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CHAPTER = II

AMORPHOUS SEMICONDUCTORS

Considerable work has been done on elementary semi-
conductors and large data is available; but in compression
to crystalline materials very little literature is available
for amorphous semiconductors. In order to understand amorphous
semiconductors, band models of amorphous semiconductors are

understood on the basis of band theory of crystalline solids.

2.1 BAND THEORY OF SOLIDS :

In sommerfeld model, it is considered that the
electrons are free and the potential inside the solid is
constant; but in solids the electrons are not ideally free
and the potential in which they move is not constant but
periodic in nature. The wave function of the electrons can

be represented by the well known Bloch function :

i.e. \Pk (r) =u (x) eikr veo (2.1)

where Uk(r) is known as modifying factor and it has the

periodicity of lattice.
U, (r+ Rj) = Uy (r)

The lattice is described in terms of the lattice wvector

Rj such that,

where j; are integers and a; are the edges of the unit cells.

function is alsoc periodic in nature.
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i.e. \Pk (x + R) = \Vk (x) ess (243)

The electron is moving in a potential which itself is

periodic in nature (Figure 2.1).

i.e.s V (x + R) =V (x)
The translational order is represented through the periodicity
of the crystal. The periodic boundary conditions require
the propogation vector,

2nn
k = -———— -

Na

where N is number of atoms in the crystal and a is lattice
constant, n is an integer. The motion of particles in such
a periodic structure gives us an idea about the existence of

forbicdden zones, at the k values given by

R
k= 4+ we , + gg ’ + -3-11 LX) (204)
- a = a - a

The energy is represented as function of k shown in Figure (2.2).

The energy band in solids can be understood by
different models existing in standard solid state books. The
reduced zone, E-k diagram, the first Brillouin zone between

n
+ - gives an idea about motion of particles in solids. In

a

the forbidden zone, k values are complex and imaginary and

the existence of particles in forbidden zone is not allowed
for a perfect structure. In the allowed zone the electrons

are occupied according to Pauli-exclusion principle i.e.



vix)
—> X
b "0 ’ y

a

FIG 21  Periodic matuse of  poperybiol

™

N

|
[ |
b |
! )
{ | 1 i I [
-37 .27 -&¥ o I 2T 37
[~ a a

Z
Ao

£
<€

a
FIG-22 “Moditication of parabola rule” B low/ans ores.

f{///////// //// 77
//3////////// ///// ) Y

ITrnswlafor Serynicondu cton Metod
FIG-2-3 Cldssz'%/'caﬁm ot Solids:




12

two particles per state (with opposite spins). On the basis
of this band approach, solids are divided into three groups,

metals semiconductors and Insulators Figure (2.3}.

2.2 SEMICONDUCTCRS :

There are large number of materials which have
resistivities lying between those of insulators (1014 to
1022 ohm cm ) and conducters (10-6 ohm cm). Such material are
known as semiconductors. Semiconductors have negative
temperature coefficient of resistance i.e. conductivity of

semiconductor increases rapidly with increase in temperature

(Figure 2.4).

Semiconductor Germanium or Silicon, is having four
valence electrons. When the two atoms of germanium are brought
close to each other, the positive core of one atom interacts
with one of the valence electrons of the other atom. Bach
core will attract the electrons of the other atom and the
two electrons will be shared betweeen two atoms (Figure 2.5).
Equilibrium state will reach when the attractive force is
balanced by the repulsive force, betweeen two positive cores

and a covalent bond is thus formed,

At ordinary temperature, because of thermal energy,
crystal lattice is in continuwus random motion. As a result
an individual electron of a covalent bond acquires sufficient

energy even at room temperature to break the bond and becomes
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free. These electrons move freely in crystal. When an electric
field is applied, this random motion experiences a drift
towards the positive electrode representing the flow of

current,.

when electron is escaped from covalent bond to become
free then empty space left behind is called a hole. When a
hole is created it moves in the crystal in a random way in
the same manner as do free electrons. In the presence of an
external electric field, a steady drift towards the negative
electrode is superimposed upon the random motion of these
holes and this represents a current flow which is transported

by the absence of electrons.

2.3 BAND STRUCTURE OF SEMICCNDUCTORS :

When two similar atoms are brought close together,
there is an interaction of coupling betweeen the orbits of
their electrons that causes splitting of each individual
energy level into two slightly different levels. In solid,
there are large number of atoms which are very close together,
therefore, the energy levels are produced, after splitting
due to interaction or coupling betweeen orbits of different

electrons.

