that of the clandding (n)

and so the condition for total internal reflection is easily

satisfied. Fig. 2.1 illustrates how light transmits through an

uniform core fiber by a series of total internal reflections taking 

place at the core-cladding boundary.

In order that the total internal reflections should occur

the rays are required to be entered the optical fiber with

sufficiently shallow grazing angle (less than critical angle 9 )

called the acceptance angle 9, (Fig. 2.2). The rays entering
<1
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at this angle are called the meriodinal rays. Other rays making 

greater angles we known as skew rays which are not totally 

internally reflected. The condition for the total internal 

reflection of meriodinal ! rays is expressed as

Sin e < n /'{ET o o
where 8 = angle of incidenceo 0

n. -n
A = — - relative

n
0

refractive index difference

Another useful quantity in the ray theory is the numerical 

aperture (NA) defined as

... , 2 2 1/2 NA = (nQ - n )

or NA = Sin(Q ) a
or NA = n (2 A )

0

NA measures the light collecting ability of a fiber. 

It is independent of the dimensions of the fiber.

The Skew rays follow a helical path through the fiber 

(Fig. 2.3). The acceptance angle for a Skew ray is given 

by,

Sin 0 as n . CosY air
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where y = angle between the core radius and the ray normal 

to the core axis.

The acceptance condition for the Skew rays is therefore 

written as,

n . Sin 8 Cos y = NA air as

Depending upon the value of Cos y the Skew rays are accepted 

at larger axial angles in a given fiber, than the meridional 

rays.

In non-uniform core fibers both meridional and Skew 

rays may exist, but the Skew rays follow more or less deformed 

paths.

BASIC EQUATIONS :

In cylindrical co-ordinates the ray equations determining 

the ray path in an inhomogeneous medium are written as,

,£ (n^)ds ds
, d6 .2

nr (Ts >
dn
dr

dr , , d© n (-T-" ) ( ~rr d s d s
d d 6 ,+ (nr t— ) ds d s

.............(2.1)

....(2.2)

d 
d s n dz

ds 0 (2.3)

In writting these component equations, an axially symmetric 

and uniform refractive index distribution has been assumed. 

Combining these equations appropriately and integrating under

certain initial conditions one can obtain.
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r
Z =■ / N.f t 4 [ i~(-e~_)2 ] (X.M.-Y.L.)

i n^ • r 1111

- N'; 1"1/2 dr ___ (2.4)
i

where I'L = direction cosine of incident ray

n., = refractive index at the incident point

directions in a plane >1 to Z axis

Co-ordinates of the fiber end where the light 

ray is incident

Eq.(2.4) useful to compute the path of any ray provided 

we know the refractive index distribution n(r) and the launch 

conditions X., Y., L. and M.ill l

2 2 2e.g. with n (r) = n [ 1 - (2r) ] we can obtain the

following ray path equation for meriodinal rays

a n Z
r = C Sin ( —+ 40 ......... (2.5)

i i

where 4' = constant
-1 2 *71/2

C= a [ 1- NT ( 1 -a NT) ]'
l l

Eq.(2.5) represents the path of an undulating rav having a 

period length of

2TT Ni 2 1/2
A = ( —-g-J-) [ 1 - ( aro)2 ] '

~ 2J .......... (2.6)
"a

M. =l
X. =l

Y.
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It is found that the period length A is a constant for a
2

refractive index profile close to n (r) given above. As a result

the average axial velocity of the ray becomes independent 

of the launch conditions.

2.2 ELECTROMAGNETIC MODE THEORY1,2 :

A mode is defined as an electromagnetic wave which 

propagates along a waveguide with a well defined phase 

velocity, group velocity cross-sectional intensity distribution 

and polarization. Modes characterize the waveguide structure 

in terms of its e.m: . resonances. Each mode can be described 

as a superposition of uniform plane waves propagating at a 

fixed angle with the guide axis .

WAVE EQUATIONS :

For axially symmetric waves propagating through optical 

fibers, the wave equations are written in terms of cylindrical 

co-ordinates.

(2.7)

and,

99
+ 1/r ■+ 0 ____(2.8)
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By separating the variables with E (or H ) = R (r) @0 onez z z z

can obtain the general solutions of the two equations as.

§4 on =
Cos ( nfl+ A ) 

Sin ( nfi + ) ....(2.9)

A Jn( Btr) ♦ A' Nn( Bt r), 3t*> 0 

C, Kn( l|Btl r) + C An ( |BJr), 0

thJ and N = n order Bessel functions of first kind n n
K and I = n**1 order Bessel functions of 2nc* kind, 

n n

The functions are oscillatory with their amplitude

gradually decreasing. These are suitable to represent the core- 

fields. On the other hand the exponentially decaying K functions 

can well represent the fields in the cladding. The other 

functions are insignificant in the theory of uniform-core fiber.

The phase and group velocities of a plane monocromatic 

light wave are defined as,

V_ = W/3 and V = 6W/5 6 
P g

If the propagation takes place in an infinite medium

of refractive index n , theno

6= n W/C o
So that, V_ = C/n and V = C/N.P o g 1
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Where = (n - XdnQ/dX) = group index of the guide.

