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CHAPTER III

PHOTOLUMINESCuNCE

3.1 INTRODUCTION

The study of phospho:éscence decay provides information
about nature of trapping states, energy levels of luminescent
material and the type of kinetics involved in the luminescence
process. The aim of present investigation is analysis of
observations made on CaS:Mn:Sm phosphors at room temperature

(300%k) so as to get information about following aspects :

1) Nature of decay law
2) Energy distribution of trap levels
3) Kinetics involved in decay mechanism

4) The effect of activators on decay behaviour.

3.2 THEORETICAL BACKGROUND

An important step in the theory of phosphorescence was that
made by Jablonskii (1) in 1935 for the decay of emission from
organic molecules in rigid media. He proposed an energy level
scheme for emitting center as shown in fig. 1.4, The fluorescence
is given by the transitions between the excited state F and the
ground state G, but excited molecules or centers may relax to the
metastable state M, transitions M <« G being forbidden. To return
to ground state the transition M—r F must be effected by thermal
or optical activation. Thus phosphorescence emission due to F— G
is conditioned in rate by optical process M—> P, If the energy
required for the latter is E, then the probability per secand
that it occures is given by |

P = s exp.(-E/KT) .o (3.1)
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where T is the absolute temperature of the phosphor, S is the escape

frequency factor and E is the electron trap depth.

In general, a phosphor contains more than a single trap and
phosphorescence is known to be a cumulative effect of traps of
different depths. Its intensity is dependent on the rate of escape
of electrons from traps. The retrapping of electrons in traps also

affects the behaviour of phosphorescence.

Dggax lAws :

The phosphorescence decay may be either exponential or
hyperbolic (2) depending upon the type of kinetics involved in

the luminescence process.

1) Exponential degay

In this, as the name suggest, the emission intensity
diminishes exponentially with time. The finite delay in emission
of absorbed energy is due to life time of the excited state of
the emitting atom, ion or molecule. If p is the transition proba-
bility for return of the center to the ground state and n centers
are excited at any instant, then

dn . J -pn oo (3.2)

dt
where J is the number of excited centers per second by the incident
radiation. The transition probabidity p., d3ccording to Randall and
Wilkins (3) is given by eq®(3.1); viz. p = 3 exp.(-E/KT).

The decay of luminescence is given by equation (3.2) with
J=0. The equation (3.2) then becomes -
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On integration we get =~

n = no exp.{(-pt) ee (3.3)
where no is the number of excited electrons at t=o, the time when
excitation ceases,

The luminescence intensity is given by

I = ’g%- - (- pn)

= p no exp. (-pt)
e I = Io €XDs (‘pt’ e (304)
where Io is the intensity at t =oandp=1/y , 1 |Dbeing

the life time of excited state.

The equation (3.4) shows that decay is exponential and
the rate of decay depends only upon the transition probability p.
The exponential decay occures, when the kinetics of luminescence
process is of the first order, i.e. when electron traps are situa-
ted quite close to the luminescence centers. The ejuation (3.4)
is useful in evaluating the trap depth.

B) Hyperbolic decay

This type of decay results when luminescence process is
of the second order, i.e. when electron traps are located away

from luminescence centers.

let there be n impurity centers with which only n number
of electrons combine at a time. If p is the probability with which
an electron combines with any of the centers in time dt, then

P ® A ndt oo (3.5)
where A is a constant known as recombination coefficient. If
all the electrons return to the ground state at the centers
through the conduction band with the above said probability p,
then the rate of decay will be ,
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dJ - 2 L 2 L
at - An (3.6)

On integration

n = Do o (3.7)
1 + no At

and the luminescence il_:tensity is given by

‘I. -

o
E

(1 + ngy av)?

I - .o (3.8)
(1 + 4¢)?

where = ng5 A is another congtant.
For large values of t ( t > > 1) the equation (3.8) can

be written as
I = T e (3-9)

Treating more gmex generally in the light of different capture
cross sections for electrons empty centers and traps, Adirowitch
(4, 5) arrived at an appraximate Becquerel type relation of the
form

1 = _constant ee (3.10)
(t +to)P

where b depends on the ratio of capture cross-section of traps
and empty eenters. However, this equation fails in cases where

well seperated groups of traps exist.

