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CHAPTER II
TRANSPORT PROPERTIES

Electrical Properties of Amorphous Semiconductors :

In most semiconductors, the dc transport properties 

are very well understood. Electrical conductivity, and thermo­

electrical power or (thermo power) measurements as function 

of temperature can be interpreted to yield the position of 

the Fermi-energy, the effective mass of the carriers, the 

band mobility, and the predominant carrier scattering mecha­

nism. Small polaron formation and hopping transport can be 

identified if present. The most remarkable feature of the 

electrical conductivity data in amorphous chalcogenide alloys 

is the strong pinning of the Fermi-energy.

2.1 DC ELECTRICAL CONDUCTIVITY :

The essential features of the Davis-Mott model for 

band structure of amorphous semiconductors are the existance 

of narrow tails of localized states at the extremities of 

the valence and conduction bands. Fig.(2.1) and further more 

of a band of localized levels near the middle of the gap. 

This leads to three basically different channels for condu­

ction .

2.1.1 EXTENDED STATE CONDUCTION :

Conduction due to carriers excited beyond the mobility

edges in to non-localized or extended states.
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The conductivity for any semiconductor can be expressed 

in the form /
a - -e/gU) p(E)KT dE

where f(E) is the Fermi-Dirac distribution function.

f(E) = --------- -------------
1 + exp. [(E-Ep)/KT]

using this relationship

if (E)
~Je~ f (E) [1 — f(E)]/KT

From this^ can be written as

a = eJg{E) y(E) f(E) [ 1-f (E) ] dE ..{2.2)

2 1In the Davis-Mott * model, the Fermi-level Ep is situ­

ated near the middle of the gap and thus sufficiently far 

from conduction band i.e. the energy which separates the 

extended states from the localized states, so that Boltzmann 

statistics can be used to described the occupancy of states, 

Thus f(E) = exp. [-{ E - Ep)/KT]

According to Mott's view the mobility drops' sharply 

at the critical energy Ec or Ev but at present it is not exac­

tly known how the mobility depends on the energy in both 

conduction regimes.

In the nondegenerate case and under the assumption 

of a constant density of states and constant mobility, the
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conductivity due to electrons excited beyond the mobility 

edge in to the extended states is given by

a = e g(Ec) y^T exp. [ -(Ec- Ep) /KT] ..(2*3)

Where^is the average mobility.

The number of electrons is given by

00

n = / g(E ) exp. [ - (E - Ep)/KT ] dE 
Ec

= g ( Ec) KT exp. [ - ( Ec- Ep) /KT ] . . (2 .4 )
'

/ ,

In order to get an idea of the order of magnitude oij' yf2|> 

we shall follow Mott's treatment. We define / /:
0

a (Ec)-=e 9(EC) v^KT.

If g(E ) =<g(Ec)>/3, where,
v

<g(Ec) >is the average density of states over the band, then 

a(Ec) = e < g(Ec)>+icKT/3

Mott calculated the lowest value of the electrical

conductivity before the start of an activated process, i.e. 
jsut) at Ec.

/ This quantity he called the "minimum metallic conduciti-
/

v,ity". He derived the expression
/T"V Const e2 of mm )= *Ka ..(2.5)
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Where the constant lies 

and 0.1., is usually of the

Taking ^constant = 0.026,

in the range between 0.026 
order 200-300 sf im-1. 

one finds for the mobility

Uc= 0.078 (e/tfa)/<g(E)>KT

In the nearly free electron model, g(E) is given by 

g (E) = Km/2n*fi2

on the other hand, the maximum energy Emax. of the band which 

also yields the width B of the band, is expressed by

2 2Emax = -—11-----  and Kmax = II /a
2 ma2

This yields g(E) = —----
a3 B

Introducing this result in the expression for the yc: 

one gets.

V c = 0.078 ea B
i? KT (2.6)

Taking a = 2A°, B = 5 eV. One finds at room temperature that
_ *1jv(3i = 10 cm VS. This value corresponds to a mean free 

path comparable or less than interatomic distance.

