CHAPTER - II

PREPARATION OF THE SAMPLES AND X-RAY DIFFRACTION STUDY

.

.

<u>CHAPTER-II</u>

PREPARATION OF THE SAMPLES AND X-RAY DIFFRACTION STUDY

<u>Part - I : Preparation of the samples.</u>

2.1 Introduction :

method of preparation and optical properties were The by Sorum (1943) for sodium vanadate $(NaVO_{7})$. confirmed Similarly, Glayzyrin et al (1964) reported the method of preparation and optical properties of sodium pyrovanadate (Na₃VO₄) besides sodium $(Na_4V_2O_7)$, sodium orthovanadate and also classified sodium vanadate under the vanadate monoclinic system. Feigelson et al (1972) has given crystal growth and structural properties of Lithium Vanadate, Sodium Vanadate and Potassium Vanadate. Preparation method and the crystal chemistry of the $M^+VO_x(M^+ = Li, Na, K, NH_x, Ti, Rb and Cs)$ were reported by Hawthorne et al (1977). Structural aspects and growth of NaVO₃ was given by Ramani et al (1975); Shaikh et al (1978) and Seetharaman et al (1983).

The addition of Gd_2O_3 to KVO_3 and $LiVO_3$ showed no change in the curie temperature, was reported by Lapluye et al (1960), Yamaji et al (1977) and Issa et al (1984). Kuroda and Kubota (1980) studied the diffuse phase transition of ($Ba_X - Sr_{i-X})Nb_2O_6$ doped with praseodymium (Pr^{3+}) and Neodymium (Nd^{3+}) by measuring the spontaneous polarization and dielectric constant. The temperature dependence of dielectric constant and loss tangent values for $BaTiO_z$ ceramic with varying concentrations of Nd and Mn was reported by Murugaraj and Kutty (1985).

2.2 Preparation of Sodium Vanadate :

We have prepared polycrystalline solid of sodium vanadate (NaVO₃) from a stoichiometric mixtiure of sodium carbonate (Na₂CO₃) and vanadium pentoxide (V_2O_5) by the method similar to that described by Hawthorne et al (1977). The carbonate used was of purity 99.9% from Glaxo Laboratories, India and Vanadium pentoxide of purity greater than 99% from Fluka AG, Switzerland. Sodium carbonate was preheated at $300^{\circ}C$ for 4 hr before weighing to remove moisture.

For the preparation of sodium vanadate, the stoichiometric mixture of preheated sodium carbonate (5.298 gm) and vanadium pentoxide (9.094 gm) was heated slowly in a platinum crucible inside a globar furnace and fired at temperature about 750° C for 4 hr. The cooled melt was of sodium vanadate, obtained by the following chemical reaction.

 $Na_2CO_3 + V_2O_5 \longrightarrow 2 NaVO_3 + CO_2^{\uparrow}$

From this, carbon dioxide escaped to the surrounding and sodium vanadate was obtained by the above chemical reaction.

2.3 <u>Preparation of Ferroelectric Sodium Vanadate Doped with</u> <u>Neodymium Oxide</u>:

The mixture of sodium vanadate and Neodymium Oxide was prepared by firing in the platinum crucible, inside a globar furnace, at temperature 950°C for 5 hr and then cooled to room temperature.

2.3 (a) <u>Preparation of</u> $(NaVO_{399.975} - Nd_{2}O_{30.025})$:

For this preparation, 8.132 gm of sodium vanadate was thoroughly mixed with 0.006 gm of Neodymium Oxide, slowly heated in a platinum crucible inside a globar furnace and fired at 950°C for 5 hr. The mixture was finally cooled to room temperature which gives homogeneous doping mixture of sodium vanadate with Neodymium Oxide.

2.3 (b) <u>Preparation of</u> $(NaVO_{399.950} - Nd_2O_{30.05})$:

In order to prepare this mixture, 8.129 gm of sodium vanadate and 0.011 gm of Neodymium Oxide was slowly heated in a platinum crucible and fired at 950°C for 5 hr.

2.3 (c) <u>Preparation of</u> $(NaVO_{399.9} - Nd_2O_{30.1})$:

For the preparation of this mixture, 8.125 gm of sodium vanadate and 0.022 gm of Neodymium Oxide was heated in a

platinum crucible and fired at 950°C for 5 hr inside a globar furnace.