3.2.2 Bffect of steady excitation of a8 phosphor on the filling of
elsctron traps :

Iuminescence intensity of a phosphor reaches to a constant

value if it is excited at fix temperature by steady excitation
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soﬁme. This state of phosphor is called equilibrium state,

and in this condition the concentration of filled electran
traps is in equilibrium. Depending on the relative location and
distribution of traps the following cases arises.

A) When traps are located close to the luminescence centers
(Pirst order kinetics) :

let J be the intensity of excitation. Then the rate of
electron raising to the excited state is proportional to J, and
is given by CJ, where C is constant of proportionality. If there
are n number of electrons in the N traps, then the rate of
capture of excited electrons in traps is CJa (N - n), a being
the probability of capture per trap. The rate of escape of ele-
ctrons from traps is given by ns exp. (-E/KT). Under equilibrium
condition, the rate of capture of excited electrons in traps

and rate of electrons escaping from traps will be equal, and: thus

cJa(N - n) = ns exp. (-B/KT) ee (3.11)

from which we get

n = _g oe (30 12)
1 + s exp. ('K/M)
A
where A = CaJ is a factor directly proportional to the intensity

of excieation.

B) When traps are located away from the luminescence centers
(Second order kinetics) :

Iat n be the number of trapped electrons and m the number
of these in conduction band. The (m+n) is the number of empty
luminescence centers and rate of electraons returing from the

conduction band is given by,
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92 =0=0cCJ-p mimm) +ns exp. (-E/Kt) = mb (H-m) .. (3.13)

and the rate of electrons returning from the conduction band is
given by ,

% = 0 = ns exp. (-E/Kr) - mb (N-n) .o (3.14)
where B and b are constants and CJ is the rate of electrons

raising to the excited state.

If the excitation is not of an appreciably low intensity,
the nunber of electrons in the conduction band is much greater
than the number of trapped ones and thus (m+n) # n.

Hence P mz = CJ PP (3015)
and therefore,
n = N ee (3.16)
1 + s _exp. g-xgxrz
B

where B = b \/ CJ/B and thus is proportional to the square reoot
of the excitation intensity.

C) When the traps exist with complex distribution
If the form of specific distribution of traps is known,
the derivations of equations (3.12) and (3.16) can be extended
further to over complex trap distribution. In most practical
cases, the number of traps N of different trap depths does not
vary rapidly with E over most of the range of E values. Thus {if
N is assumed constant or slowly varying, the total number of filled
traps from a given excitation intensity can be obtained. lLet this

number be nT . then in most cases

oy = 7““ n A& .o (3.17)

0
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Using the equation (3.12) we obtain

B N ,
nT = ( ) e \3018)
' ? s exp. (~E/KT
0 1+ A
For all practical excitation intensities A < s and thus
equdtion (3.18) yields on integration

n, = NKT log (A* +1) ee (3.19)
where A' = AQ']' exp. (-Emax/KT) is proportional to the excitation

intens ity.

At high excitation intensities when A* > 1, the number of
filled traps will be a linear function of logarithm of the
excitation intensities provided that A £ s. When A approaches
8,3 saturation state will be reached. A similar logarithmic
relation can be obtained by using equation (3.16) which includes

consideration of retrapping.

Phosphorescenge decay for different trap distributions
(Considering retrapping negligible)

In general a phosphor contains traps of various depths. If
there are N number of traps with activation energies lying between
E and E + dE then assuming retrapping to be negligible, the phos-
phorescence intensity I at time t after cessation of excitation is

giw}en as follows :

Emax
I= am{ Ns exp.(-E/KT) exp. [ =st exp.(-E/KT)] dE ..(3.20)

- N Emax _.
exp. (s.t) BM_{ exp. (-E/KT) exp. [ exp. (-&/kT)] aB ..:(3.21)

Considering N to be constant over an energy range of O to infinity
the following three cases of interest arises according to the
distribution considered.