Cohen (2.3) suggested that conduction in this case 

would be more properly deseribed as a diffusion or Brownian- 

type motion. In this regime the mobility can be obtained 

with the help of Einstein equation,

u = eD/KT
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The diffusion coefficient D may be written as D = (l/6)ya2 
Where y is the jump frequency and 'a' the interatomic 

separation. The mobility in the Brownian-Motion regime is 
then given by

1_ ea2 Y
6 KT ..(2.7)

This expression yields the same temperature dependence 
as (2.6) derived by Mott. Sincey ocl/KT, one expect that the 
expression for conductivity is of the form

a =aoexp. [ -(Ec-Ep) /KT] ..(2.8)

This equation is used for calculation of activation 
energy. Optical absorption of amorphous semiconductors has 
shown that band gap decreases with increasing temperature. 
The energy distance (Ec-Ef ) shows similar behaviour under 
the assumption of linear temperature dependence.

Ec - Ep = E (0) - y T . . (2 .9 )

The expression for the conducitvity becomes
a = cro exp.(—) exp. [-E(0)/KT] ..(2.10)

Here E(0) is energy disance at T = Ok.
We can write this formula in the form

o = Co exp. [-E(0) /KT] ..(2.11)

where
CQ = e g(Ec) KT yc exp. (y/k) ..(2.12)

As seen before • uy0, is proportional to 1/T, So that the pre-
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exponential factor 0’S is temperature dependent. Mott^2.4)has

made an estimate of the preexponential cl6\ In general 0/©
, «-l -1may lie between Id and 10 si cm , in most amorphous semicon­

ductors, An estimate of y can be obtained from the temperature 
dependence of the optical gap. In chalcogenide glasses the 
temperature coefficient of optical gap generally lies between 
4 x 10 and 8 x 10 eV deg-x . As the Fermi-level is situated 
near the middle of the gap, values of y is approximately half 
this magnitude are expected and hence values of exp.( y/K) 
in the range 10 - 100 are most probable.

2.1.2 CONDUCTION IN BAND TAILS :

The conduction takes place due to the carriers excited 
in to the localized states at the band edges i.e. at EA or EB. 
Conduction can only occur by thermally activated hopping. 
Every time an electron moves from one localized state to 
another, it will exchange energy with a phonon. It may be 
expected that the mobility will have a thermally activated 
nature,

pfhiy = H/ojexp.I- fiEi] .Az-li

where uo = (-£■) y/ph e2 R2 
KT . . (2 .14)

where yph is the phonon frequency and R is the distance cove­
red in one hop.

For a typical phonon frequency yph = 1$^ S_1and W = KT,
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-2 2 -1 -1yields a mobility of the order 10 cm VS at room tempera­
ture. Comparison of this value with the one calculated for 
conduction in the extended states suggest, as postulated 
by Mott, that the mobility may drop by a factor of at least 
100 at the energy which separates the localized and non-loca- 
lized states. The conductivity, being an integral over all 
available energy states, will depend on the energy distri­
bution of the density of localized states. If one assume 
that the density of states g(E) behaves as some power S of E,

g(E) = (^lyl (E - EA)S ..(2.15)

with AE = Ec-Ea, then the conductivity a hop due to electrons 
can be easily calculated,starting from (2.2).

a/hofo = Ojoho^ (KT/AE) s c exp.t- ——--- 1KT

where °ohop = (-g-) Yph e R2 g(Ec)

and C = SI - (-^|-)S exp. (- [l + s(-~|-) +

s(S+l) <~>2 +

..(2.16) 

. . ( 2. 17)

For the specific case of s=l (linear variation) 
The conductivity is given by

with
o^= aoihopx\.- ci exp. [ - ( Ea “ Ep + W)/KT]

ci= l - exp. (Ae/KT) [1 + (Ae/KT)]

. . ( 2. 18) 

..(2.19)
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2.1.3 CONDUCTION IN LOCALIZED STATES AT THE FERMI-ENERGY :

If the Fermi-energy lies in a band of localized states, 
as predicated by the Davis-Mott model, the carriers can move 
between the states via phor.on assisted tunneling process. 
This is the transport analogous to impurity conduction obser­
ved in heavily doped and highly compensated semiconductors 
at low temperatures. An estimate for the temperature depen­
dence of the hopping conductivity at E has been given by 
Mott(2.5) we shall follow his original derivation. Let us 
consider an electron that is scattered by phonons from one 
localized states to another. The jump probability between 
the states is denoted by three factors, which are the foll­
owing :
1) The probability of finding a phonon with an exciatation 
energy equal to W, given by Boltzmann expression exp.{-w/kT).
2) An attempt frequency which can not be greater than
the maximum phonon frequency (in the range of lO1^ - luV':}

3) The probability of electron transfer from one state to 
another.

