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CHAPTER 1
AMORPHOUS SEMICONDUCTORS

Considerable work has been done on elementary semi-
conductors and large data is available; but in compression
to crystalline materials very little literature is available
for amorphous semiconductors. In order to understand amor-
phous semiconductors, band models of amorphous semicon-
ductors are understood on the basis of band theory of cry-

stalline solids.
1.1 BAND THEORY OF SOLIDS :

In sommerfeld model, it is considered that the elec-
trons are free and the potential inside the solid is con-
stant; but in solids the electrons are not ideally fiee
and the potential in which they move is not constant but
periodic in nature. The wave function of the electrons

can be represented by the well known Bloch function :

i.e. ¥k (r) = ug(r) elkr ..(41)

where Uk(r) is known as modifying factor and it has the

periodicity of lattice.
Uk(r + Rj) = Uk(r)
The lattice is described in terms of the lattice vector

Rj such that



Rj = jl a; + j2a2 + j3a3 ..{12)
where j are integers and a; are the edges of the unit

cells. Y function is also periodic in nature.
i.e. ¥ (x + R) = ¥ (x) e (23)

The electron is moving in a potential which itself is peri-

odic in nature (Figure 1.1).
i.e. V (x + R) =V (x)

The translational order is represented through the peri-
odicity of the crystal. The periodic boundary conditions

require the propogation vector,

where N is number of atoms in the crystal and a is lattice
constant, n is an integer. The motion of particles in such
a periodic structure gives us an idea about the existence

of forbidden zones, at the k values given by

i

k= £ — , ¢

2n , 30
a ! a )

The energy is represented as function of k shown in Fig.(1l.2)

The energy band in solids can be understood by diff-
erent models available existing in standard solid state
books. The reduced zone, E-k diagram, the first Brillouin

zone between * J%~ gives an idea about motion of particles
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in solids. In the forbidden 2zone, k values are complex
and imaginary and the existence of particles in forbidden
zone 1s not allowed for perfect structure. In the allowed
zone the electrons are occupied according to pauli-exclusion
principle i.e. two particles per state (with opposite spins).
On the basis of this band approach, solids are divided
into three groups, metals semiconductors and Insulators

Figure(1l.3).
1.2 SEMICONDUCTOQORS :

There are large number of materials which have resis-

2éhm.cm)

titivities lying between those of insulators (l&4tolo
and conductors (16 ohm. c¢m). Such material are known as
semiconductors. Semiconductors have negative temperature
coefficient of resistance i.e. conductivity of semiconductor
increases rapidly with increase in temperature Fig.(1.4).

Semiconductor Germanium or Silicon, 1is having four
valence electrons. When the two atoms of germanium are
brought close to each other, the positive core of one atom
interacts with one of the valence electrons of the other
atom. Each core will attract the electrons of the other
atom and the two electrons will be shared between two atoms
Fig.(1.5). Equilibrium state will reach when the attractive

force is balanced by the repulsive force, between two posi-

tive cores and a covalent bond is thus formed.



"

At ordinary temperature, because of thermal energy,
crystal lattice is in continuous random motion. As a result
an individual electron of a convalent bond acquires suffi-
~cient energy even at room temperature to break the bond
and becomes free., These electrons move freely in crystal.
When an electric field is applied, this random motion exper-
iences a drift towards the positive electrode representing
the flow of current.

When electron 1is escaped from covalent bond to become
free then empty space left behind is called a hole. When
a hole is created it moves in the crystal in a random way
in the same manner as do free electrons. In the presence
of an external electric field, a steady drift towards the
negative electrode is superimposed upon the random motion
of these holes and this represents a current flow which

is transported by the absence of electrons.
1.3 BAND STRUCTURE OF SEMICONDUCTORS :

When two similar atoms are brought close together,
there is an interaction of coupling between the orbits
of their electrons that causes splitting of each individual
energy level into two slightly different levels. In solid,
there are large number of atoms which are very close toge-
ther, therefore, the energy levels are produced, after
splitting due to interaction or coupling between orbits

of different electrons.
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Figure (l1.6) shows energy band diagram of diamond
lattice as function of atomic spacing, when the atomic
spacing 1is sufficiently large, interaction between atoms
is negligible and energy levels are those to be found in
isolated atoms (position A). When atoms further come close
to each other, their interaction increases and the two
energy levels split into bands (position B). At position C,
in figure the two bands overlap and when atomic spacing
is further reduced (position D), the bands spread widely.
The lower band 1is completely filled, is called valence
band, where as the upper band is normally empty band, is
called conduction band. The gap between these two bands
is called forbidden 2zone, Eg. It is the minimum amount
of energy that should be imparted to the electron in valence

band to jump to conduction band.