A) Wniform trap distribution

If a phosphor contains an equal number of traps of all
depths in the range of energy from sero to infinity then the
distribution of traps is said to be uniform. Then integration

of equation (3.,21) gives

1= EF (1 -exp.(-st) .o (3.22)

If st > 1, then

I = 3XI ee (3.23)
t
= NKT t'l
= constant t:""l ee (3.24)

Thus the phosphorescence intensity (I) is inversely proportionmal
to decay time (t) and a plot of I versus t'l should be a straight
line. Moreover plot of logl against logt should be a straigh line
with a slope equal to -1

B) Quasi-Uniform trap distribution
The phosphors having number of traps N, which do not vary

too rapidly with values of E in a complete distribution are said
to possess quasi uniform trap distribution. Here the intensity of
phosphorescence decay at any time t is proportional to the number
of electrons in traps of mean life time T given by

T = s’lexp. (E/KT) . From equation (3.23) the product I'tis found
to be proportional to E. Thus a plot of the praduct I.t against
log t for a given phosphorescence decay will represent the varia-
tion of N with t and gives an approximate idea of the trap distri-

bution.
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C) Exponential trap distribution

If we have N « expe (-BE) as is found in some experimental

cases, then for st >7 1, we hawve
-(pKT + 1) .. (3.25)

i.e. power of t varies linearly with the phosphor tempersture,

I = constant ¢

the constant B (always positive) can be found experimentally and
approximately from the shape of the thermoluminescence curve(3).

When BKT = 1, the equation (3.25) is correlated with the
bimolecular law and when BKT = 0, the case becomes of uniform
trap distribution. i.e. reciprocal law holds good. Many
phosphors, at room temperature, shows the decay of the type
given by equation (3.25). With any trap distribution covering
a wide range, the decay is influsnced slightly by variation
of tenmperature because, with rising temperature deeper traps
supply electrons at the same rate at which shallow traps supply
electrons at alower temperature. At constant tempersture,
on the other hand, at the time t most of the light emission
by aphophor with continuous trap distribution is due to traps
in which the electrons will have the mean life time T = ¢t.

3.2¢4 Re f e T hasphoresce 3

It is obvious that the escaping electrons from traps will
always have a finite probability of being trapped before recom-
bination with luminescence centres. The process of retrapping

causes marked changes in phosphorescence characteristics (6)

Garlick (7), considering the effect of retrapping in
monomo lecular case obtained an expression for the intensity

and is
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- ngzs exp. (-E/KT)

u(1+—§2- St exp. (=B /KT )? s (3.26)

Where N is the total number of traps and no is the number of
empty centrs or filled traps initially. The equation can be
further simplified considering the case no = N i.e., traps

are saturated at the commencement of decay. This result in

N 3 exp. (-E/KT) e (3.27)
(1 + st exp. (=B/xT) ]2
At long decay times (t >> 1) the equation (3.26) takes

I =

the form

I Nexpo (-E/KT) se (3.28)
Stz

Thus for the traps of one depth only, retrapping process causes
a fundamental change in the form of decay from exponential to
hyperbolic (8). A more general treatment of phosphorescence
due to traps when retrapping occures has recently been given
by XKXlasens and Wise (3)

3.3 RESULTS AND DISCUSSION 3
3.3.1 Decay curves 3

Figures 3.1 to 3.3 show some typical decay curves obtained
for various samples with different concentrations of Mn and
Sm. Initially intens ity decreases very fast and then decreases
slowly. The nature of the decay curves appears to be of the
same general nature as reported for alkaline earth sulphide

phosphors (10-14).,

The first step in analysis of decay curves is to decide the

mode of decay i.e. exponential, hyperbolic or power law decay.
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To examine the possibility of simple exponential decay with
single trap depth as given by equation (3.4) graphs of log I
versus t are plotted. The plots are found to be non linear,
indicating that decay is not exponential. However plots of
log I versus log t are almost linear. Typical plots are shown
in £fig 3.4 to 3.8. This suggests that decay m3y be hyperbolic
or power law. Thus the observed decay can be represented by

the equation

I = Io¢tP . 13.29)

Where I is the intensity at any time t, Io is the intensity
at the start of decay and b is the decay constant.