This factor depends on the overlapping of the wave 
functions and should be given by exp. (-2<* R). Here R is the 
jumping distance, which at high temperatures equals the inter­
atomic spacing, and « is the quantity which is representative 
for the rate of fall-off the wave function at a site. If
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overlapping of the wave functions is important, the factor 
exp. (-22R) becomes of the order of one.

The probability P that an electron jumps will then 
be expressed by.

P =Yph exp. (-2aR - W/KT) ..(2.20)

By using Einstein relation for mobility.

V = with D = (—| ) PR2

so a = (1/6) e2R2 P g(Ep) ..(2.21)

where g(Ep) is the density of the states at the Fermi-level. 
Using eqh (2.20), the conductivity is represented by

° = <4> eiR2 Tph 9<V exp' (-2‘R - *T > ..(2.22)

As the temperature is lowered, the number and energy 
of phonons decrease, and the more energetic phonon-assisted 
hops will progressively become less favourable. Carriers 
will tend to hop to large distances in order to find sites 
which lie energetically closer than the nearest neighbours. 
This mechanism is so called variable range hopping. The factor 
exp. (-2»r-w/KT) will not have its maximum value for the near­
est neighbours. In order to find the most probable hopping 
distance, Mott used an optimization procedure. This is as 
follows,
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If g(w) is the density of states per unit volume per 

unit energy, then the number of states with energy difference 

W within a distance R from a perticular atom is given by

4 -JL- ,3 R3 g!w) W

The electron can leave its site only if the number of 

accessible sites is at least one. Taking this in to account one 

gets for the average energy spacing between states near Fermi 

level,
w > -----3--------

4BR*9(V ..(2.23)

and for the jump probability,

P =. Yph exp.[-2«R-(-|l) g(EF)R>KT]-1 ..(2.24)

The most probable distance is found by minimizing the 

exponent of the above expression as a function of R,

R r 9 a/4
L 8n ocg(Ep) KT J

This gives the jump frequency of the form

.. ( 2.25)

P = Yph exp. (- ^

where A = 2.1 [ oc

K g(Ep5
1/4

• • (2 -26)

.(2.27)

Mott's treatment of variable range hopping leads to a tempera­

ture dependence for the conductivity of the form
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a (1/6) e2R y^g(Ep) exp. (-A/T1//4) . . ( 2.28 )

or a . . ( 2.29 )

In the recent literature many experimental studies, 

especially on the tetrahedral bonded materials, dealt with 

variable range hopping. In many cases, unreasonable high 

values were calculated for g(Ep ) or N(Ep ), very often by

dependence of In a is widely observed, these findings seem 

to indicate that the above expression do not describe in 

an exact quantitative way the conductivity. A review article 

on hopping conductivity in disordered solids has recently 

been published by overhof (2.6).

2.2 THERMO ELECTRIC EFFECT IN SEMICONDUCTOR.

Fundamental information about the mechanism of conduc­

tion in solids can be obtained from studies cf the thermoelec­

tric effect. In 1821 Thomas Seeback found that if a metal 

is connected at its two ends with a second metal, and if 

one of the junctions is heated, a voltage is developed across 

the open ends of the second metal.

The schematic circuit for the measurement of thermoele­

ctric voltages for a semiconductor is given in fig(2.2 ) .ifJthe 

metal contacts are applied to the two ends of a semiconductor
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than the other, a potential difference will be developed 
between the two electrodes. This thermoelectric or seeback 
voltage is produced partly because of the majority carriers 
in semiconductor defused from hot to cold junction per second, 
thus giving a potential difference between the two ends. This 
voltage builds up a value such that the return current just 
balances the diffusion current, when a steady voltage is 
reached.