1.4 TYPES OF SEMICONDUCTORS :

1.4.1 INTRINSIC SEMICONDUCTOR :

When the conductivity in a crystalline semiconductor
is due to breaking of covalent bonds, the substance 1is
said to be an intrinsic semiconductor. The conductivity
increases with increase in temperature. In case of germanium
the forbidden energy gap is about 0.67 eV wide at 300 °K.
At room temperature there is enough thermal energy to excite

an appreciable number of electron-hole pairs. This process
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is called intrinsic conduction (Figure 1.7 a). The pure

semiconductors are intrinsic semiconductors.
1.4.2 EXTRINSIC SEMICONDUCTOR

Semiconductors in which impurities control the carrier
dinsity are called extrinsic semiconductors. The conducti-
vity of crystalline materials could be changed by adding
a very small amount of either a penta valent or trivalent
impurity. The process of adding impurity is known as doping.
Semiconductors thus produced are called extrinsic semicon-
ductors. Due to addition of impurity to any semiconductor,
one oOr more new energy level may appear in the band struc-
ture. The impurity may be termed as donor or acceptor depe-
nding upon the impurities contribute extra electrons or
hole to the cause of conduction in the crystal. A crystal
which has donors is called as n type semiconductor (Figure
1.7 b) because the charge carrier are negative and crystal
with acceptor typg impurity, is called p type semiconductor,

because the charge carrier are positive (Figure 1.7 c).
1.5 FERMI LEVEL IN SEMICONDUCTOR :

In order to find out the total number of particles
available in solid, one must know the density of states

and the Fermi-Dirac distribution. The occupation number



14

£(E) = L
£ k?
where E energy of electron = —5F

M- effective mass of electron.

The density of state in conduction band is,

ng = { (density of state) x (occupation
number) dE
= ? N(E) f£(E) dE ..(1.6)
But i
N(E) = —r— f§$——)3/2 (E - Bq) /2 L (1.7)

Using equation (1.5) and (1.2) in equation (6) one can

evaluate equation for Fermi energy,

*
_ _Eq 3 mh
Bp =~ — * 74— RgT In .5 ..(1.8)

Equation (1.8) gives position of Fermi level in semicon-
ductors. Fermi level 1is the energy of reference level at
which the probability of filling is exactly half. The Fermi
level in semiconductor <changes appreciably with chang;
in impurity and concentration. The variation of Fermi level
with impurity concentration enables the operation of the
various junction devices.

1.5.1 INTRINSIC SEMICONDUCTOR

* *
For intrinsic semiconductor mp = me . The concen-
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tration of electrons and holes are equal.

Therefore

E = —2d = _Ec*+Bv . qp .-

So the Fermi level lies exactly middle of the forbi-
dden gap. In general }ﬁ is slightly greater than ﬁ: . The
Fermi rises up as the temperature is increased. But for
practical purpose, Fermi level can be assumed to be constant

for intrinsic semiconductor for a wide range of temperature

Figure(1l.7 d).
1.5.2 N TYPE SEMICONDUCTOR :

n type semiconductor consists of donor levels cond-
uction and belowvjust<~ (? ghhe conduction ¢ which
there are donbr levels of energy /ED. At ab;olute Zero,
the Fermi level lies midway between donor levels and bottom
of the conductioh band. As temperature increases the fermi
level takes a very small initial rise upward after which
it moves downward in the forbidden energy band. At high
temperature, the Fermi level approaches the middle of the
band gap which 1is the intrinsic position. As the crystal
becomes more n type, the Fermi level rises closer to the
conduction band and may even go imiko conduction band, when

doping becomes high as shown in Figure (1.8).

1.5.3 P TYPE SEMICONDUCTOR :

At absolute Zero (T = 0), the Fermi level comes at
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Eap/2, midway between top of the valence band and acceptor
level. AS$ the'temperature increases, the Fermi level first
lowers slightly and then it increases with + . - .. increa-
sing temperature. At high temperature the Fermi level appro-
aches to middle of the band gap which is intrinsic position.
As crystal becomes more P type the fermi level comes closer
to the valence band and may do even in the valance band
when the doping level of acceptor impurities become very
high Fig.(1.9).