HYBRID MODES OF OPTICAL FIBER3 :

The optical fibers usually satisfy the condition A«i 

for weakly guiding approximation. Under this condition the 

fibers have additional modes called the 'Hybrid modes' which

are denoted by HErt and EH. .J fon

These modes arise depending upon whether the components 

of H or E makbs the larger contribution to the transverse

field. Since A is very small. Usually the HE-EH mode pairs

occur. These pairs have almost identical propogation constants.

Such modes are said to be degenerate. All the modes in optical 

fibers are commonly designated by the symbol LP. . The 

subscripts & and m are related to the electric field intensity 

profile for a particular LP mode. LP stands for linearly 

polarised waves. The intensity distributions of a few lower 

order L,P modes are shown in Fig. (2.4).

MODAL PARAMETERS :

In the mode theory the following three modal parameters 

are very important in discussing the propagation of particular 

mode.

and,

,.2 . o2 ,.2 2,2w = ( p - K n ) a

,,2 v2 2. 2 2,V = K a (n -- n 1 o

(2.11)
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Here, B is called the longitudinal propagation constant while 

V is known as the normalized frequency. In terms of these 

parameters the propagation of the given mode is discussed 

with the help of the following relation.

b = 1 = u /v

where, b =•■ normalized propagation constant.

The propagation* constants are determined with the help 

of the following condition at the core cladding boundary. Under 

weakly guiding approximation such a boundary condition for 

hybrid modes is expressed in a simpler from given below;

uJ (u) n

This equation 

positive and 

we obtain.

K' (w) n

gives

negative

= ± n (1/u + 1/w )

two sets of solutions 

signs. When the sign is

(2.12)

for the 

positive ’

J1(u)/uJq(u) = k1(W)/WKq(W)

This applies to the EH mode. On the other hand for negative 

sign; we get, !

J .(u)/ uJ (u) = K ,(W)/WK (W) n-1 n n-1 n (2.13)

This is applicable to the HE mode.
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CUTOFF FREQUENCIES :

As pointed out above, Bessel function Kn decays 

exponencially. Therefore, when Kp < 3 is satisfied the 

electromagnetic field in the cladding decays exponentialy. 

This means the electromagnetic energy can be assumed to be 

confined in the core. However, | for 3 = Kh it is found that 

the field in the cladding does not decay i.e. the energy can 

not be confined in core. The condition B = Kn is called the 

cutoff condition and the corresponding light frequency is known 

as the cutoff frequency. In optical fibers energy transmission 

is possible at frequencies well above the cutoff frequency. 

At such frequencies the transmission modes are known as 

'propagation modes."

For B < Kn, we obtain spatially oscillatory solutions
i

in the cladding region. This leads to drastic radiation losses, 

so that the wave can not propagate axially. Such a state of 

the wave is known as the "radiation mode". However, there 

is a possiblity of wave propagating over certain distance into 

the cladding. In spite of the fact that, S< Kh, such a state 

corresponds to the "leaky modes."

At cutoff frequencies W = 0, so that, u = v. The normalized

cutoff frequencies for the LP „ modes are defined as,^ m a

~ J(m-.S'l
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Where, the radial mode number Z represents the number of

radial variations of the field in the core region, while the

mode number m denotes the number of variations of E or
X

Ey field component observed in one rotation.

2.3 ANALYSIS OF STEP INDEX FIBERS ON MODE THEORY3,4:

The single mode step index fiber is advantageous over 

the multimode step index fiber due to its low inftermodal

dispersion and the subsequent increase in the maximum

bandwidth. In multimode step index fiber, considerable

dispersion occurs due to various group velocities of the 

propagating modes. Due to the oscillatory Bessel functions 

Jv) (x) involved in the modal equation, there will be m roots 

of the equation for a given v value. The roots are designated 

by 8^ ^ and the corresponding modes are either TE , TM

EH or HE,, . For the dielectric fiber waveguide all modes 

are hybrid modes except those for which v = 0. The number 

of modes which cun exist in the optical fiber waveguide is 

given by the expression,

w _ 2 ^a2 2 2, „2 ,
M ~ ------2 ( n0 “ n ) v / 2 (2.14)

It can also be represented in terms of a normalized propagation 

constant defined by,

a2W2

V2
( B/Kr - n

n - n o

vm



24

The graphical representation of this constant as a function 

of normalized frequency V is illustrated in Fig.2.5 for a first 

few low-order modes .

Various modes in the optical fiber waveguide obey 

different cut-off conditions In terms of the Bessel functions 

J., (ua) e.g.. All the EH ,, and HE .. modes with v > 2

are cut-off when,

n2
( ° - 
1 2 

n
+1 ) Jv_1(ua) =

, U3 * T ( y

(—„ ) J (ua) v-1 v .(2.15)

For V £ 2.405
J

the lowest ordeb Bessel function J is 0 zero so

that all modes (except HE^) are cut-off. However, the HE..11

mode has no cutoff. It ceases to exist only when the core

diameter becomes zero.