2.3 (d) <u>Preparation of</u> $(NaVO_{399.5} - Nd_2O_{30.5})$:

For this preparation, a mixture of $8.012 \text{ gm of } \text{NaVO}_3$ and 0.111 gm of Neodymium Oxide was heated in a platinum crucible and fired at temperature 950°C for 5 hr and then cooled. 2.3 (e) <u>Preparation of (NaVO_{399.0} - Nd₂O_{31.0})</u>:

In order to prepare this mixture, 7.971 gm of sodium vanadate and 0.222 gm of Neodymium Oxide was slowly heated in a platinum crucible and fired at 950°C for 5 hr.

2.4 Fabrication of the pellet of the samples :

All samples, under consideration, are ground to pass a 120 mesh sieve and are pressed by applying five tonnes pressure, using hydraulic press, to form pellets of diameter and thickness about 1 mm without using binder. 1 cmThe pellets of sodium vanadate, were sintered on a platinum foil at about 450°C for 3 hr while that of doping mixtures were sintered at about 500°C for 3 hr. The two sides of these sintered pellets were coated with a thin layer of air-drying silver paste to form the full face electrodes for good electrical contact. These pellets were then used for experimental investigations.

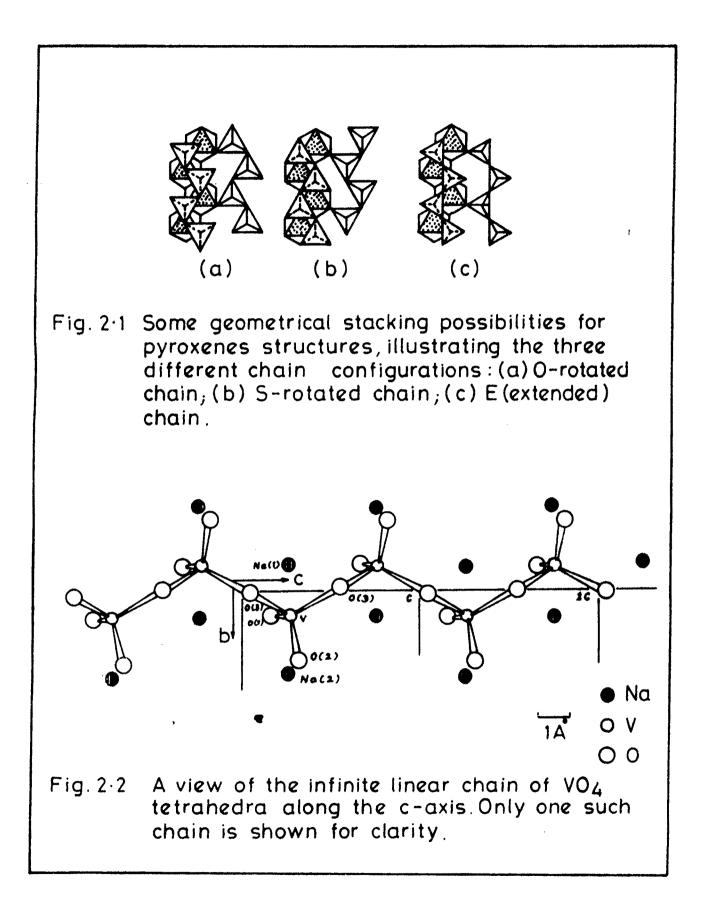
The properties of the ceramic materials depend upon the

