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CHAPTER - I / INTRODUCTION

1.1 Historical:

1.1.1 The Role of Molecular Spectroscopy:

Spectroscopy is the study of interaction of radiation
with matter. Spectroscopy is one of the most powerful tools
for the study of atomic and molecular structure.! With the
help of spectroscopic techniques, the measurements of radiation
frequency are ‘made experimentally and the energy levels are
deduced from these measurements. The various branches of
spectroscopy generally involve the measurements of two
parameters, i.e. energy of radiation emitted or absorbed

by the system and the intensity of spectral line.

1) Atomic_ Spectroscopy : It deals with the interaction of

electromagnetic radiation with atoms which are most

commonly in their lowest energy state called 'ground state'.

-

1) Molecular Spectroscopy : It deals with the interaction of

electromagnetic radiation with - molecules. In case of
holecu!es, there are transitions betweén rotational and
vibrational Ievels‘ in addition to electronic transitions.
Hence, molecular spectra are more complicated than
that of atoms. It is classified according to the type

of molecular energy that is being emitted or absorbed.?



i) Rotational Spectra : It is obtained due to the change in

rotational energy of the molecule.

ii) Vibrational Spectra : It is obtained due to the change

in vibrational energy of the molecule.

iii) Electronic Spectra : It is obtained due to changes in the

energy of molecules due to different electronic

arrangements.

The detailed information about the molecular
structure (i.e. molecular symmetry, bond: distance and bond
angles) and chemical properties (electronic distribution, bend
strength, intra and inter-molecular processes) can be obtained

from the molecular spectra.

1.1.2 Important Parameters related to Molecular Structure:

While studying molecular structure, we have to
study various parameters related to molecular structure such
as force constant (ke], dissociati{qpr gner‘g_y,”.(.Dé),ﬂ_yjipra_:»tri:ona}l‘
frequency (we], unharmonicity (wtek'.ev),r etc.v These ?parameters éré
determined for a number of diatomic molecules with the help

of rotational and vibrational analysis.3

The force constant !kel measures the stiffness

of the bond. It gives the restoring force per unit displacement

from the equilibrium position. The force constant is also

equal to the curvature of the potential energy function.



'w,' is the vibrational frequency of anharmonic
oscillator for an infinitesimal amplitude. It also gives the

spacing of the energy levels (expressed in cm™1) that would
occur if the potential curve were a parabola with the curvature

that the actual curve has at the minimum, or equilibrium

position.

The coefficient 'w X' is known as the anharmonicity
constant. It is always much less than the principal term 'wg'.
The anharmonicity term introduces an effect which decreases "the

spacing of the higher energy levels.

If a bond is stretched far enough, it will break,
i.e. the molecules can be dissociated. The general shape

of potential energy versus the internuclear distance is given

in Fig.1.1. The height of the asymptote above the lowest
vibrational level ,~is> equal to the work that must be done
in order to dissociate the molecule and it is known as the
dissociation energy of the molecule. The dissociation energy

is given by:
We 2
Dg = BugXg

The constant ‘'B' is the rotational constant and its

value is given by: o

B = %lzcI
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The rotational constant 'D' is known as the centrifugal

distortion constant. The constant 'D' <depends upon the
vibrational frequency ‘wé' of the molecules. For smaller W the
potential curve will be flatter, hence, 'the influence of centrifugal
force will be greater and hence, 'D' will be greater. The

value of 'D' is given by D = §B3/w?,

In order to investigate the spectrum on the basis
of quantum theory of rotating-vibrating system, the molecule
can be treated as rigid rotator, non-rigid rotator, harmonic
oscillator, anharmonic oscillator or vibrating rotator and

the results are summarised in Table 1.1

1.2 Various Forms for Force Constant in Diatomics:

We know that for the classical harmonic oscillator,
- the separation of the successive vibrational level is equal
to the classical vibrational frequency, i.e. hvosc. This is true
for unharmonic oscillator. The decrease of classical vibrational
frequency with the increase of amplitude of vibration is same

as decrease of vibrational quantum with increase in vibrational

Jquantum number. Then according to classical theory, the exact
expression for vibrational frequency of anharmonic oscillator
in the state v is:

vosc(v) = CAGv

Here, AGv is used instead of AGv+%, so that the vibrational
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frequency in the state v is intermediate between the two adjagent
vibrational quanta AGv+: and AGv-%. Therefore, the vibrational
quanta AG are sometimes referred to as the vibrational frequency.
Hence, we can write:

vosc(v) = c[(u)e-awexe,)i - Zwexev] .
For the unrealizable state v = -%, the vibrational energy is
zero and vosc(-%) = cwp Therefore, “’é is the vibrational

frequency of anharmonic oscillator for an infinitesimal

amplitude. The force constant may be determined from the

vibrational frequency, w,. We know that:

e
vosc = %lvk/u
.*, ke = ull2uclwe? = 5.8883 x 107w 2 dynes/cm.