Figure (2.6) shows energy band diagram of diamond
lattice as function of atomic spacing, when the atomic spacing

is sufficiently larce, interaction between atoms is negligible
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and energy levels are those to be found in isolated atoms
(position A). When atoms further come close to each other,
their interaction increases and the two energy levels split
into bands (position B). at position C, in figure the two
bands overlap and when atomic spacing is further reduced
(position D), the bands spread widely. The lower band is
completely filled, is called valence band, where as the upper
band is normally empty band, is called conduction band. The
gap between these two bands is called forbidden zone, Eg. It
is the minimum amount of energy that should be imparted to

the electron in valence band to jump to conduction band.

2.4 TYPES OF SEMICONDUCTORS

2.4.,1 INTRINSIC SEMICONDUCTOR :

when the conductivity in a crystalline semiconductor
is due to breaking of covalent bonds, the substance is said
to be an intrinsic semiconductor. The conductivity increases
with increase in temperature. In case of germanium the
forbidden energy gap is about 0.67 eV wide at 300 k. at
room temperature there is enough thermal energy to excite an
appreciable number of electron~hole pairs. This process is
called intrinsic excitation and the resultant conduction
is called intrinsic conduction (Figure 2.7 a). The pure semi-

conductors are intrinsic semiconductors.



15

2.4,2 EXTRINSIC SEMICONDUCTOR 3

Semiconductors in which impurities control the
carrier density are called extrinsic semiconductors. The
conductivity of crystalline materials could be changed by
adding a very small amount of either a penta valent or tri-
valent impurity. The process of adding impurity is known as
doping. Semiconductors thus produced are called extrinsic
semiconductors. Due to additiocn of impurity to any semi-
conductor, one or more new energy level may appear in the
band structure. The impurity may be termed as donor or
acceptor depending upon the impurities contribute extra
electrons or hole to the cause of conduction in the crystal,
A crystal which has donors, is called as n type semiconductor
(Figure 2.7b), because the charge carrier are negative and
crystal with acceptor type impurity, is called p type semi-

conductor, because the charge carrier are positive (Figure 2.7C).

2.5 FERMI LEVEL IN SEMICONDUCTOR :

In orcder to find out the total number of particles
available in solid, one must know the density of states and
the Fermi-Dirac distribution. The occupation number for

electron is given by

PE) = s eee (2.5)
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m* - effective mass of electron.
The density of state in conduction band is,

O

ng = j; (Gensity of state) x (occupation number)dE
= {oo N(E) £(E) G eee (2.6)
But
N(E) = 5:;5 ( ;;i )32 (& - 52 cee (2.7)

Using equation (2.5) and (2.7) in equation (6) one can

evaluate equation for Fermi energy,

E *
N T PP e 2
2 4 me

Equation (2.8) gives position of Fermi level in semiconductors.
Ferml level is the energy of reference level at which the

probability of filling is exactly half. The fermi level in

semiconductor changes appreciably with change in impurity

and concentration. The variation of fermi level with impurity

concentration enables the operation of the various junction

devices.

2.5.1. Intrinsic Semiconductor :

For intrinsic semiconductor , mﬁ = m; . The concen-
tration of electrons and holes is equal. Therefore from

equation (8) we get,
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E E_+ E
EF = _g = ..S ..... at T = 0
2 2

i.e. the fermi level lies exactly middle of the forbidden

gap. In general mf is slightly greater than mz

. The fermi
level rises up as the temperature is increased; but for
practical purpose, fermi level can be assumed to be constant
for intrinsic semiconductor for a wide range of temperature

(Figure 2.7 4).

2.5.2. n type semiconductor :

n type semiconductor consists of a conduction and
below which there are donor levels of energy Eh. At absolute
zero, the Fermi level lies midway between donor levels and
bottom of the conduction band. As temperature increases the
fermi level takes a very small initial rise upward after
which it moves downward in the fcrbidden energy band. At
high temperature, the Fermi level approaches the middle of
the band gap which is the intrinsic position. As the crystal
becomes more n type, the fermi level rises closer to the
conduction band and may even go into conduction band, when

doping becomes high as shown in Figure 2.8,

2.5.3. P type semiconductor :

At absolute Zero (T = 0), the Fermi level comes at
EA/Z, midway between top of the valence band and acceptor

level. As the temperature increases, the fermi level first
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lowers slightly and then it increases with increasing
temperature. At high temperature the fermi level approaches
to middle of the band gap which is intrinsic position. As
crystal becomes more P type the fermi level comes closer to
the valence band and may go even in the valence band when
the doping level of acceptor impurities become very high

(Figure 2.9).