In the experimental arrangement of Fig.(2.2). If the 
charge carriers in semiconductors are predominantly electrons, 
the cold junction becomes negatively charged, if the carriers 
are positive holes, the cold junction becomes positively 
charged. The magnitude of the voltage Vs is proportional 
to the difference in temperature between the hot and cold 
junction.

From the sign of the thermoelectric voltages, it is 
thus possible to dedupe whether a specimen exhibits n-type 
or p-type conductivity further from the magnitude of the 
thermoelectric voltage one can determine the concentration 
of charge carries in the specimen.

Semiconductors exhibit thermoelectric behavior in cir­
cuits with metals, the magnitude of the thermoelectric quanti­
ties exhibited by semiconductors are often much larger than 
those exhibited by metals. The thermoelectric properties

of semiconductors can be used to know the position of Fermi
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level with respect to band edges.
A typical thermoelectric circuit containing a semicon­

ductor in the form of long thin rod, with metal contacts 
at its two ends is shown in Fig. (2.2). One end of the rod

t

is kept at a reference temperature To, while the other end 
is placed at To + T. Let us suppose that, a linear temperature 
gradient exists along the rod, which is p-type. Under these 
conditions, the Fermi-level in the metal and semiconductor 
and the edges of the semiconductor band assume the position 
shown in the lower part of the Fig. (2.3). The semiconductor 
band edges, become tilted as indicated. While the Fermi-level 
also become tilted, with a somewhat diferent slope. The Fermi 
level in the semiconductor is continuous with the Fermi levels 
in the metals at two contacts. The Fermi level in metal wires 
leading away from the contacts do not change with temperature 
as compared to the magnitude of change in Fermi level in 
semiconductor, hence the Fermi level in metal wires are shown 
horizontal in Fig.(2.3). The seebeck voltage of the circuit 
is essentially given by the difference in the Fermi level 
from one end of the semiconductor ro.d to the other end. In 
the case of uniform p-type semiconductor taken as an example, 
the right end of the rod becomes negative with respect to 
left hand side.
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If the temperature difference is small the effects 
depicted in Fig. (2-3 ) will be linear with temperature and 
hence linear with horizontal distance across the diagram.

AT is called the thermoelectricThe quotient between
power. Its physical dimensions are volt per degree, it is 
distignated by a symbol S. If both the hot and cold junctions 
are raised or lowered in temperature keeping T same. It will 
be found that S varies with mean temperature. The variation 
of S with temperature can just be well observed by keeping 
the cold junction at temperature T and plotting the thermo­
electric voltage V/tp against the variable temperature To + AT 
of the hot junction. The slope of this plot at temperature 
T gives the value of S at that temperature.

The tilting of the energy bands and Fermi level in 
the semiconductor sustaining a temperature gradient can be 
explained as follows. Because of the temperature gradient, 
there will be a diffusion of positive holes down the tempera­
ture gradient from right to left. The cooler end of the speci­
men, therefore becomes positively charged and a steady state 
potential difference in question is given by the vertical 
distance d on the diagram.

Even if there were no concentration gradient of majority 
carriers, there would still be a small potential difference 
generated between the two ends of the specimen. This differ-
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ence would result from the fact that those holes crossing 
an imaginary cross section of the specimen by random thermal 
motion would be going ^lightly faster in the right to left 

direction than in left to right because they come from a 
warmer region of the specimen and hence have higher thermal 
kinetic energies. For semiconductor in the impurity dominated 
and intrinsic temperature range, however this effect is small 
compared with the effect of diffusion and may be neglected 
in approximate theory.

2.3 SEEBECK EFFECT AND THERMOELECTRIC POWER :

The Fermi-level in p-type semiconductor rises with 
temperature towards the middle of- the forbidden gap. Hence 
the total rise of the Fermi-level in Fig. (2.3 ) from cold 
end of the specimen to the warm end is given by the sum of 
rise in the upper edge of the valence band and the additional 
increase due to the rise of the Fermi level above the valence 
band edge. In other words,

Vs = d+-^T- 4T ..(2.31)

Where Vs is voltage which would be indicated by a high 
resistance voltmeter in the metallic part of the circuti.