For infinitesimal amplitudes, cubic and higher powers of (r-r )
e
can be neglected in the potential energy.Hence, we can write:
: 32 _ 1 2
> r = - =" -

Vr ra f(r re) 2ke(r re) eee (1.3)
Therefore, the force constant 'ké' determines the parabola,
which is in agreement with the actual potential curve in the

neighbourhood of minimum.

It is well known that the force constant 'ké*'

increases with the bond order. Therefore, other things being
equal, a double bond is stronger than a single bond, a triple
bond is stronger than double bond. The bond order may be
regarded as the measure of electronic cloud, which is

responsible in holding the two atoms together.“



1.3 Potential Energy Functions:

For a diatomic molecule in a physically stable
state, the potential energy is minimum when there is equilibrium
separation between the nuclei of the two atoms. This equilibrium
separation is determined by the balance between the attractive
force due to electronic binding and the coulombic repulsion
between the charged nuclei. If the atoms are brought closer
than their equilibrium separation, then the repulsive force
between two nuclei increases. Hence, the potential energy
must increase due to the work done against their increasing
repulsive force. If the atoms are drawn apart, then also
the potential energy increases due to the work done against
the superior electronic binding. As the separation between the
two atoms increases, the potential energy also increases and
it will reach a |limiting value which is called as the

dissociation energy of the molecule. This simple fact of the
molecular system gives rise to potential energy curve with
a minimum at equilibrium internuclear distance, sharp rise
towards infinity as the nuclei are brought closer together
and less sharp rise towards dissociation limit as the separation

is increased.

In the study of molecular structure, it is very
important to represent correctly the potential energy of a

set of .atoms as a function of internuclear distance. From
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potential energy curve, we can obtain a good deal of information
about molecular structure.® The minima of the potential energy
curve determines the bond length. The second derivative
of the potential energy with respect to distance gives the
force constant. The force constant determines the vibrational
and rotational levels of the molecule. The higher derivatives

of potential energy curves give anharmonicity constant.

The potential energy curve can be plotted by

making use of energy levels themselves. Oloienberg,6 Rydberg

9

and Klein® have developed this method. Rosenberg10 Almy and

Beiler'11

have used Klein's method for the upper electronic
states of ‘LiH and KH, respectively. But the method is very
laborious... Rees'2’13 has given analytical formulation of the
KIein-Rydberé method and from this, P.E. curve can be
evaluated accurately in the region of minimum. The most widely
used method is to represent P.E. curve by a suitable function.
Following are some criteria for a good potential energy function.

These are divided into two parts; i.e. [a] necessary, and [b]

desirable.

a) Necessary:

1. At r >+ = , jt should come asymptotically to a finite
value;
2. At r = re, it should have minimum,

3. At r = 0, it should become infinite. This need not
be very strict. If U is very large at r=0,

It gives good result.

7.3

14-

16



b) Desirable:
These criteria gives the conventional form of the potential

energy curve as shown in Fig.1.2,

But this is not the only possible form. There are
curves with one maximum between main minimum and the disso-

17,18
ciation limit. Multiple maxima and minima are also observed

and are shown in Figs.1.3 and 1.4,

The maxima often arises when attrative potential
is crossed by a repulsive potential curve. If the interaction
is not too strong, it leads to a potential maximum of the
lower of the resulting potential curve. Maxima also arises

due to van der Waals interaction.

. 1 .
For such states, Frost and Musulmshave given

a theoretical discussion of various criteria. According to

them:
21252
= _3._2__.. + Ue
r
212232
where, — = nuclear repulsive potential corresponding

Z;2,e?
coulomb potential —
r

. Z;Z, effective atomic
numbers, Ue = Purely electronic‘ enérgy.

Hence, the potential function should also satisfy the following

conditions.

4, (i) Ue is finite at r = 0

(ii) At r = 0, Ue = Ue®, Ue® is united atomic energy.
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5. For large r, Ueac—r-—
dUe _ _
6. -a—r—'- =0 atr = 0.
7. Van der Waals term should introduce terms of the form 1/r"

The criterion 4 to 7 need not be exactly true.