1.6 AMORPHOUS SEMICONDUCTORS :

Amorphous semiconductors are non-crystalline materials
in which three dimensional periodicity is absent. They
1a¢k long range peridic ordering of their constituent atoms.
That is not to say that amorphous semiconductors are com-
pletely disordered on the atomic scale. Amorphous semicon-
ductors do not consist of closed packed atoms, but they
contain covalently bonded atoms arranged in an open network
with the correlations in ordering up to the third or fourth
nearest neighbors. The short range order is directly respon-
sible for observable semiconductor properties such as opti-
cal absorption edges and activated electrical conductivities
The Bloch function in existing form does not hold in amor-
phous materials. The disorder in amorphous semiconductor

is as follows :
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1) Translational Disgorder : Here long range order is

absent while short range order is responsible for observable
properties. The potential in amorphous material is periodic

for few atoms.

2) Compositional Disorder : The composition of elementsin

amorphous material may not be in the same ratio and it
will give rise to localized states in forbidden 2zone. This
may be considered on same line, when crystalline semicon-

ductors are doped by different impurities.

3) Topological Disorder : This is attributed to

a) Atoms not occuping regular sites.

b) Crowding of atoms at one place forming clusters.

c) Missing planes from the structure because of the
heavy perturbation nature, the potential fluctuations

give rise to localized states.
The amorphous semiconductors comprise

1) Chalcogenide glasses and
2) Oxide glasses.
The chalcogenide glasses are materials like As, Se,
Ge, Te, etc. They are semiconductors with forbidden gap
that range from 1.5 to 2.5 eV. They are very good glass
formers with transition temperature (Tg) in the range of
300°k to 600°k, where as oxide glasses of group III, 1IV

and V elements.
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Scientific investigation of amorphous semiconductor
was originated'in the work of A.F. Regal (1.5). Ioffe dis-
cussed the principle features of electronic structure of
amorphous semicdnductors. The band gap depends upon short
range order than 1long range order. Anderson (1.6) (1.7)
in 1978 showed that sufficient disorder could localize
all states in an energy gap. In 1961, Mott and Towse (1.8)
discussed one dimensional state.

In order to throw light on the nature of type of
short range order, a radial distribution analysis of elec-
tron diffraction is importaht. The observed radial distri-
bution function for an amnorphous GeTe film is taken as
an example. Fig.(1.10) shows the radial distribution fun-
ction of amorphous GeTe film. Not only the magnitude of
order can be obtained from such a graph but also the bond
length can be obtained since the location of peaks or maxima
in radial distribution curves gives the sequence of chara-
cteristics bond length of specimen. The area under the peaks
gives an average value of the number of atoms at radial
distance 'r' from some origin atom in the specimen. The
width of the peaks indicates some spread in the interatomic
distance and the decreasing amplitude of the oscillations
with 'r' shows the lack of long range order.

Further discussion of the structure of amorphous

semiconductors is obtained by X-ray diffraction studies.
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Structural models of amorphous solids can be constructed
to give the best fit to the experimental radial distrubution
curves, together with any other conditions required by
the nature of the bondsAsurrounding each atom. Structural
changes in an amorphous solid, as a function of temperature,
can be obtained from Differential thermal analysis.

A lot of interest has now diverted to the study of
amorphous solids and is thus the subject of number of the-
oretical and experimental investigations. The main purpose
of these investigations, is to -

a) ascertain whether the amorphous structure is homogene-
ously random or microscopic crystalline in nature,

b) compare structural characteristics (short range order
and bonding nature) of amorphous and crystalline phases
of the same materials.

c) understand how the energy band diagram, the character
of energy state and transition probability between
states and transport processes are changed going from
crystalline to the amorphous phase of the same material.

The answer to such questions are expected to be reve-
aled by the study of structural, optical and electrical
properties of suitably chosen semiconductors which exist
in both the crystalline and amorphous states.