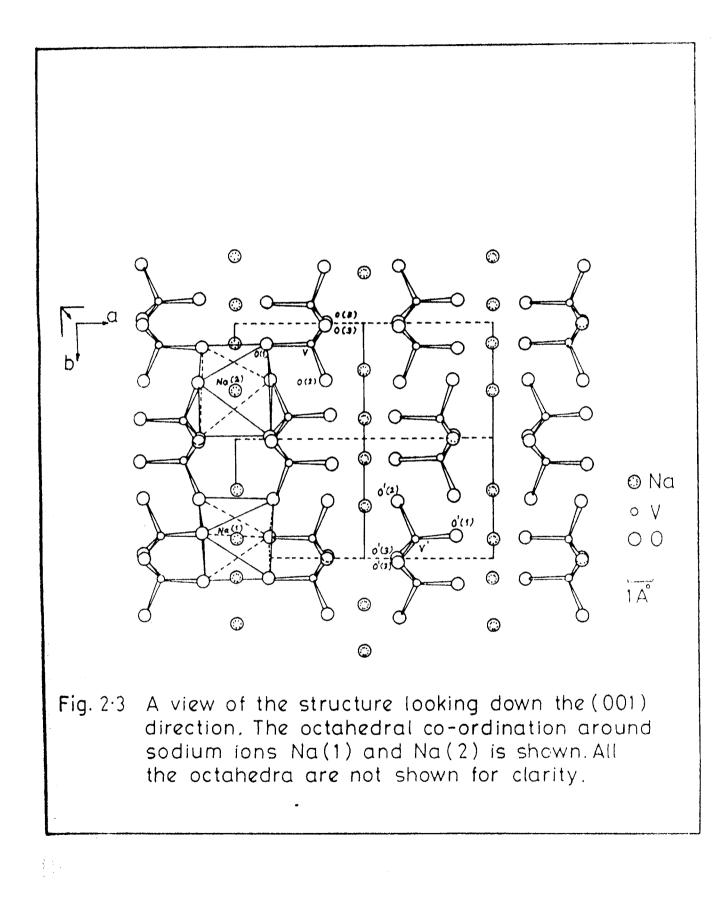
grain size and actual pellet densities of the samples. The pellet densities of the samples were determined and are summarized in Table (2.1).

Sample	Density gm/cm ³
Navoz	2.78
$(NaVO_{399.975} - Nd_{2}O_{3}O.025)$	2.61
$(NaVO_{3}99.950 - Nd_2O_{3}O.05)$	2.65
$(NaVO_{3}99.900 - Nd_2O_{3}0.1)$	2.69
$(NaVO_{399.500} - Nd_{2}O_{30.5})$	2.75
$(NaVO_{399.000} - Nd_2O_{31.0})$	2.68

Table 2.1 : Pellet densities of the samples.

Part II : X-Ray diffraction study.