2.6 AMROPHOUS SEMICONDUCTORS :

As stated earlier in crystalline solids, the atoms
are stacked in a regular manner, forming a three dimensional
pattern. When the periodicity of pattern extends through
certain piece of material, one speaks of single crystal. In
polycrystalline material the periodicity of structure is
interrupted at grain boundaries. When the size of a grain
becomes to size of pattern unit, then one speaks of amorphous

substance.,

Amorphous semicohductors are non-crystalline materials.
They lack long range periodic ordering of their constituent
atoms. Amorphous semiconductors do not consist of closed
packed atoms but they contain covalently bounded atoms
arranged in an open network., The Bloch function in existing
form does not hold in amorphous materials. The disorder in

amorphous semiconductor is as follows :

(1) Topological disorder - This is due to {a) Atoms are not
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occupying regular sites (b). They are crowded at one place
forming clusters (c¢) Planes are missing from the structure.
It is heavily perturbed system and because of perturbation

the potential fluctuations give rise to localized states.

(2) Translational disorder : The long range order is absent
but short range order is responsible for observable properties.
The potential in amorphous material is periodic for few atoms
i.e. periodicity of potential is limited. The Bloch function

in the existing form does not hold in amorphous material.

(3) Compositional disorder : The composition of elements

in amorphous material may not be in the same ratio and it
will give rise to localized states in forbidden zone. This
may be considered on same line, when crystalline semiconductors

are doped by different impurities.

The amorphous semiconductors include two classes -
(1) Chalcogenide glasses (2) oxide glasses. The chalcogenide
glasgses are materials like Se, asg, Ge, Te, etc. They are
semiconductors with forbidden gap that range from 1.5 to
2.5 eV. They are very good glass formers with transition
temperature (Tg) in the range of 300°K to 600°K, where as
oxide glasses are made of oxides of group III, IV and V

elements.

Scientific investigation of amorphous semiconductor

was originated in the work of A.F. Ioffe and A.R.Regalz’s.
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Ioffe discussed the principle features of electronic
structure of amorphous semiconductors. The band gap depends
upon short range order than long range order. Anderson2‘6'2‘7
in 1958 showed that sufficient disorder could localize all
states in an energy gap. In 1961, Mott and 'I'owsez‘8 discussed

one dimensional state.

In order to throw light on the nature of type of
short range order, a radial distribution analysis of electron
diffraction is impecrtant. The observed radial distribution
function for an amorphous GeTe film is taken as an example.
Figure (2.10) shows the radial distribution function of
amorphous GeTe film. Not only the magnitude of order can be
obtained from such a graph but also the bond length can be
obtained since the location of peaks or maxima in radial
distribution curves gives the sequence of characteristics
bond length of specimen. The area under the peaks gives an
average value of the number of atoms at radial distance r
from some origin atom in the specimen. The width of peaks
indicates some spread in the interatomic distance and the
decreasing amplditude of the oscillations with r shows the

lack of long range order.

Further discussion of the structure of amorphous
semiconductors is obtained by X-ray diffraction studies.
Structural models of amorphous solids can be constructed to

give the best fit to the experimental radial distribution
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curves, together with any other conditions required by the
nature of the bonds surrounding each atom. Structural changes
in an amorphous solid, as a function of temperature, can

be obtained from Differential thermal analysis.

A lot of interest has now diverted to the study of
amorphous solids and is thus the subject of number of
theoretical and experimental investigations. The main purpose

of these investigations, is to -

(a) ascertain whether the amorphous structure is homogeneously

random or microscopic crystalline in nature.

(b) compare structural characteristics (short range order
and bonding nature) of amorphous and crystalline phases of

the same materials.

(c) understand how the energy band diagram, the character
of energy state and transition probability between states
and transport processes are changed going from crystalline

to the amorphous phase of the same material.