The calculation of the thermoelectric quantity Vsj in 
terms of basic physical quantitis is straight forward for 
simple cases of semiconductors in which only one type of 
conducting particles need be considered. In the p-type speci-
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men indicated in Fig.(2.3) the right to left current density 

due to diffusion is

IRL = DP <3

Where Dp is diffusion constant, dp/dx is rate of change 

of holes with distance and q is charge on the hole.

The left to right return current due to electric field 

set up by this process is.

!rl = P hp q ex
Where Ex is electric field, p-number of holes and yp 

is hole mobility.

In steady state, these two currents are equal giving

Dp q _d£
dx p pflq Ex ..(2.32

using Einstein relationship, we may write D = KT yp/q and 

assuming the electric field to be uniform (as it will be 

for a small temperature difference and uniform gradient ) 

we may set d/L for Ex where L is the length of the specimen, 

with these substitutions, and rearranging above equation 

we get.
dp
dx

pq
KT . . (2.33)

However dp _ _djp_ dT _ dp A T 
dx dT dx dT L

Therefore above equation becomes
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d£_ = _1_
dT KT AT

From the Fermi statistics,

,3/2p = 2 UT

where u = 2.42 x 1015 cm-3 AB S-3^2

e -q^KT

..(2 .34)

result 

we get

Differentiating with 

in above equation and

9

d d Vf Vf
dT T

respect to 

simplifying

+ 3 K 
2 q ) AT

T, and putting the

. . (235)

combining equation (34 & 35)

VS = Vf 3 K
T 2q ) AT

Since S VS/AT,

S

we have

VF 3 K
T 2 q

• • (2 -36)

..(2.37)

These last two equations for seebeck voltage and thermo­

electric power are only approximate. Their derivation negle­

cted the effect described earlier in which a small contri­

bution to S comes from the difference in mean thermal kinetic 

energy of particles diffusing randomly in two directions 

in the specimen. The correction to take account of this effect 

yields for Vs and S.

and

Vs

S

VF
T
Vf
T +

2 K 
T

2K
q

) A T
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Therefore S - —< 2 + -f£- ) ..(2.38)

A similar derivation holds for n-type semiconductor 

leading to equations similar to the two above, expect that 

the signs of Vs and S will be negative and that (Vg- Vf ) 

will appear instead of Vf. Equation (2.38) gives us an inde­

pendent method for determining \| in a p-type semiconductor 

sample and hence for obtaining by calculation a value for 

the hole concentration P. Therefore we have,

2.4

P = 2UT3/2 e~qQ/K+2

In case of an n-type semiconductor above

THERMO-ELECTRIC POWER :

. . (2 .39) 

formula becomes

.. (2 -40 )

Important information about the transport mechanism 

in amorphous semiconductors has been obtained from thermo 

power data. In this section we shall derive the formulas 

for the thermopower associated with the three possible proce­

sses of conduction.

Fritzsche (2.7) has given a general expression for 

the tnermopower S

s k_ fu (E) g(E) [ (E -Ef)/KT] f ( 1 - f ) dE 
q J_m(e) g(E) f(l-f) dE • • (2 -41)

where f is the Fermi-Dirac distribution function. For nonde­

generate semiconductor classical Boltzmann statistics are
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appropriate. In this case the factor f{l-f) in (41)redu- 

ces to a Boltzmann factor f = exp.[-(E - Ef)/KT].

2.4.1 CONDUCTION IN EXTENDED STATES :

Under the assumption of a constant density of states 

and an energy independent mobility the thermopower can be 

readily found by integrating equation (41). This yields an 

expression for the familiar form for band conduction of elec­

trons

S _k
q

Ec - E'F) 
KT + A) ..(2.42)

with A = 1

In crystalline semiconductors it is well known that 

the kinetic term A depends on the scattering mechanism. Hind- 

ley (2 *8 ) has found a similar expression for using the random 

phase model. If both the electrons and holes contribute to 

the conductivity, then the thermoelectric power is the alge­

braic sum of individual contributions Se and Sh • Thus we 

have
Sea&i' Sh ah I
ae + ait ' ! ..(2.43)

where S e ~

Sh =

Thermoelectric power of electron. 

Thermoelectric power of hole. 

Conducitivity of electrons. 