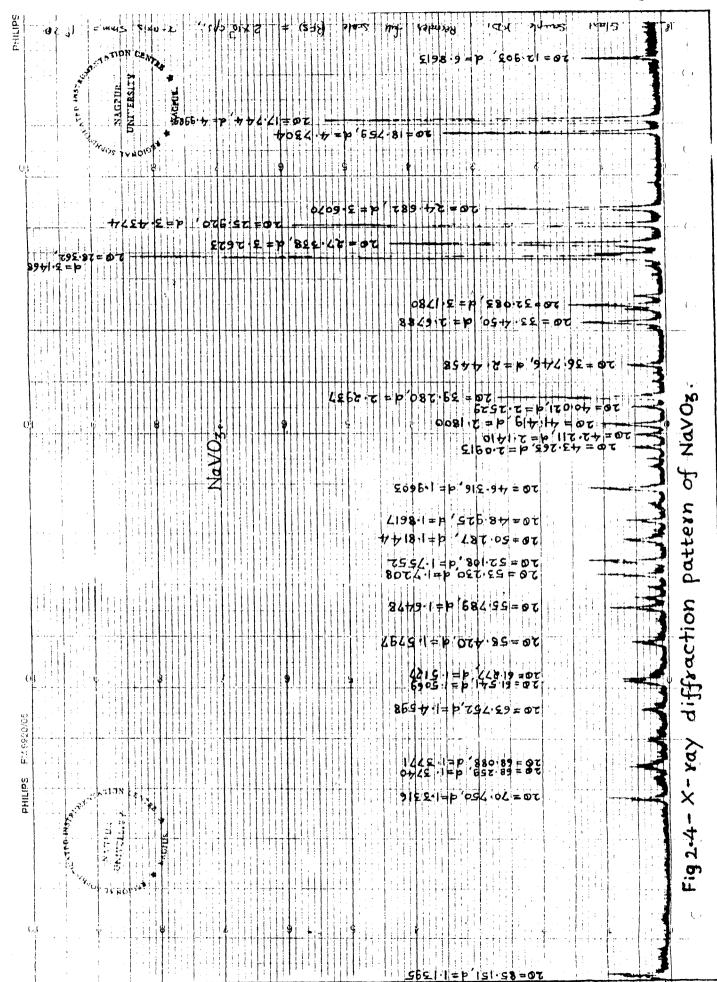

2.5 Structural Characteristics :


Feigelson et al (1972) reported the structural characteristics of alkali metal metavanadates, in which they have shown that sodium vanadate belongs to the monoclinic system and its space group could be C_c as well as C_2/c . Chain configuration occurs in alkali metal metavanadate structures. Sodium vanadate has an 0 - rotated chain. For pyroxene structure, 0 - rotated chain configuration is shown in fig 2.1. Recently, the structure of sodium vanadate has been confirmed by Marumo et al (1974). Ramani et al (1975) reported that NaVO₃ belongs to monoclinic system with space group C_c in the room temperature ferroelectric phase while the space group in the high temperature paraelectric phase is Sodium vanadate belongs to the pyroxene family and has C_{\star}/c . infinite linear VO_z chains formed by VO₄ tetrahedra sharing two corners with the others, these chains are held together by A typical form of such a chain along the C-axis sodium ions. is shown in fig. 2.2. The crystal structure may be viewed as consisting of alternate channels of sodium polyhedra and linear chains of VO_{π} ions in fig.2.3. Each sodium ion is surrounded by six oxygens forming an octahedral co-ordination. The co-ordination polyhedron around the sodium atom is nearly Raman spectroscopic studies on sodium a regular octahedron. vanadate Seetharaman et al (1983)confirmed the by C_c ferroelectric space group in the room temperature phase.

Ng et al (1978,1979) reported that $(Na_X - K_{i-X})VO_2$ and $(Na_X - Li_{i-X})VO_2$ are having the same structure as that of Lithium vanadate and sodium vanadate.

2.6 <u>X-ray diffraction studies</u> :

X-ray diffraction is tool to study solid structure and therefore, we have used the same, to confirm the formation of the samples. In the present study an attempt has been made to determine the lattice parameters of undoped sodium vanadate and doped with different concentrations of Neodymium Oxide



(0.025 to 1 mol%). Powder diffraction patterns of these samples are shown in figs.2.4 to 2.9 respectively. In these <u>Table 2.2</u> : <u>Lattice Parameters of Different Samples</u> :

Sample	Present Work	Earlier Results						
	Present work	Ramani et al (1975)	Sorum (1943)	Feigelson et al (1972)				
		10.494	10.14	10.530				
NaVO ₃	$b(A^{\circ}) = 9.461$	9.434	9.45	9.465				
	$c(A^0) = 5.865$	5.863	5.86	5.864				
	$a(A^{o}) = 10.319$							
$\left[NaVO_{3}99.975^{-Nd_{2}O_{3}}0.02\right]$	$b(A^{\circ}) = 9.461$ $c(A^{\circ}) = 5.881$							
	$a(A^{o}) = 10.615$							
$[NaVO_{399.950}^{-Nd_2O_3}0.0]$	$5 \left[b(A^{\circ}) = 9.458 \\ c(A^{\circ}) = 6.023 \right]$							
	a(A°)=10.301							
$[NaVO_{399.9}^{Nd_2O_3}0.1]$	$b(A^{\circ}) = 9.463$ $c(A^{\circ}) = 5.864$							
	$a(A^{o}) = 10.316$							
$\left[\operatorname{NaVO}_{299.5}^{\operatorname{Nd}_{2}O_{3}}_{0.5}\right]$	$b(A^{\circ}) = 9.468$ $c(A^{\circ}) = 5.871$							
	$a(A^{0}) = 10.287$							
$\left[\operatorname{NaVO}_{399}^{\operatorname{Nd}_2O_3}\right]$	$b(A^{\circ}) = 9.461$ $c(A^{\circ}) = 5.785$							

patterns, 'd' values of prominent lines for different samples are shown. The results obtained from the analysis of these patterns are summarized in table 2.2 along with the data