1.7 LOCALIZED STATES : |

The concept of density of state is applicable equally



20

to both ctystalline and non-crystalline materials. The
density of state is denoted N(E) and 1is defined so that
N(E)dE is the number of states in unit volume for an elec-
tron in the system with given spin direction and with energy
E and E+dE. The numbervof electrons in the energy range

dE for each spin direction 1is,

N (E) f£(E) dE

where f(E) the Fermi distribution function

f(E) =

E F »
eXp. KT +1 .. (1.9)

The Fermi energy Ep 1is function of temperature when the
scattering of electron 1is weak, in which electrons are
described by wave functions, each having a fairly well
defined wave number K. The mean free path L is large and

the uncertainty AK in K is given by relation,

L xAK ~ 1, such that AK/K << 1

In this case energy E of each electron is parabolic
function of K, so that

ﬁz'Kz

B = — ..(1.10)

The density of states for the electrons is given for each

spin direction by the free-electron formula,
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2
41K

N(E) " (. gg )
_ Km
Y .. (1.11)
The other possibility is that the interaction is
strong so that lL%— = 1. The mean free path is short (KL~1l)

states are localized as shown Fig.(l1l.1l1).

The density of state N(E) that is continuous function

Akk ~ 1 large deviati~-

of E remains a valid concept. But if
ons from the free electron form is possible. Some of these
are shown in Fig.(1.11). We shall see that Fig.(l.ll..(b),(c),
(d) ) all imply A k/k ~1 (or localization) in the regions
where the deviation of N(E)from the free electron value
is large.

When mean free path is short, the elementary methods
of quantum mechanics are used to deduce 0(w), the conducti=s
vity at frequency w. At T = 0 and for states filled up
to a fermi energy E, we desnote the result of Og(w). This
is related to the absorption coefficient by the equation,

411 OE (w)
ny . (1.12)

where No is the real part of the refractive index.
For the d.c. conductivity at 2ero temperature for

a system with states filled upto an energy E, we get

(o] . v
E (o) = lim q@\.w)

w.—..)o no(lcl3)
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This is called as the Kubo-Green formula (1.9).

At low temperature, we may consider two cases

1) Situations in which the conductivity is determined by

2)

the properties of electrons with energies near Ep. In
this case, the range of energies may exist in which
N(E) is finite but stetes are localized and mobility
of electrons with such an energy is zero, at T = 0.
The vanishing of OE (0) can surve as definition of loca-
lization for electrons with energy E.

Situations where the mobility of electrons with energies
near Ep 1s zero or sma.l for non-localized state oE(O)
can then be interpreted as eN(E) KTu. Wherel is mobility
of carriers with energy E. If the states are localized,
mobility vanishes ét.T = (. At finite temperature mobi-
lity 1is due to interaction with phonons and smaller
than for non-localized state (extehded). For any model
of non-crystalline system, the states with energy E

are localized if,

<% (0) > =0 ..(1.14)
But for assembly of N atoms, a range of electrons ener-
gies may exist such that the number of configuration
for which o does not vanish tends to zero as N =% » . In
other wordsg tends to zero. Thus our definition of local-
ization is that, for a Fermi gas of non-interacting

electrons with Fermi energy E,
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lim < g gl0)> =0
N-d o .. (1.15)

ANDERSONS LOCALIZATION

Our problem is to consider what happens to band of

energis when the potential energy function is non-periodic.

A non-periodic potential can be formed in two ways.

1) By the displacement of each centre by a random amount,

2)

as for instance by lattice vibrations or by destroying
the long range order.

By addition of random pctential energy %U to each well
in such a way that energy 1level Wo for electrons in

the well is changed to Wo + kU

We write,
2 2
< U > = U .(1.16)
Where W, - energy level for an electron in single well

Uo~- measures of disorder.

The resulting potential 1is shown in figure(l.1l2b). This
is called Anderson potential 1.6,1.7. If Uo 1is small
and using golden rule,

L2201 og,® a’ N(E)
L - 2 70 u .. (1.17)

3

where u- velocity of electron, a° - atomic volume L -mean

free path.

Using equation (1.11) for N(E) we may write,

1 m z _3 :
T = A (—ppr) @’ (% Uo) ..(1.18)
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m - mass of electron OR

a =_ _(ug/T)?

L 16 11 ..{(1.19)

where I is related to J by equation,

J = 2 ZT
J = band width, I - overlap integral
Z = coordination number.

In the middle of band Ka~ 1, a is minimum free path
under this condition the wave functiony will vary in random
way from well to well Fig.(l.l13a). The equation (1.14)
suggest - - . that the wave function is vary randomely,
when Ug/I reaches the value 7.