Conductivity of holes.
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2.4.2 MOTION OF CARRIER IN LOCALIZED STATE NEAR THE 
MOBILITY EDGE :

The thermoelectric power by carrier in the localized 
states of a band tails will be given by

s =___k f [( E-Ef)/KT] exp. [ - (E-Ef )/KJ] q(B)dE
q n ..(2.44)

If density of localized state behave like some power 'S' 
of the energy E,

g(E) or N(E) =(Ec-EEa) 3 *E ” Ea ^

then we have
S =

where C is defined

__k_ , Ea~q 1 KT

as before,

ef , c*

in dc conductivity /

A E/KT
C* = / e-x xs+1dx

HereAE = Ec - Ea is the width of t-he tail and x = (E - Ea)/KT.
If the carriers move by hopping in the localized states, 

the conductivity varies nearly exponentially with temperature, 
and the measured activation energy is the sum of the activa­
tion energies for carrier creation and for hopping. The acti­
vation for hopping does not appear in the expression for 
S and, therefore, one expects a difference in slope between 
the conductivity and thermopower curve.
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2.4.3. MOTION OF CARRIERS IN LOCALIZED STATES AT THE 
FERMI-ENERGY :

At low temperature, charge transport can arise from 
electron tunneling between states at EF. Cutler and Mott(2.9) 
Suggested that the thermoelectric power in this regime should 
be identical to equation used for metalic conduction.

c = n2 K2 T f d lnfT(E) .b 3 e 1 dE J Ef .. (2.45)

Since the Fermi level lies in a region where the density 
of states is finite. The thermoelectric power is small. Its 
sign may be negative or positive depending on whether the 
major contribution to the current will lie below or above 
the Fermi energy. Several authors (2.10-2.13) have calculated 
the thermoelectric power in the variable range hopping regime.

2.5 CONDUCTION BY SMALL-POLARON MOTION :

The formation of small polaron in non-crystalline mate­
rials has been discussed by Emin(2.14). He argued that the 
probability of small polaron formation in disorder state 
is largely increased as compared to the crystalline state. 
It may be remembered in Davis and Mott model that existence 
of mobility edges at the energies which saparates the loca­
lized tail states from the extended states. The existance 
of such tail states does not appear in a small polaron band.
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If the charge carrier remains in the vicinity of a perticular 
atomic site over a time interval long enough for displacement 
of the surrounding atoms to take place, a potential well 
may be created which can lead to trapping of the carrier.
The unit built up by the trapped carrier and its induced
lattic deformation is called a polaron. The polaron has a 
lower energy than the free electron but has a larger effec­
tive i^ass, since it must carry its induced deformation with 
it as it moves through the lattice. The decrease in energy 
of a small polaron relative to that of the electron in the 
undistorted lattice is called the small-polaron binding energy.

In paper on 'small polaron motion' Holstein (2.15)
introduced the fundamental concept called coincident event
which characterizes the hopping mechanism. In 'adiabatic' 
regime, the electron goes backwards and forwards several 
times during the period that the two potential wells have 
equal depth. The carrier will possess a high probability

the adjacent site. In 'nonadiabatic' regime the
electron can not follow the lattice vibrations and the time 
required for an electron to hop is large compared to the 
duration of a coincident event. In this case carrier will 
have many coincident events before it hops, its probability 
for transfer being much smaller than in the adiabatic case.

The dc conductivity for small polarons, being proporti­
onal to the probability for hopping, is given by



64

0 ( KT } P . . (2 .46)

The jump probability P, can be written as a product 
of two terms: the probability Pi for the occurance of a coin­
cidence event and the probability P2 of charge transfer dur­
ing this event. The probability for a configuration with 
equal potential can be expressed by

Pi = 0) o

TT" exp. { - w
KT . . (2 .4^

where a)£S^2n is an average phonon frequency and w is the mini­
mum energy necessary to obtain two equivalent sites.

The total probability P becomes

P = exp. (- W/KT) P2 ..(2.48)

In the adiabatic regime, where the carrier can follow 
the motion of the lattice, the probability for jumping dur­
ing coincidence is high, and one can put P2 =1. In the non 
adiabatic regime where the carrier is slow, one expects P2<<1 
Holstein (2.17) derived the following expression for P2:

P2 n 1/2
WKT ..(2 -49 )

The electronic transfer in integral J is a measure 
of the overlapping of the wave functions.