				- s 42 : 0	×2 =	للا ك	rie koz-	mut	ireis	
			7.2 98:9 =1	9 '668·	7(=97					
										2
7000-5 =1	824.4	=07	6L-7L-17 = P	594	81=07					FO-PN
										~
OL	8		9 5609 9 7 7	999.4	18=07					mol.
84711 252.5	982t	71\$2≠1¢ 111 75	6.58=00 97.5=005	£.20-	97			┇┿ ┇ ╞╘╅╌ ╕┯╷╷╷╷		
		ма % N <mark>d2O</mark> 3	8884·2 =7 7649·6 =7	560 -	30=23 50=23					
		10. %	9+++++==	p'+++2	92=07				, , , , , , , , , , , , , , , , , , ,	L N
		-025 1	tx tx 62 - F =	P 1997	65 = 97				· · · · · · · · · · · · · · · · · · ·	
		•	++++21-2=	221 q	14 = 07 47 = 07					ALUVIAN AF NAVA + 0.025 mbl %
	8	NhuVQ.						ý .		
			8656 (1= 777 16 (1=1 8198 (1=1		977 = 07 17 = 07 87 = 07					
				a' 5+/5	87 = 97 95 = 97					
Sent and a second secon			1552.1=		59 = 07 19 = 07					2
			1.# 7791 =1		5=07					5
			5625.17		85=02					
			211911=	10 1-1-2	19=96					
			Ψ		199=07					
			411+1=	T VU						3

•

			5U> - 91X 5	= 5=8	Cample K.D.	rras To
		6 \$ 778)9=p	526-17-825			
		5256.47 = P 5 2 2 4 4 = P				A MACH
		6722.47 =P	(64:8) ≍ 0° ℃			6
14		£2\$9.£=P \$709.£=P	10=17+1322			
955#	£. ¹ 212 ^{−+} 6 1 9−6−51 γ ₁ 12 ^{−1}	5 = 97 8255:5 = 10 8771:5 = 19	242 47 = 97 562 87 = 97			
	NaVO ₃ + 0.05 Mol % Nd2O3	7282.2=P 6829.2=P				
	VOI 2	15+++ 7=P	452.95 = 07			
	0 0 1 1	6162.2=P	115- 55 = 0T 3114-147 = 0T			++++
	NaV(9=3*1805 9=7:)282	'\$#T`T# = OT			
			1295.97=07 +++6.8+7=07			
1 1 1 1 1		0198.1=P 7908.1=P	785.09=02			
			171.25 = 07 752:25 = 07			
		5825 1 = P	102-17-89 = 07			
		4015 ·1 =P	186-19=07			
			++/1 89=07			

						• • •	ν φι	× 7	÷ \$	8	47	с х	plus.	\$	1001.5		P1
					89-172	.9 =	p 'a	£6·7	I = 0T						-		-10
																1	
2765.	43P 29.	-*[C.V.740		5174	,*/ =	p '9	5 L · *	=02	-	•						1 1 1 1
	Acres 6	1	VCPCI														
					DID	9·2 =	P 't7	てム・カ	רפ = סז				· · · · · ·				
172-	by∙s_=p '	n de service Andreachailte	16	5215	= '	92.	42-	97	· · · · · ·		• • . + · 1 • + - .	• • • • •		4.4.4.4			2
	524	·5 = P	6.203														
	·····		o SO		991	2.5	=} p`t4	121.2		1 1 1					· · · · ·		S
			Na		9++++		1 7	94.9	£ = 01	6							
			101		7267			5165	÷97			÷	+				C.
		1 1 1 1	+ 0.1 MOL & Nd203		104/1	4 Å Å) '75 62	+7 · 1+7 5 · 5 +7	- 01 - 07 - 07								
		• •	4 5						- 07				· · · · ·				
			NaVO3		+765E	-		55.9-	┝╋┲┽╍								F.
1					209 250	8•1 = 3•1 =	t to	96 8 90 9	7=0 ;=0								Unulul U
					9-75 79	411 = 411 =	þ '6	21.2	13 Ø1 = 01	6					·		-5
					544				ç ≠ Ø								3
			6		984	\$·1=	'p 's	947 8	5=0	C -				1			
					10	15.1	≠ • ' '	(6£·I	9=0	2							And which which
																	3
						22.1			9=0								5