Consider a pair of wells at distance R from each
other with energies shifted from the mean amounts Uz, Up.
The two wave functions for a pair of electrons in these

states are,

Y1

Awﬂ-+m@
B@/ﬂ - A#ﬂ

where @ﬁ% - overlap between ztomic wave functions of well a

[}

y 2

Qﬁﬁ ~ overlap between atomic wave furctions of well Db
We consider following limiting cases
1) 1f |Ua - uﬂ}<<1, then A~ B and Ej- E,y= 2I

It can not be less than 21I.

_ A - Ua—Ub
2) If U -Up x> I thewg— = 21 ..(1.20)
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The wave functions for the two cases and also plot of E]-Ep
as function of |Ua-Ub| are shown in Figure (1.14).

If we consider infinite array of wells, there will
be random fluctuations of amplitude of wave function ¥ in
going from well to well. If Uy/J increases, these fluctua-
tions get larger Fig.(1.13b). However if Us/J is very large,
the wave function of each well would be little perturbecdt
by all other wells and so would fall exponentially with
distance. This is shown in Fig.(1.13 (c) (d) ).

Anderson find that there is no diffusion if Ug /J
is greater than a constant that depends upon coordination
number z = 6. This means that Ug/J>5. All the wave functions
for an electron in system are shown in Fig.(1.13 (c) )
decaying exponentially with distance r from somevwell n.

The initial state of the wave function is of the form,

L% ym
The coefficient ap will fall exponentially with distance
between wells m and n.

The critical value of Ug/J depends upon coordination
number 2z. The Andersons plot of UO/ZI is shown in figure
(1.15). Uo/J has the value~ % for z = 6.

Some more recent work of Anderson localization has
concentrated on the quantity ¢(0). If there is no diffusion,

the conductivity ¢ must vanish for all energies in the band
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WhereW is small, g does not vanish.
For finite number of wells, <g > tends to zero exponentially
for large N. This problem was investigated by Mott 1.10.
This method is used to evaluax the conductivity at
frequency w,g(w) and to show that for all configurations
except a proportion that gives a vanishing contribution

a8 (Qgep ®

<g {w)> behave like w? for small w<«g(0)> therefore

vanishes.
1.8.1 Situations in which state are localized in one
range of energies and not localized in another : In this

case a critical enerqgy E. must separate the two regions,
as follows

< % (0)>

]
(o)

E<E L.{(1.21)

C

= 0 E>EC

This is shown for density of state resulting from the Ander-
son potential in Fig.(1l.16).

Mott (1970) 1.10 has suggested that for values of
E slightly less than E , the wave function is asishown in
Fig.(1.13c), for such a wave function each localized orbital
will overlap many others. If the states are 1localized,
an electron can move only by hopping from one state to

another exchanging energy with a phonon in the processs
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If the overlap of orbitals is small, so the hopping probabi-
lity should be small. On the other hand, the electron can
tunnel i.e. As E-< Ec¢ from below the activation energy W,
hopping tends to zero Fig.(l1.17 b).

For E greater than E;, the wave function should be
as shown in figure(l.l3kb)), we call such a wave function
extended, the value of <g (0) > is finite. There will be
therefore discontinuity in <gg (0)>at E = E,as shown in
figure(l.17(a)). There will be no discontinuities in g(w)

at finite value of T.
1.9 DENSITY OF STATES

In the Bloch theory of crystalline solids the allowed
energies for an electron are divided into bands. In insula-
tors and semiconductors, valence and conduction bands do
not overlap. There is a band of forbidden gap in which
density of states is 2zero and Fermi level 1lies between
this gap. For semi-metal there is small overlap and density
of state can be low at the Fermi energy as shown in Figure
(1.18).

The density of state in non-crystalline material is
determined by the actual potential of the atom and its
nearest neighbour. When the tails of conduction and valence
band overlap, the denstiy of state show a minimum which

we call a pseudogap as shown in figure (1.19). For an amor-
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phous material gap must appear, if there is no dangling
bonds.
If pseudogap is deep enough, the states are localized.
So the material is non-conducting at T = 0,
If N(Ep) is not zero, we denine factor g by,
. __N(EF)
N(EF) free ..(1.22)

then for localization g is order of 0.3. We thus have three

possibilities if Ep lies in pseudogap.

a) g>0.3, the behaviour is metallic, g tends to finite value
as T -->o0.

b) g¢0.3, but not too small conduction at low temperature
is then by thermally activated hopping but at higher
temperature carriers will be excited to non-localized
states.

c) g is small or zero, the tunneling factor between loca-
lized states will make thermally activated hopping.
The current is carried by electrons excited into conduc-

tion band.
1.10 MOBILITY SHOULDER :

We now consider the case when < gg > is negligible at
E = EfF and current is carried by electrons excited into
conduction band. Let us ccnsider ' the contribution made

by carriers with extended wave functions. The contribution
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to the conductivity is given by equation.