The answer to such questions are expected to be
revealed by the study of structural, optical and electrical
properties of suitably chosen semiconductors which exist in

both the crystalline and amorphous states.

2.7 LOCALIZED STATES :

The concept of density of state is applicable equally
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to both crystalline and non-crystalline materials. The
density of state is denoted by N(E) and is defired so that
N(E)dE is the number of states in unit volume for an electron
in the system with given spin direction and with energy E
and B + dE€. The number of electrons in the energy range JdE

for each spin direction is,

N (E) £(E) cE

where f{(E) the Fermi distribution function

f(E) ER e e o e e o e T (209)

The Fermi energy Ep is function of temperature when the
scattering of electron is weak, in which electrons are
described by wave functions, each having a fairly well
defined wave number k. The mean free path L 1is large and the
uncertainty ak in k is given by relation,

ak
Lak ~ 1, such that -- (\.—(Ll
k

In this case energy E of each electron is a parabolic function

of kX, so that

E [ —— s o0 (2.10)

The density of states for the electrons is given for each
spin direction by the free-electron formula,
2
de
N(E) = §m (2
gn3 dk
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B e 5 e (2.11)

The other possibility is that the interaction is strong so

ak
that == 1. The mean free path is short (kL™ 1 ) the

states are localized as shown in figure (2.11).

The density of state N(E) that is continuous function
of E remains a valid concept; but if e; ™1 large deviations
from the free electron form is possible. Some of these are
shown in figure (2.11). We shall see that Figure (2.11(b), (c),

%E ~ 1 (or localization) in the regions

(a) ) all imply
where the deviation of N(E) from the free electron value is

large.

When mean free path is short, the elementary methods
of quantum mechanics are used to deduce ¢ ( w ), the condu-
ctivity at fregquency w. At T = 0 and for states filled up
to a fermi energy E, we denote the result of o {(w). This
is related to the absorption coefficient a by the equation,

4n o, (w)
[v4 b ey o e (2012)

where n, is the real part of the refractive index.

For the d.c. conductivity at zero temperature for a

system with states filled upto an energy E, we get

B Wea 0

This is called as the KuboeGreen formulaz'g.
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At low temperature, we may consider two cases
(1) situations in which the conductivity is determined by
the properties of electrons with energies near Ep. In this
case, the range of energies may exist in which N(E) is finite
but states are locelized and mobility of electrons with such
an energy is zero, at T = 0. The vanishing of 6. (0) can surve

E
as definition of localization for electrons with energy E.

(2) Situations where the mobility of electrons with energies
near Ep is zero or small for non-localized state 6;(0) can
then be interpreted as eN(E) kTu. where p is mobility of
carriers with energy E. If the states are localized, mobility
vanishes at T = 0. At finite temperature mobility is due to
interaction with phonons and smaller than for non-localized
state (extended). For any model of non-crystalline systen,

the states with energy E are localized if,

{6 (0> = 0 eee (2.14)

But for assembly of N atoms, a range of electrons energies
may exist such that the number of configuration for which 6
does not vanish tends to zero as N -3 oo. In other words

6 tends to zero. Thus our defihition of localization is that,
for a Fermi gas of non-interacting electrons with Fermi

energy E,

1i 6. ( = cee .
Nul)m<g 0) ) =0 (2.15)
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2.8 ANDERSONS LOCALIZATION 3

our problem is to consider what happends to band of
energies when the potential energy function is non-periodic.

A non-periodic potential can be formed in two ways.

(1) By the displacement of each centre by a random amount,
as for instance by lattice vibrations or by destroying the

long range order.

(2) By addition of random potential energy %U to each well

in such a way that energy level W, for electrons in the

well is changed to W, + % U
We write,
2 -
<U > ""UO “oe (2016)

where W, - energy level for an electron in single well Uy -

measures of disorder.

The resulting potential is shown in Figure (2.12b). This
is called Anderson potentia12‘6'2'7. If U, is small and

using golden rule,

3
21 a” N(E)
1 . o 1 2 Z_____.
I: ’B ( 2 Uo ) o e e (2.17)

where u - velocity of electron, a3 - atomic volume L -~ mean

free path.

Using equation (2.11) for N(E) we may write,

(e )2
= 4M - o o
21h2

a3 ( U )2

1
E o 2o e (2018)

v I
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m - mass of electron OR

2 4 ———— v s e e (2.19)
L

where I is related to J by equation

J = 2 2T

J = band width, I - overlap integral

N
]

coordination number.