The transport property, thermoelectric power S, rece­
ived special attention in the experimental studies on small

M«S. Mi
nim*|

n



polarons. For small polaron hopping, S was found to be expr­
essed by a formula of the classical form

S K
e . .(2.50)

Where E is the energy associated with the thermal gene­
ration of the carriers.

2.6 SWITCHING IN NON CRYSTALLINE SEMICONDUCTORS :

Amorphous chalcogenide alloys were among the first 
and certainly have been the most investigated materials which 
exhibit the phenomenon of "threshold switching" discussed 
by ovshinsky in his landmark paper ( 2.18 ). When electric 
field in excess of about 105V/CM. are applied to this mate­

rials, a metastable state of high conductance appears, in
19 -which of the order of 10 cm free electrons move with mobi­

lities of approximately 10 cm2/V-S (2.18 ). When the current 
is reduced below a critical value, the material returns to 
its original low conductance state.

The detailed experimental observations of switching
in chalcogenide can be explained by VAP Model (( 

equillibrium, the charged centres, e.g. C3 and
efficient traps for field-generated as well as photogenerated 
carriers, and the trapping time is considerably shorter than 
the transit time. However, beyond the critical value of the 
applied field, sufficiently free-carrier generation takes
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place so that the charged traps are all occupied and thus 
netural. Since the concentration of the positively and nega­
tively charged centres were originally equal, the material 
remains neutral after charged trap saturation. Only neutral 
traps remain, so that the trapping time increases^ Sharply 
if it becomes large compared to the transit time, the current 
rises dramatically, initiating the switching. Note that it 
is essential that a sufficiently high carrier to netural 
defect interconversion exist to retard this possibility over 
the time necessary for the switching transition, since such 
interconversion would tend to pin the quasi-fermi energies. 
When the current is reduced below the values necessary to 
sustain sufficiently carrier concentrations to keep the char­
ged traps filled, the material quickly transforms to the 
nonconducting state.



67

REFERENCES

2 *1 Davis,E.A., Mott.N.F. Philos. Mag. 22(1970) 903.
? 9 Mott N.F. "Electrons in non-crystalline materials" 

Ed by comber P.G., Mort.J. Academic Press London New 
York (1973) P.l.

2.3 Cohen M.H. J. Non-crystal solids 4(1970) 391.
2.4 MottN.F. Philos. Mag. 22(1970) 7
2.5 Mott N.F. Philos. Mag. 19(1969) 835
2.6 Overhof. H, "Hoping conductivity in disorder solids" 

Advances Solid State Physics Vol. XII ed by Treasch J. 
(View eg. Braunschweig) 1976 P.239.

2.7 Fritzche H, Solid State Commun 9(1971) 1813.
2.8 Bindley N.K. J. Non-crystalline solid 5(1970) 17.
2.9 Cutler M, Mott. N.F. Physics. Rev. 181(1969) 1336.
2.10 Zvyagin I.P. Phys. status solid.(1972) 733.
2.11 Capek V, Phys. status solid b 57(1973) 57.
2.12 Overhof H, Phys, status solid b 67(1975) 709.
2.13 Brening W. In Proc. 5th Int. Conf. Amorphous and liquid 

Semiconductor Ed by stake J. Brenig W. (Taylor and 
Franci London (1973) P. 31.

2.14 Emin D. "Aspects of the theory of small polarons in 
Disordered materials" in electronic and structural
properties of Amorphous Semiconductor Ed. by comber 
PG, Mort J Academic Press london New York (1973) P.261.



68

2.15 Holstein T. Ann. Phys. (NY) 8(1959) 346.
2.16 Friedman L. Holstein T. Ann. Phys. (NY) 21( 1963 ) 499 .
2.17 Scholtke K.D. Z Phys. 196(1965) 393.
2.18 Hanisch H.K. Fagan E.A. and Ovshinsky S.R. J. non-cry­

stal solid 4(1970) 538.
2.19 Lampert M.A. Physics Rev. (103) (1956) 1648.
2.20 Brodsky M.H, Amorphous Semiconductor Springer Verlag 

Berlin Heidelberg New York (1979) 120-142.