. v 8
9= - [ <op (0) > —p— dE .. (1.23)

Since for a semiconductor,

e -(E-EF)/kTI‘

f = this gives,
0 =05 exp. [ - (Ec - Ep)/kT] .. (1.24)
where o, = < g(0)> B = Ec
9 is order of 350 g cm™ Y for z = 6. The mobility

can be deduced only if N(Ec ) is known. Since the number

of electrons with energies above E, is,

N(Ec)KT exp.[- (25 - Ep)/ KT ]

The mobility Hoyxt 2t Ec is,

<g (0)> /eN(E)KT

E = Ec 01(1-25)
2
If band width B = * and N(Eg) = —2=2
mR? 3
then we find ueXt = —Q_'_:.;...e..tl_ - 12 sz V"'l S_l
mKT ..(1.26)

at room temperature. This formula enables us to write the
mobility in the form of diffusive motion.

2

T .. (1.27)
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where Yel ~ electronic frequency, R - jump distance

2h?
Yel ~ "mR°

15 -1

~ 3 x 10 8

For E <Ec conduction will be by hopping and given by equation

eR?

_ 1 ( W
Yhop 6 Yph KT

) exp. ('_?T“)

..(1.28)

where Ypp is the phonon frequency.

Near Ec we may assume W< KT. Thus drop in the mobility
by a factor .~ 10° is expected as the energy E goes through
the value Es. This drop in the mobility has been called
the mobility shoulder and was first described by Cohen 1.11.
It must also be assumed that the carriers are excited to

mobility shoulder of Fig.(1.20).
1.11 DEFECT MODEL :

The model will be illustrated with reference to sele-
nium consider two dangling bands at the end of selenium
chain as shown in figure 1.21(a). When they contain single
electron the defects are neutral and will be designated D°.
Transfer of an electron from one chain to other will lead
to the creation of two charged defects DY and D™. It is
proposed that the reaction 2D° -- D'+ D is exothermic.(1.29)

From Fig.(l1.21 (b)) the positive correlation energy U
associated with the two electrons.at D™ in the absence of

configurational changes become negative (Ueff) after lattice
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relaxation. The chemical reason for tﬁe exothermic nature
of the reaction is that, at ptan extra bond with neighbour-
ing chain can be formed by utilizing the normally non-bond-
ing one-pair electrons. The coordination of Se atoms at D¥is
therefore three, in contrast to that at D where it is one
and at a normally bonded Se atom where it is two. Mott,
Davis and Street 1.12 proposed that the lattice distortion
at D is negligible, at ot it is considerable, at D° it 1is
intermediate. In a chemical band description of these defe-
cts given by Kastner et.al. 1.13,1.14, the charged states
of the defect are designated C1 and C§, 'C' standing for
chalcogenide and the subscript indicating the atomic coordi-
nation. The neutral centre is lebelled by C$%

The structure and energies of several simple bonding
configurations for chalcogen 'is shown in £fig.(1.22). The
normal bonding configuration is C§, the straight lines
represent bonds (g states) and dots the lone pair (LP).
In this configuration the antibonding ( g*) states are empty
and energy relative to the 1lone pair is =-2Eb as shown.
Antibonding states are pushed up from lone pair energy
more than bonding states are pushed down. Thus the next
configuration C% - a neutral three-fold coordinated atom
with extra electron placed in the bonding orbital has higher
energy than C2 by amountA. The C; with energy of -3Epis

2
. *
defect having the lowest energy. The energy of C3is—Eb+2AHb
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the positive correlation energy term ng arising because two
electrons are in indistinguishable from the two 1lone pair
electrons at the site and so energy of this defect is -Eb,
finally a negative charged dangling bond Ci has four valence
electrons in the lone pair state, its energy is -Ept+ UL p,
the second term arising from the correlation energy in this
level. The reaction corresponding to 1.29 in Kastner's nota-
tion is,