In middle of band ka ~~ 1, a is minimum free path under this
condition the wave function 1/ will vary in random way

from well to well (Figure 2.13a). The equation (2.19) suggest
that the wave function is vary randomely, when UO/I reaches

the value 7.

Consider a pair of wells at distance R from each
other with energies shifted from the mean amounts U,, Uy.
The two wave functions for a pair of electrons in these

states are,

£

"
>
o
()
-+
w
-
o3

]
w
-

W
!
b
-
o)

Y2

where ¢a - overlap between atomic wave functions of well a

¢b"‘ L4 LR L4 L4 , s I K4 b

We consider following limiting cases

(1) If [U, - U] < { I, thenAr~B andEj - B, . 2I
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It can not be less than 2I.

(2) If Uy -Up Dy I theg S mmmm——— oo (2.20)

The wave functions for the two cases and also plot of Ejy-E,

as function of an-Ub] are shown in Figure (2.14).

If we consider infinite array of wells, there will
be random fluctuations of amplitude of wave functiony in
going from well to well. If U,/J increases, these fluctuations
get larger (Figure 2.13b). However if UO/J is very large,
the wave function of each well would be little perturbed by
all other wells and so would fall exponentially with distance.

This is shown in Figure (2.13 (c) (4) ).

Anderson find that there is no diffusion if U /U
is greater than a constant that éepends upon coordination
number z = 6. This means that UO/J/> 5. All the wave functicns
for an electron in system are shown in Figure (2.13(c) )
decaying exponentially with distance r from some well n. The

initial state of the wave function is of the form,

zam \f/m

The coefficient &, will fall exponentially with distance

between wells m and n.

The critical value of UOAJ depends upon coordination
number Z. The Andersons plot of U,/2I is shown in figure

(2.15). UO/J has the value~~ 5 for Z = 6,
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Some more recent work of Anderson localization has
concentrated on the quantity & (0). If there is no diffusion,
the conductivity & must vanish for all energies in the band
ie. <u?> --Ug
when U is small » © does not vanish.

For finite number of wells, <(6ﬂ7 tends to zero exponentially
for large N. This problem was investigated by Mottz'lo.

This method is used to evaluate the conductivity at freguency
w ., 6 {(w) and to show that for all configurations except

a proportion that cives a vanishing contribution as § -« do,

<6 (w) ) behave like w? for small w <6 (0) > therefore

vanishes.

2.8.1 Situations in which state are localized in one range
of energies and not localized in another : In this case a

critical energy EC must separate the two regions, as follows
(& ) =0 E{E oo (2.22)
£o0 E)E,

This is shown for density of state resulting from the

Anderson potential in Figure (2.16).

Mott (1970)2+10

has suggested that for values of

E, slightly less than Ec, the wave function is as shown in
Figure (2.13c), for such a wave function each localized orbital
will overlap many others. If the states are localized, an

electron can move only by hopping from one state to another
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exchanging energy with a phoron in the process. If the overlap
of orbitals is small, so the hopping probability should be
small., Cn the other hand, the electron can tunnel i.e.

AS E -=- E, from below the activation energy W, hopping tends

to zero (Figure 2.17 b).

For E greater than E., the wave function should be
as shown in figure (2.13(b), we call such a wave function
extended, the value of.<6"(0);> is finite. There will be
therefore discontinuity in <:d§ (0) > atE = EC as shown in
figure 2.17 (a). There will be no discontinuities in & (w)

at finite value of T.

2.9 DENSITY OF STATES :

In the Bloch theory of crystalline solids the allowed
energies for an electron are divided into bands. In insulators
and semiconductors, valence and conduction bands do not
overlap. There is a band of forbidden gap in which density
of states is zero and Fermi level lies between this gap.

For semi-metal there is small overlap and density of state

can be low at the fermi energy as shown in Figure (2.18).

The density of state in non-crystalline material is
determined by the actual potential of the atom and its nearest
neighbour. When the tails of conduction and valence band
overlap, the density of state show a minimum which we call
a pseudogap as shown in Figure (2.19). For an amorphous

material gap must appear, if there is no dangling bonds.
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If pseudogap is deep enough, the states are localized.
So the material is non-conducting at T = 0,

If N (EF) is not zero, we define facter g by,

g: ......... eve (2022)

then for localization g is order of 0.3. We thus have three

possibilities if Ep lies in pseudogap.