Co lation fficient 3

The degree of linearity between log I and log t is
confirmed by evaluating the correlation coefficient (r)

us ing the equation

Nixy = _x Y

- ee (3.30)
[~ zxz- (Zx)zj}5 [NZyz-(ry)zj g

. K

Where x = log tand y = log I and N is number of observations.
The magnitude of r signifies the closeness of the relationship
while its sign indicates whether y increases or decreases

with x. When the relation is linear, the value of r equals

unity.

In the present study, the values of r for all samples
are calculated (Table 3.1). The value of r for all samples

is nearly equal to -1l. This indicates that relation between
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log I and log t is close to linear. The negative sign of r

indicates that intens ity decreases with time,

3.3.3 Decay Constant

The value of decay constant is a indicative of decay
rate. PFaster the decay, higher is the value of decay
constant (b) and vice versa, It also provides the information

about the relative population of traps at various depths.

The value of decay constant is calculated by the

formula of least squares (15) using the relation

ees  (3.31)

N ¥ xy =32 x 3 ¥
N sz - (ix)z

Where x = logtand y = log I + N is the number of
observations. The values of b calculated by using above
equation (3.31) are shown in table 3,1. Values of b obtained
from the xxmpx slopes of log I - lLog t plots are 3lso given in
the same table. It seems that the values of b calculated by
us ing equation (3.31) and that from graph are in good

agreement with each other.

36304 variation of decay constant with activator concentration :

The variation of decay constant with activator concent~
ration is shown in fig 3.9. Erom this figure is shown that
value of decay constant. is almost constant and is not found
to vary much with concentration. This indicates that
activators probably do not create new traps but modify the
relative importance of traps contributing to the phosphorescence

decay. - This observation is supported by TiL studies (Chapter 1IV).
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‘Pee ling off' of deca urves

In the present investigation the decay can be represented
by the equation I = Io t®, Por hyperbolic decay b should
be equal to 2 and for power law decay b should be equal
to 1 for t >>1l. The value of b is neither 2 nor 1 but
it is nearly equal to l. This excludes the possibility of
hyperbolic decay and power law decay resulting from traps of
single depth. However the observed power law decay can be
explained on the basis of monomolecular superposition theory
suggested by Randall and Wilkins (3) and followed by other
workers ( 14, 16, 17, 18). Such a decay results due to
superposition of various exponentials corresponding to different

traps and is expressed by the eqdation

I= IotP

-~ + Ion exp. (-pnt) s e \3- 32)

Ahere Io Io

1° 5 === Ion are the starting contribu tions to
luminescence intensity by first, second,---,nth exponential
component and p, = S exp (-E1/KT), p, =Sexp (-E2/KT), ==---,
Pn = 3 exp { -an/K7) are the transition probabilities of an
electron escaping from traps of depth El, E2, ==--- &n

respective ly.

It 1s possible then to split eacn decay curve into a
set of exponentials by the method suggested by Bube (19)
and followed by others (14, 16, 18). In the present
investigation all the decay curves were split in to three

exponentials, (fig 3.11 to 3,15). The activation energies
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corresponding to these exponentials are calculated by using the
s lopes Pies Pye P3 of straight line on sema log plot between 1
and t. The valwes of E thus evaluated for slowest, middle and
fastest exponentials are shown in tabke 3.2. The value of 3
used in above calculations is taken from the thermoluminescence

studies carried on same samples.

Effect of dsexx activator concentragion on trap depths:

From table 3.2 it may be seen that there is no significant
change in trap depth with activator concentration. This
suggestes that the activators do not introduce any new traps.
The relatively small and unsystematic variation observed in
different samples miy be due to perturbation of trapping
states (20, 21). The conclusion is consistant with that

drawn from variation of b with activator concentration.

Distribution of traps :

———

The distribution of traps may be uniform, quisi uniform
or exponential (22). For uniform trap distribution over a
wide range, the relation between phosphorescence intensity

I and time t for st >yl is given by

I= o ¢} eee (3.33)

This relation is similar to I = o t"b. Thus for uniform

b
trap distribution over a wide range({should be unity. In
the present investigation the observed values of b are close
to unity (table 3.1). This indicates that teap distribution

mdy be uniform trap distribution. For exponential trap



distribution b1 (23). In the present study be is nearly
equal to 1. This rules out the possibility of exponential

trap distribution.