When the molecule is vibrating, then we can see that
for any vibrational energy state, the internuclear distance

varies between two fixed values.17 This motion is similar to

the simple harmonic motion. In this type of motion, we can
see that the molecule . will spend most of its time at the
two limits of vibration. At these two limits, the molecule
is most likely to undergo an electronic transition. These limits
of vibration are known as the turning points and these are
the points of maximum intensity. Various methods are suggested

to obtain these classical turning poin’cs.19 to 23

1.4 F.C.Factors and r-centroids for Diatomics:

With the help of Franck-Condon Principle, the
different cases of intensity distribution are explained. On
the basis of quantum theory, CondonZ2H has shown that in
case of given electronic transition in a diatomic molecule,
certain transitions were most probable than the others. His
calculations were based on Frank'szfassumption, i.e. during
an electronic transition, nuclei, which are origihally in a

non-vibrating state, remain momentarily fixed because of their
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large mass, compared with those of electrons. But because
of the motion of electrons, the equilibrium distance between
two nuclei is altered. Hence, nuclei acquire potential energy
with respect to new equilibrium distance and begins to vibrate.
In this case, the amplitude of vibration is equal to the change
in equilibrium separation. If the nuclei vibrating in the initial
state, then almost any amplitude in the end state is possible.
But these are the positions where the nuclei spend most of
the time. These are the turning points of the vibratory motion.

Condon had shown that these positions lie along the parabolic

path in the double entry table and this agrees well with

the experiment.

The idea of quantum theory may be carried over
to new quantum mechanics. In new mechanics, the intensity
of speciral line may be obtained by evaluating the integral
of product. of electric moment and the wave function of initial
and final state. The probability of transition between two
states characterized by V' and ¥" is proportional to the square -
of the corresponding matrix element of the electric moment
or the transition moment, i.e.

R = Ju'* M yrdrt

where, M is a vector with components Zcixi, )3ciyi and Zc:izi
Further, neglecting rotation, we can write:
Y

where, ¢e = electronic and ¢v = vibrational eigen function.
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We can resolve M (i.e. electric moment) in two parts, one depen-
ding on nuclei and other depending on nucleus, i.e. M = Me+Mn.

Substituting this in equation (1.4) and after simplification, we get
*
= LTI ] . ,

R o=ty ar Jhe gy ar
The second integral:

Re = [ Me¥g * ydt,
is the electronic transition moment. But the variation of Re with
r is slow and we can replace Re by an average value Re.

.c “v.‘l..v'“ _ - .
+ R = Re f%‘b\'; dr

The transition probability which is proportioned to square of R is

given by:
3
P\V‘"‘V" - GHI‘I 5 E‘Zi,lvll (.N'V'Re(r)wvudruz
3h'c
where, E_, u= the energy quantum of the band.

The vibrational transition probability may be defined as:

P (¥, Re(r)t, "ar)?

vlvll
Re(r) is assumed to be a smoothly varying function of r and the

above equation can be written as:

PV'V" = Re’(rv.vu)(flbv'\Lv"drﬂz
= Ré (l"vlvu)qvlvn
Here, qv|vn = U‘Uv"bv"draz

is the Franck-Condon factor of the band system. Franck-Condon
factor la'f}ely controls the intensity distribution of vibrational
bands. Various methods of determining F.C. factors are

available in the literature 26733
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r-Centroids:

The dependence of Re(r) on r is generally unknown and
as a first approximation, Re(r) can be replaced by a mean value
ﬁe for the band system. But if the dependence of Re(r) on r is

either known or sought, then the integrals:

ofwl(\(')rvz(v.")dr = (v',rv") (1.5)
of‘h(v')rz‘l’z(v“)dr 2 (v',rivY) e (1.6)
34

become of interest., Jarmain and Fraser35 noticed that these

integrals exhibited the following property, i.e.

(v',rv") (v'r2v")

(V.,V“) (vlrvll)
The accuracy in almost all cases is better than 2%. Equality

of this ratio could be extended to higher powers of r.

e vy (v

(v',v") (vlrn”lvu)
Here, the upper limit on the power of r is of the order of 10.
A quantity '-i/'v“' which may be considered as an average r for

the (v'—» v") transition may be defined as,

(v'rv")

r tn = (V'V'j

viv
This quantity Fv'v" is called the r—centroid of the band system.
It is the characteristic internuclear separation, i.e. the average
of all internuclear distances and is given by:

fwvlrwvudr

vive fwvlwv” dr
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The concept of r-centroid was first introduced by
Nicholls and Jarmain.ss They have suggested different methods for
the evaluation of r-centroids. The graphical method : suggested

by them is easier and can be applied to all diatomic molecules.