~ R 4 -
2C°3 -—C3 + € ..(1.30)

which can be seen to be exothermic if,

-E_+ 0

-4Eb + 2A > - 3E b LP

b

i.e. if 2A - U >0

LP
The charged defect Cg and Ci in equation (1.30) have been call-
ed valence alternation pair (VAP). Their creation starting
from é fully bonded network in which all atoms are in the

c? confiquration can be described by,

3
+ -
o —
2Cy C3 + ¢ ..(1.31)
which costs an energy
“3Bp - B + Upp + 4B, = Upp .. (1.32)

The concentrations of VAPS present in a sample prepared by
cooling a melt assuming equilibrium at the glass transition

temperature Tg is then,
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N = exp.( ~ULP/2KTg)

where N 1is concentration oZf lattice sites. For T ~ 500 K,

the fraction of lattice sites that could be VAPS 1is ~ 156

if %£~

Another way of looking at the negative energy which

1.1 ev.

makes reaction (1.30) exothermic is as follows. Let the addi- .
tion of an electron from, say the valence band to D" cost
an energy Ej; and the addition of electron resulting D° and

energy Ej, then we write

D++ e(+ El) - D° ..(1.33)

[+] -
D + e( + Ez) ->D
[+] + —
Thus 2D -->»D + D + (El - Ez) ..(1.34)

If the addition of second electron to D' costs less energy
than the first (i.e.E2 <Ei1 ) then E1 - E21is positive and the

total reaction is exothermic.
1.12 ENERGY BAND DIAGRAM FOR AMORPHOUS SEMICONDUCTOR :

We have seen the model for perfect and imperfect cry-
stals, we now proceed to establish the models for the amor-
phous semiconductors. We have already remarked that short
range order exists in amorphous material. This short range
order 1is due to the random distribution of extremely small
crystallites within the sample. Bu£ as we already pointed

out that the imperfection gives rise to localized states
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in mobility gap, since the order of imperfection is because

of translationai topological and compositional disorder.

One and three dimensional disordered lattice concludes
that as long as short range order is maintained the essential
feature of the crystalline band structure are retained with
following significant modifications. Due to fluctuations
of the neighbouring atoms, the periodic potential shows flu-
ctuations of two types.

a) The maxima and minima of the periodic potential shift
in a random fashion and there by produce tailing of the
band edges.

b) The heights of the maxima and minima fluctuates randomely.
As a result, allowed states which extend through the latt-
ice become localized in the disorder lattice.

Localization means that the wave function has the proba-
bility amplitude decreasing exponentially with distance from
the centre of localization. Average conductivity is zero
at T = 0. It is not possible to calculate the deqree of tai-
ling of band edges without a detailed knowledge of the fluc-
tuation potential. It is «lear, however, that the larger
the fluctuation, larger the tailing. Thus the effective gap
becomes narrower in disorder lattice. Tailing may extend
deep in overlapping of the c¢onduction and valence bands.

Mott 1.15 discussed the behaviour of the carrier mobi-

lity in localized and non-localized states. He has shown
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that the mobility due to conduction by hopping in the comple-
tely localized states (phonon assisted conduction) is consi=-
derably smaller than that in non-localized states. Further
be concluded that at 1low temperature (when conduction in
localized state is by tunneling alone) the mobility of conduc-
tion is 10 times smaller than that of hopping electrons.

Gubanov 1.16 has suggested a procedure for extending
the <crystal theories to disordered structure. He assumes
that the difference between the short range order arrangements
in an amorphous body and in corresponding crystal is small.
The necessarily large difference over 1long distance may be
taken care of by transformation of co-ordinates. In place
of usual cartesian. Co-ordinates, Gubanov introduced certain
curvillinear c¢o-ordinates and showed that the ground state
wave functions are linear combinations of wave functions
which are Bloch functions in these curvillinear co-ordinates.
Their usefulness is limited, but they make it possible to
calculate roughly the electron energy states. Gubanov has
shown that they form bands not too different from those of
the corresponding crystal. It is worth while to remark here
that, the results obtained by Gubanov's method are in good
agreement with those obtained by Mott and others, based upon
band theory. '

Ultimately, we conclude that the amorphous materials

can be looked upon as having one conduction band and valence
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band with many localized levels in betwe2n. The levels. layirg
near the conduction band can trap the elecﬁrons very easily
and behave as electron traps. In the same sense the levels
near the valence band behave as the hole traps. The fermi
level 1is supposed to lie between the con.iuction and valence
bands. To account for the neutrality, it is assumed that,
the hole traps and the electron traps are equal in number
so that they counter balence each other.