The plot between I and t~! is a straight line (fig 3.16).
This also suggest that trap distribution may be uniform.
The above conclusion is also supported by a8 plot between I.t
and log t. This graph is also a straight line which is

nearly parallel to log t axis. (fig 3.17).

3.3.8 Kinetics of luminescence :

The kinetics involved in the decay process miy be either
monomolecular (first order), bimolecular (second order) or
intermediate. For a decay resulting fromtraps of single
depth, the mnonmolecular process involves the exponential
decay. The bimolcular process involves the hyperbolic decay.
While power law decay results when process is neither first
order nor second order. (24). PFor first order kinetics plot
of I and t on semilog paper must be a straight line. For second
order kinetics plot of recipocal of square root of intensity
and time must be a straight line. Further for second order
and intermediate order the slope of graph between log I and
log t assumes the values of -2 and -1 respectively ag large
values of t. In the present investigation graph between I
and t on semilog paper is not a straight line (fig 3.11 to 3.18)
This indicates that kinetics is not monomolecular. Further the
plot of 1/fI versus t is also not a straight line (fig 3.10)

and slope of log I - log t is not equal to -2. Hence kinetics
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is not bimolecular. However the decay can be represented by

a power law equation of the type I = IoP. But the value of

b is not exactly equal to as required by intermeddate kinetics,
which excludes the possibility of intermediated kinetics.

On the other hand, the observed power law decay could be well
explained on the basis of monomolecular superposition theory.
This suggests that kinetics involved is likely to be

monomo lecular.

SUMMARY 3
From the above study following inferences may be drawn :

l. The nature of decay for various smples is similar and

may be expressed by an equation of the form I = lgo t-b

2. Nature of decay is of power law type and can be explained
in terms of superposition of various exponentials of
monomolecular type.

3. The value of decay constant is nearly equal to undity. The
dis tribution may be uniform.

4. The trap depths of effective levels are relatively
insens itive to the concentration of activators ( Mn, Sm)

5. The probable kinetics of decay process is likely to be

monomolecular.
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Table 3.1 : showing correlation coefficient and decay
constant -obtained for various phosphors.
Sample Corre lation Decay Constant
no. coefficient by calculation from graph
(=ve) (=ve) (=ve)
SD 12 1.007 0.9732 1.04
SD 13 1,005 1.0278 l.1
SD 14 0.997 1.043 l1.16
SD 15 0.997 0.846 0.84
SD 16 0.999 1.114 1.1
SD 17 1.029 l1.189 1,18
SD 18 1.06 1.377 1.24
sD 19 1.26 1,34 1.1
SD 20 0.99 0.871 0.88
SD 21 0.9 0.9948 1.0
SD 22 0.9947 1.0355 1.04
SD 23 0.9822 1.08 0.92
SD 24 1.018 1.C4 1,02
SD 25 1.11 1.11 1.02
ap 26 1,005 0.954 0.96
SD 27 1.037 0.9217 0.92
SD 28 1.009 0.9313 0.95




Table 3.2 3 Showing activation energies calculated from
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peeling off of decay curves for different samples.

Sample Values of trap depth from peeling off of
no. decay curves
Slowest II Pastest
exponential exponential exponential
By ) 3

SD 12 0.5598 0.4631 0;4239
SD 13 0.565 0.4821 0.4321
sD 14 0.5645 0.479 0.4324
sbD 15 0.5587 0.491 0.4252
SD 16 0.5589 0.5002 0.4292
sSD 17 0.5587 0.4740 0.4255
sD 18 0.5589 0.482 0.4243
SD 19 0.5716 0.5071 0.4237
SD 20 0.5303 0.4533 0.4229
SD 21 0.5721 0.4846 0.4258
SD 22 0.5542 0.4630 0.4252
SD 23 0.5724 0.4655 0.4272
SD 24 0.5542 0.4783 0.4258
SD 25 0.5648 0.4821 0.4237
sSD 26 0.5713 0.4817 0.4230
3D 27 0.5643 0.4947 0.4242
SD 28 0.5683 0.4885 0.4249
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