			C (7144) S 1422-5 01
		6·21 = 92	Nd2O3
8766.47 = 12 - 85	421=97 1972 7 = P´082		86
75E7.E=P	* + E E + → Z = 0,C + + + + + + = 0,C + + + + + + + + + + + + + + + + + + +		o 2 mol
\$571 \$ = p '922 8z = 07			NaVo 3 +
	000 K 2984 E = p 51 2929 F = p 55 294 E = p 55		5
		Z•6E=02	pattern
	536, d = 2,1397 Na VO A A A E 2,1397 Na VO Na VA E 2,1360	5.9 + + 07	
	419811=P +725811=P 	16-8+7 = 07 4:6+7 ≢ 07	ff xaction
	5699.1=p'zo 5449.1=P 88	1:75=07 5:15=07 0:55=07 4:55=07	say di
G1 8	<u>,</u> 984⊴•1≠ 7 ′59	\$ 17 • 85 = 07 27 £ • 19 = 02	- XX
			Eig 28
		0.89=02	

•

		*7566:+= 5172:+>=	-7848 (9 = 4 P [952:41: P 1754:81 = EE\$9:2 =P	0T 0T 0T	570 :	CX	mol % Nd203.
	8t7+7[· S	£092.£ £ ≠P '08£.82	= p 152.22 = p 2 9094 t = 1 +829 t = 1 +820	P - CSI+ ES 2 9 5 7 5 5 1 7 9 + 7 5 - 1 7 9 + 7 5 - 2 9 5 7 6 5 P - 9 6 7 6 5	50∓ 507 ±07		pattern of Nav03+1
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		NaV03+1 M	656 = 188 ∓ 98 08 = 9524 = 8074 =	2 682 87 2 097 05 4 097 05 4 097 05 4 097 05			diffraction
			6472.1 = 7625.1 = 5015.1 = 0517.1 = 9925.1 =	# +7£+7•8\$ P ¹ 74£•19			Eig 2.9 - X- Xax

reported by earlier workers.

The lattice parameters were calculated by using indexing reported by Feigelson et al (1972) for sodium and potassium vanadate as shown in table 2.2. The table 2.2 shows the values of the lattice parameters of undoped NaVO₂ are found to agree with the results of the earlier workers. Also, the values of the lattice parameters of NaVO₃ doped with different percentage of Nd₂O₃ (0.025 to 1 mol%) are nearly similar to the results of the undoped NaVO₃.

REFERENCES

Feigelson R.S. (1972), J.Crystal Growth, 13/14, 686. Martin G.W. and Johnson B.C. Glazyrin M.P. and (1964), Sov. Phys. Crystalloger, 9, 226. Fotiev A.A. Glazyrin M.P. (1965), Kristallografiya, 10, 761. Glazyrin M.P. and (1968), Russ. J. Phys. Chem. 42, 1288. Fotiev A.A. Hawthorne F.C. and (1977), J.Solid State Chem. 22, 157. Calvo C. Issa M.A. (1984), J. Phys. D17, 571. Molokhia N.M. and Nasser S.A. Kuroda and (1980), J. Phys. Chem. 42, 573. Kubota Lapluye G. (1960), C.R.Acad Sci. Paris, 250, 305. Morinet G. and Palla P. Marumo F. (1974), Acta Crystalloger, B30, 1628. Isobe M. and Iwai S. (1985), Mat.Res.Bull. 20, 1473. Murugaraj P. and Kutty T.R.N. Ng H N, Idler K.L. (1978), J.Solid State Chem. (USA), 25, and Calvo C. No.3, 285. (1979), J.Solid State Chem. 27, 357. Ng H N, Calvo C. and Idler K.L. (1975), Ferroelectrics, 9, 49. Ramani K. Shaikh A.M. Swaminatha Reddy B. and Viswamitra M.A. (1983), J.Raman Spectroscopy, 14, No.6, Seetharaman S. Bhat H.L. and 401. Narayanan M.A.

Sorum H.

(1943), Kgl. Norske. Videnskab. Selskabs, Forth; 16, 39.

Yamaji A. Enomoto Y. Kinoshita K. and Murakami T.

-

(1977), J.Ame.Ceram.Soc. 60, 97.