(a) g 7 0.3, the behaviour is metallic, & tends to finite
value as T -0

(b) ¢ (\0.3, but not too small conduction at low temperature
is then by thermally activated hopping but at higher
temperature carriers will be excited to non-localized
states.

(c) g is small or zero, the tunneling factor between
localized states will make thermally activated hopping.
The current is carried by electrons excited into

conduction band.

2.10 MOBILITY SHOULDER 3

We now consider the case when < 6%)» is negligible
at E = EF and current is carried by electrons excited into
conduction band. Let us consider the contribution made by
carriers with extended wave functions. The contribution to

the conductivity is given by equation

. d £
= - f<€E (o)> 5-; dE ees (2.23)
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Since for a semiconductor,

f= e-(E-EF)/kT N this gives,

€ = 6, exp [ - (E, ~ ) / kT | oo (2.24)

where 6; Qo’(o)} g = Ee

(0 is order of 350 -l cm"1 for z = 6. The mobility can
be deduced only if N(E,) is known. Since the number of

electrons with energies above E. is,
N(E_)KT exp [- (E, - Ep)/KT |

The mobility p .4 at E. is,

<€ (0)7 /eN(E) XT .._ eee (2.25)
E=E_
n? 0.2
If band width B = --s= and N(E_) = -3-
mR2 R3B
O.3eh 2 1 -1
then we find p_ ., = ----- ~— 12 cm” V°© s ees (2.26)

at room temperature. This formula enables us to write the

mobility in the form of diffusive motion.

1 R
p‘ext = g e Vel }:‘1‘\ oo (2027)

where ))el - electronic frequency, R - jump distance

Y., ——— ~o 3 x 10%° 571
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For E 4;Ec conduction will be by hopping and given by
equation
1 )) eR2 W
P' - ( - ) e}cp ( - e = ) ses (2.28)
hop 6 ph KT XT

where yph is the phonon frequency.

Near E, we may assume W/Z kT. Thus drop in the mobility by

3

a factor~ 10 is expected as the energy E goes through the

value E. This drop ir the mobility has been called the
mobility shoulder and was first described by Cohenz‘ll.
It must also be assumed that the carriers are excited to

mobility shoulder of Figure (2.20).

2.11 DEFECT MODEL :

The model will be illustrated with reference to
selenium consider two dangling bands at the end of selenium
chain as shown in Figure 2.21 (a). When they contain single
electron the defects are neutral and will be designated.Dp.
Transfer of an electron from one chain to other will lead to
the creation of two charged defects pt and D”.It is proposed

that the reaction 2D° - ot + D~ is exothermic. ... (2.29)

From Figure (2.21 (b)) the positive correlation energy U
associated with the two electrons at D~ in the absence of
configurational changes become negative (Ueff) after lattice
relaxation. The chemical reason for the exothermic nature of

the reaction is that, at D' an extra bond with neighbouring
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chain can be formed by utilizing the normally non-bonding

lone-pair electrons. The coordination of Se atoms at DV is

therefore three, in contrast to that at D where it is one
and at a normally bonded Se atom where it is two. Mott,

Davis and Street?"12

proposed that the lattice distortion

at D is negligible, at pt it is considerable, at D° it is
intermediate. In a chemical band description of these defects
given by Kastner et al.2:13,2.14, the charged states of

the defect are designated CI and C;, 'C' standing for chalco-

genide and the subscript indicating the atomic coordination.

' (o}
The neutral centre is labelled by C3.

The structure and energies of several simple bonding
configurations for chalcogen is shown in Figure (2.22). The
normal bonding configuration is C; , the straight lines
represent bonds ( ¢ states) and dots the lone pair (LP).