The above argument is supported by ey ~»rimental evidence.
The photoconductivity and re-combination experiments have
been interpreted as giving the evidence for presence of loca-
lized states, while activation energy, which is comparatively
small confirms the tailing of conduction and valence bands

Fig.(1.23).

1.13 BAND MODELS FOR AMORPHOUS SEMICONDUCTOR
1) COHEN-FRITZSCHE-OVSHINKEY MODEL :

Cohen, Fritzsche and Ovshinskey (cro)l-1l  constructed
a simple basic band model of disorder semiconductors. In
the CFO model the mobility edges, the energies at which states
change their character from localized to extended state play
an important role. In 1969, Cohen showed that the conductivity
@Eé vanishes at the mobility edge,

Cohen showed that, an electron in localized state is

effectively trapped by the polarised or disorted lattice
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and it can move from one localized state to another by hopping
or tunneling, This hopping process of conduction produces
an energy gap in disordered lattice in which the mobility
is negligible. This energy gap has also been described by
CFO as, mobility gap in contrast with the conventional cry-
stalline semiconductor band gap in which the density of states
is zero. The edges of mobility gap are sharp but sharpness
remains unresolved.

Fig.(1.24) shows that tail states extend across the
gap in the structureless distribution. The decfease of loca-
lized state destroy sharpness of conduction and valence band
edges. The author said that .n chalcogenide alloys disorder
is high the tails of conduction and valence bands overlap
leading density of state in the middle oI gap. This band
overlapping is due to the fact that there are states in the
valence band, ordinarily filled, that have higher energies
than states in the conduction band that are ordinarily unfi-
lled. A redistribution of electrons takes place forming filled
state in conduction band tail which are negatively charged
and empty state in valence band, which are positively charged.
This model therefore pins the Fermi level close to the middle
of the gap. The major objection against CFO model was high
transparency of amorphous chalcogenide below well defin-

ed absorption edge.
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2) DAVIS-MOTT MODEL :

Mott 1-17has discussed the behaviour of carrier mobility
to be expected in localized and non-localized states. He
has shown the mobility due to conduction by hopping, in the
completely localized state is smaller than in non-localized
state. Further he concludes tnaat at low temperature the mobi-
lity of conduction is 10 times smaller than that of hopping
electrons.

According to Daivs and Mott 4.7 the tails of localized
state should be narrow and extend few tenths of electron
volt into forbidden gap. Fig.(1.25 a). Ecand Ey represent
energies which separate the ranges where states are localized
and extended. The centre band split into donor and acceptbr
bands which also pins the Fermi level as shown in Fig.(1.24Db).
Mott suggested that transition from extended to localized
state, mobility drops by several order of magnitude producing
mopbility edge. The concept of 1localization state says that
mobility is zero at T = O°K. The interval between Egand Eyis
called mobility gap.

Cohen 1.18 suggested for dependence of mobility that
there should not be an abrupt but rather continuous drop
of mobility occurring in the extended state just inside mobi-
lity edge. In this intermediate range the mean free path

of carriers becomes of the order of the interatomic spacing
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s0 that ordinary transport theory based on Boltzmann equation
cannot be used. Cohen described the transport as Brownian
motion in which the carriers are under the influence of the

continuous scattering.
3) SMALL-POLARON MODEL

The role of lattice distortion in the presence of an
extra charge carrier in an amorphous so0lid has been discussed
by E min 1.19. He suggested that the charge carriers in some
amorphous semiconductors may enter a self-trapped state as
a result of polarization of the surrounding atomic lattice.
In supportlof this hypothesis E min argqued that the presence
of disorder in non-crystalline solid tends to slow down carri-
er. This slowing down may lead to a localization of the carri-
er and, if the carrier stays at an atomic site, sufficiently
long enough for atomic rearrangements to take place, it may
induce displacements of the atoms in its immediate vicinity,
causing small polaron formaticn since the small polaron is
local in nature, the absence of long range order in non-cry-
stalline solids may be expected to have no significant influ-

ence on its motion.
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