1.5 Our approach towards getting correct values of these

parameters.

In this Dissertation, we have reported theoretical
research investigations on the various parameters related

to diatomic molecular structure. The potential energy function,

F.C. factors, r-centroids are obtained by applying quantum
mechanical principles to the spectra emitted by diatomic
molecules. We have undertaken the critical studies on various
methods of finding out these parameters for certain diatomic

molecules. The results are reported in three different Chapters.

In Chapter-1l, we have carried out a work on
force constants and some parameters such as anharmonicity
constant, zero point mean square amplitude, electronegativity
that depend on force constant. Force constants are obtained

by wusing different relations as suggested by Cordy, Badger

for diatomic halides, deuteroids and other molecules. New

expressions for force constants have been suggested and the

force constants are computed by employing these proposed

relations. The values of force constants are compared with the
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experimental data. It is observed that our expressions yielded
in giving better values of force constant than those of Gordy

and Badger. Similarly, anharmonicity constant wexe and zero

point mean square amplitude <(r-re)>‘are computed by employing
our proposed relations for force constant. The results are
ta—l.l;ulé;:;d'“along with experimental values and we found that
the constants w ?(e and,<(r-re)> obtained by using our relations
are in better agreement with the experimental values. Further, '
in the same Chapter, we have calculated band order using

the concept of ._covalence force for a number of diatomic

molecules. These values of bond order are used to obtain
force constants and zero point mean squareamplitudes by

using proposed relations.

In Chapter-1l1l, we have carried out a work on
potential energy functions. An outline of basic theory leading
to the formation of potential energy curve is given and the

importance of these curves in the determination of potential

2nergy curve js explained. Rapid method to construct potential
energy curve from RKRV data is discussed at length and this
method is applied for the determination of classical turning
points of electronic states of different diatomics. We also
have proposed new functional formulae for diatomic molecular
potential. Using these expressions, we have obtained classical

turning points for B and X states of XeF, A2A5/2' BzA5/2 and
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X2A states of PtH and PtD, X2I and A2l states of YbF,

5/2 3/2
A and X states of HoF, X states of SiTe, X state of LuF and
A3II0, B~"T[1 and X'I’ states of InBr. The classical turning points
are determined employing Lakshman and Rao method for the B and

X states of XeF and A?A B2A XM5 states of PtH and PtD.

5/2* 5/2° /2
The results are then compared with those obtained by following

RKRV procedure.

In Chapter-lV, we have reported our results on
Franck-Condon Factors and r-centroids in the case of certain
diatomics. The Franck-Condon factors are determined using Bates
Method, Manneback Method and Fraser-Jarmain Method for the
X

band systems A'I-X'Z and B'Z-X'Z" of CuF, E2A of CuO,

~x21

5/272""1/2
A2Z-X0L. of CuSe, A-X of CuTe, A2[-X2I of AlSe, d':"-C'I" and
d'I¥p's" of NH, d'IZ'~c'l of ND and A'I-X'E® of PN, A3H0-X‘X+

and B3H1—X'Z+ of InBr molecules.

The r-centroids are determined by Nicholls-Jarmain
technique for band systems A'S-X'EY of CuF, A22§+--X2Hi of CuSe,
A-X of CuTe, A2ll-X2I of AlSe, B-X of XeF, A3II0-X'Z+ and B3H1—
X'L" of InBr. The r-centroids are also computed by using
functional relation for B-X system of XeF, :9».3110-X'2+ and B3II1-
x'z* system of InBr. It is found that the proposed functional
relation of potential energy function yielded in giving beter data

on r-centroids.
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Fig.11 — THE GENERAL SHAPEOF POTENTIAL
-~ <« ENERGY CURVE .

8AFR. BALATAHEB KHARDEXAR LIBRAKY
SHIVAJI UBIVERSITY, KOLHAPUS



Fig.1-2 - THE CONVENTIONAL FORM OF THE POTENTIAL
ENERGY CURVE.



L

Fig.1-:3- Potential curve with one maximum lying

above dissociation limit.
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Fig. 1-4 — Maximum lies below dissociation limit.