In this configuration the antibonding ( 6% ) states are empty
and energy relative to the lone pair is -2E, as shown. Anti-
bonding states are pushed up from lone pair energy more than
bonding states are pushed down. Thus the next configuration
Cg - a neutral three-fold coordinated atom with extra
electron placed in the bonding orbital has higher energy

T with energy of -3E

3 b
having the lowest energy. The energy of C3 is - Ep, + 28 + U

than Cg by amount a. The C is defect
the positive correlation energy term Udr arising because two
electrons are in indistinguishable from the two lone pair

electrons at the site and so energy of this defect is “Ep.
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finally a negative charged dangling bond CI has four valence
electrons in the lone pair state, its energy is = Ep + ULp,
the second ferm arising from the correlation energy in this

level. The reaction corresponding to 2.29 in Kastner's notation

is,

O i +
2C — C3 + Cl L R (2030)

3

which can be seen to be exothermic if,
-4Eb + 25 ;> - 3Eb - Eb + ULP
l.e. if 23 - U, > U

+ -
The charged defect C5 and c, in equation (2.30) have been
called valence alternation pair (VAP). Their creatibn starting
from a fully bonded network in which all atoms are in the

(o]
C3 configuration can be described by,

o +
2, => C; + ¢ eee (2.31)

which costs an energy

~3E, - By + U + 4E, = Upp ees (2.32)

b b

The concentrations of VAPS present in a sample prepared by
coocling a melt assuming equilibrium at the glass transition

temperature T _ is then,

g

N =exp ( - ULp / 2KT_ )

g

where N is concentration of lattice sites. For T 500 K,
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the fraction of lattice sites that could be VAPS is 10-6

Another way of looking at the negative energy which
makes reaction 2.30 exothermic is as follows. Let the
addition of an electron from, say the valence band to pt
cost an energy Ej and the addition of electron resulting p°

and energy E,, then we write
p* +e (+E; ) —>D° cee (2.233)
D°+e(+Ey) —>D

Thus 20° -$D' + D™ + (E; - E, ) oo (2.34)

If the addition of second electron to DYcosts less energy
than the first (i.e. E, {_Ey ) then E, - E, is positive and

the total reaction is exothermic.

2.12 ENERGY BAND DIAGRAM FOR AMORPHOUS SEMICONDUCTOR s

Having seen the model for perfect and imperfect
crystals, we now proceed to establish the models for the
amorphous semiconductors. We have already remarked that
short range order exists in amorphous material. This short
range order is due to the random distribution of extremely
small crystallites within the sample. But as we already
pointed out that the imperfectior gives rise to localized

states in mobility gap, since the order of imperfection is

because of translational topolotical and compositio

disorder.
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One and three dimensional disordered lattice concludes
that as long as short range order is maintained the essential
feature of the crystalline band structure are retained with
following significant modifications. Due to fluctuations of
the neighbouring stoms, the periodic potential shows fluctuations

of two types.

(a) The maxima and minima of the periodic potential shift
in a random fashion and there by produce tailing of the band

edges.,

(b} The heights of the maxima and minima fluctuates
randomely, As a result, allowed states which extend through

the lattice become localized in the disorder lattice.

Localization means that the wave function has the probability
amplitude decreasing exponentially with distance from the
centre of localization., Average conductivity is zero at

T = 0. It is not possible to calculate the degree of tailing
of band edges without a detailed knowledge of the fluctua-
tion potential. It is clear, however, that the larger the
fluctuation, larger the tailing. Thus the effective gap
becomes narrower in disorder lattice. Tailing may extend

deep in overlapping of the conduction and valence bands.

2.15
Mott discussed the behaviour of the carrier

mobility in localized and non-localized states. He has
shown that the mobility due to conduction by hopping in

the completely localized states (phonon assisted conduction)
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is considerably smaller than that in non-localized states.
Further he concluded that at low temperature (when conduction
in localized state is by tunneling alone) the mobility of

conduction is 10 times smaller than that of hopping electrons.

(;‘-ubemovz"16 has suggested a procedure for extending
the crystal theories to disordered structure. He assumes that
the difference between the short range order arrangements in
an amorphous body and in corresponding crystal is small., The
necessarily large difference over long distance may be taken
care of by transformation of co-ordinates. In place of usual
cartesian, Co-ordinates, Gubanov introduced certain curvili-
near co-ordinates and showed that the ground state wave
functiohs are linear combinations of wave functions which
are Bloch functions in these curvillinear co-ordinates.
Their usefulness is limited, but they make it possible to
calculate roughly the electron energy states. Gubanov has
shown that they form bands not too different from those of
the corresponding crystal. It is worth while to remark here
that, the results obtained by Gubanov's method are in good
agreement with those obtained by Mott and others, based

upon band theory.