The e.m. energy of a guided mode is carried partially 

in the core and partially in the cladding. As the cut-off is 

approached the field penetrates further into the cladding region 

and a greater percentage of energy travels in the cladding.

k
According to Gloge, the relative powers m the core and cladding 

of a step index fiber for a particular mode v are given

by,

core s( 1 - u

V

(ua)
) [ 1-

Jv+i(ua) Jv-i(ua)

(2.16)
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and,

^=1- ..........(2.17,

Were P = total power in the mode v. The fractional power flow 

in the cladding of a step index fiber as a function of normalized 

frequency V is depicted in Fig. 2,6.

2.4 ANALYSIS OF GRADED-INDEX FIBERS ON MODE THEORY3:

In the graded-index fiber design, the core refractive 

index (n ) decreases continuously with the radial distance 

(r) from the center of the fiber, but is generally constant 

in the cladding. The index variation is represented differently 

in the core and cladding regions as given by the following

expressions,

n(r) = n [1 - 2 A(r/af ]1/2, core (r ,< a) .........(2.18)

= nQ (1-2 A )1//2 n, cladding (r ^ a) .........(2.19)

The c&mensionless parameter a defines the shape of the index 

profiles as illustrated in Fig. 2.7. These are called a 

profiles. For a = 2, e.g., we have the commonly used parabolic 

profile.

The numerical aperture (NA) in graded index fibers 

is a function of position across the core end face as against 

the constant NA for the step index fibers.



NA(r) = f n2(r) -n2]1/2 s NA(O) /l-r/a)“

r 4 a (2.2C)

0, r > a (2.21)

Where NA(0) = axial NA - n / 2~ho

Thus NA(r) decreases from NA(0) value to zero as we move 

from fiber axis to the core-cladding boundary.

The analysis of graded-index fibers by mode theory 

is widely carried out by the WKB method. In this method, 

the solution of the modal equation is given an asymptotic 

representation with the help of a parameter which varies slowly 

over the desired range of the modal equation e.g. the parameter 

chosen for the present case is the refractive index n(r) which 

varies only slightly over distances of the order of an optical 

wavelength.

Expanding the parameter S(r) in the form of a series

SCr) = 5 + 1/K S. + ___o 1

and putting into the wave equation we obtain, after integration,

____ (2.22]

w here 'Si = v - 1

If the radical in the ^integrand is greater than zero, so

is real so that a given mode is bound in the fiber core. For
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a given mode v there are two values r^ and r^ for which 

the radical is zero Guided modes exist for r values lying 

between r and r . For other r values, so becomes imaginary
X ^

so that we have decaying fields. We shall again discuss WKB 

method in chapter 4.

The number of bound modes in a graded index fiber 

is given by,

m( 6} » a2k2n2 &<*/« +2 f .. ]° .,..(2.23)
u 2 A k2n2

o

All bound modes in a fiber must have 6^ kn which lea:is to 

the maximum number of bound modes to be equal to ,

.. , _ 2. 2 2 A M = a/a+2aknQA ... .(2.24)

2.5 SUMMARY :

In this chapter first we have studied in brief the 

distinguishing! features of the ray theory for uniform core

fibers. This theory though approximate gives a clear physical 

understanding of the propagation of light in optical fibers

in terms of meridional and Skew rays. However, the analysis 

of the phenomena is most commonly worked out an the basis

of e.m. wave theory or mode theory. We have also given a

recipe of this theory elucidating the important concepts involved 

in it. The application of this theory to analyse the light
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propagation in step index fibers forms the next topic of 

discussion in this chapter. A summary of the essential features 

of the analysis have been briefly outlined. Next the analysis 

of the wave propagation in the Graded-Index fibers is presented. 

These two analysis have been covered in this chapter, because 

the present work is concerned with the propagation of HE^ 

and HE21 *aser modes through the step-index Fibers behaving 

like the Graded-Index Fibers on account of the intensity 

dependent R.I. profiles.
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Low index cladding

FIG- 20 ~ TH£ TRANSMISSION OF A LIGHT RAY IN 

A PERFECT OPTICAL FIBER •

FIG- 2*2 - THE ACCEPTANCE ANGLE 9a WHEN LAUNCHING 

LIGHT INTO AN OPTICAL FIBER .





FIG-2*5-THE NORMALIZED PROPAGATION PARAMETER b AS A

FUNCTION OF THE V NUMBER .WHEN V f 1 .THE CURVE 

NUMBERS vm GIVE THE HE2m ,T£0m ^ ™0m MODES .

FIG-2-6 -FRACTIONAL POWER FLOW IN THE CLADDING OF A 

STEP-INDEX OPTICAL FIBER AS A FUNCTION OF V. 

WHEN V fz 1 , THE CURVE NUMBERS vm DESIGNATE 

THE HEv+1 m AND EHvi m MODES-FOR v=1 ,THE CURVE 

NUMBERS v/m GIVE THE HE2m TEQm & TM0m MODES ■



FI G. 2*7 — REFRACTIVE INDEX DISTRIBUTIONS FOR 

THE SO-CALLED * ALPHA-PROFILES \