Ultimately, we conclude that the amorphous materials
can be looked upon as having one conduction band and wvalence
band with many localized levels in between. The levels lying
near the conduction band can trap the electrons very easily

and behave as electron traps. In the same sense the levels



near the valence band behave as the hole traps. The fermi
level is supposed to lie between the conduction and valence
bands. To account for the neutrality, it is assumed that,
the hole traps and the electron traps are equal in number

so that they counter balance each other,

The above argument is supported by experimental
evidence., The phétogonductivity and re-combination experi-
ments have been iht;rpreted as giving the evidence for
presence of localized states, while activation energy, which

is comparatively small confdrms the tailing of conduction

and valence bands (Figure 2.23).

BAND MODELS FOR AMORPHOUS SEMICONDUCTOR 3

1) COHEN-FRITZSCHE-OVSHINSKEY MODEL s

Cohen, Fritzsche and Ovashinskey (CFO)Z‘ll constructed

a simple basic band model of disorder semiconductors. In
the CFO model the mobility edges, the energies at which
states change their character from localized to extended
state play an important role. In 1969, Cohen showed that the

conductivity & E_ vanishes at the mobility edge.

Cohen showed that, an electron in localized state
is effectively trapped by the polarised or disorted lattice
~and it can move from one localized state to another by
hopping or tunneling. This hopping process of conduction
produces an energy gap in disordered lattice in which the

mobility is..hegligible. This energy gap has also been described
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by CFO as, mobility gap in contrast with the conventional
crystalline semiconductor band gap in which the density
of states is zero. The edges of mobility gap are sharp but

sharpness remains unresolved.

Figure (2.24) shows that tail states extend across
the gap in the structureless distribution. The decrease of
localized state destroy sharpness of conduction and valence
band edges. The author said that in chalcogenide alloys
disorder is high the tails of conduction and valence bands
overlap leading density of state in the middle of gap. This
band overlapping is due to the fact that there are states in
the valence band, ordinarily filled, thet have higher energies
than states in the conduction band that are ordinarily
unfilled., A redistribution of electrons takes place forming
filled state in conduction band tail which are negatively
charged and empty state in valence band, which are positively
charged. This model therefore pins the fermi level close to
the middle of the gap. The major objection against CFO model

was high transparency of amorphous chalcogenide below well

defined absorption edge.

2) DAVIS-MOTT MODEL s

Mottz'17 has discussed the behaviour of carrier

mobility to be expected in localized and non-localized states.
He has shown the mobility due to conduction by hopping in

the completely localized state is smaller than in non-
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localized state. Further he concludes that at low temperature
the mobility of conduction is 10 times smaller than that of

hopping electrons.

According to Davis and Mott, the tails of localized
state should be narrow and extend few tenths of electron
volt into forbidden gap . (Figure 2.25a) E. and E,, represent
energies which separate the ranges where states are localized
and extended. The centre band split into donor and acceptor
bands which also pins the fermi level as shown in Figure
(2.24b). Mott suggested that transition from extended to
localized state, mobility drops by several order of magnitude
producing mobility edge. The concept of localization state
says that mobility is zero at T = 0°K. The interval between

E. and Ey is called mobility gape.

Cohen2°18

suggested for dependence of mobility that
there should not be an abrupt but rather continuous drop of
mobllity occurring in the extended state just inside mobility
edge. In this intermediate range the mean free path of
carriers becomes of the order of the interatomic spacing

so that ordinary transport theory based on Boltzmann equation
cannot be used. Cohen described the transport as Brownian

motion in which the carriers are under the influence of the

continuous scattering.

3) SMALL-POLARON MODEL 3

The role of lattice distortion in the presence of
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an extra charge carrier in an amorphous solid has been
discussed by Eminz'lg He suggested that the charge carriers
in some amorphous semiconductors may enter a self-trapped
state as a result of polarization of the surrounding atomic

lattice. In support of this hypothesis Enin @rgued that the

n
presence of disorder in non-crYstalline solid tends to slow
down carrier. This slowing down may lead to a localization
of the carrier and, if the carrier stays at an atomic site,
sufficiently long enough for atomic rearrangements to take
place, it may induce displacements of the atoms in its
immediate vicinity, causing small polaron formation since
the small polaron -is local in nature, the absence of long

fange order in non-crystalline solids may be expected to

have no significant influence on its motion.

8185
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