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CHAPTER- III

ELECTRICAL PROPERTIES OF AMORPHOUS SEMICONDUCTORS

3.1 D.C. ELECTRICAL CONDUCTIVITY s

In the preceding chapter, it was pointed out that two 
different starting points have been adopted to describe the 
transport properties of amorphous semiconductors. One way 
is based on the acceptance of the Davis-Mott model and other 
is based on small polaron model. Here we shall treat some 
of the most commonly used transport properties which may 
provide some information about the amorphous solids.

The essential features of the Davis and Mott model for 
the band structure of amorphous semiconductors, are the 
existence of narrow tails of localized states at the extre­
mities of the valence and conduction bands and localized 
levels near the middle of the gap. This leads to three 
different conduction mechanisms (Figures 3,la,b, c, d).

3.1.1 EXTENDED STATE CONDUCTION s

The conductivity of semiconductor is given by.

d f(E)
(3.1)

where f(E) is the Fermi-Dirac distribution function

1
f (E)

1 + exp H (E-EF)/kT3
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N (E) - density of state, ji(E) - mobility of carriers using 
above equation, 

d f(E)
* - f(E)

d E

From this d*" can be written as s

d' = e J n(E) pi(E) f(E) Ql - f(E)J dE (3.2)

. 3 1In Davis and Mott model Fermi level is situated near 
the middle of the band gap and far from conduction band i.e. 
the energy which separates the extended states from the 
localized states. So that Boltzmann statistics is used to 
describe the occupancy of states.

Thus f(E) ■ exp (-(E-Ep)/kT)

According to Mott, mobility drops at critical energy Ec or 
Ev but at present it is not exactly known how mobility 
depends on the energy in both conduction regimes. In non­
degenerate case the conductivity due to electrons excited 
beyond the mobility edge into extended state is given by,

6" = eN (Ec) kT nc exp [- <EC - E^,) / klTJ ... (3.3)

where is average mobility. The number of electrons in 
conduction band is,

oon * / N(E ) exp (” -(E-Ep)/kT_j dE2 C L

N(EC) kT exp (Ec - Ef )AtJ (3.4)
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We dedine (Ec) = eN ^Sc }ickT 

If N(EC) « <N(E)> /3

where H(E) is the average density of state over band 
using this we get,

(Ec) = ^ <^N(E)> |ic kT/3 

■3 oMott"'* has given minimum metallic conductivity by the 
equation,

e2
* constant ;— ... (3.5)min +irna

where constant = 0.026 and 0.1, 6^n = 200 - 300 
using constant = 0.026.

6p = 0.078 ( — )/(n(E)V kT
c ha '

-1 -1 - cm

where a is interatomic distance.
The maximum energy Emax of the band is given by.

■t.2 n‘ JX
max 2ma

„ and km=v 2 max

This equation gives
km

N(E)
1

B

Substituting in equation of pc we get,
ea2B

p._ * 0.078 ---- ... (3.6)
nkT
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Taking a = 2A, B * 5eV

}ic = 10 cm2 v_1 S_1

This value corresponds to mean free path comparable or less
3 3than the interatomic distance. Cohen * suggested that 

conduction is diffusive or Brownian type. In this regime 
mobility can be obtained with the help of Einstein equation, 

eD
p, = — ; D - Diffusion coefficient.

kT
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y) r E(o) i
6 ■ 6n exp ( — ) exp ----° * L kl J (3.10)

Here E(o) is energy distance at T 
We write this formula as,

-E(0)

O °K,

€ * CQ exp
kT

... (3.11)

where CQ = eN (Ec) kT jac exp ( — )3c ... (3.12)

Mott3»4 has shown that d" lies between 10 and 10^ ^
o

in most of amorphous semiconductors. In chalcogenide glasses,
the temperature coefficient of optical gap lies between
4 x 10~4 and 8 x 10“4 eV deg”^. As the Fermilevel is situated

y)near the middle of the gap the values of exp ( -- ) lie in
K

the range 10-100.

3.1.2 CONDUCTION IN BAND TAILS :

If the wave functions are localized 6~ (E) = 0 
conduction occurs only by thermally activated hopping. Every 
time electrons move from one localized state to another, 
it will exchange energy with phonons. Therefore, mobility
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phonon frequency, R - distance covered in one hop.

The conductivity being an integral over all available 

energy states, will depend on the energy distribution of the 

density of localized states. If we assume that the density 

of state N(E) behaves as power ‘S' of E,

N(E )N(E) *---£- (E - Ea)s ... (3.15)
(AE)S

aE = Ec - EA,

then conductivity <^0p due to electron can be easily 

calculated using equation.

where

C = S

6"* e I N(E) |i(E) f(E) [_ l-f(E)l dE

kT c _
- s; hop *

aE
) c exp (ea " ®P + W)ATJ ... (3.16)

< hop “ ^ i> \)rph
e2R2 n(E ) 

c and

AE s —ae r- kT- ( — ) exp( ) 1 + 5 ( .... ) +
kT kT ae

kT <1
+ S (S - 1) ( — ) + . ♦ • ... (3.17)

AE

for linear vibration S = 1, the conductivity is given by 

XTShop = So hop ~ «<P [- - Ef + W )Al] ... (3.18)

where
AE aE

---- ) (1 + — )
kT kT

c2 = 1 - exp ( . (3.19)
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3.1,3. CONDUCTION IN LOCALIZED STATES AT THE FERMI ENERGY.

The fermi energy lies in a band of localized state, 

the carriers move between states via tunnelling process. The 

temperature dependence of the hopping conductivity at Ej, 

has been given by Nott3 **5. Let us consider the electrons 

scattered by phonons from one localized state to another.

W be energy difference between states. P be probability that 

an electron junps from one state to another state is given 

by three factor -

(1) The probability of finding a phonon with excitation
W

energy equal to W is given by Boltzmann equation exp ( - — )
kT

(2) An attempt frequency *ph which cannot be greater than 

the maximum phonon frequency.

(3) The probability of electron transfer from one state

to another state, depends upon overlapping of wave function 

and given by exp ( - 2 ocR).

Here R - jumping distance, a - Rate of fall of wave function.

The probability P that an electron jumps will be expressed by

W
P = 'y' exp ( -2aR------ )

pn kT
... (3.20)
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As the temperature is lowered the number and energy of phonons 
decrease and the more energetic phonon assisted hops will 
progressively become less favourable. Carriers will tend to 
hop to larger distance in order to find sites which lie 
energetically closer than nearest neighbour. The factor 

Wexp (- 2aR - ,— ) will not have its maximum value for the kT
nearest neighbour. In order to find most probable hopping 
distance, Mott used an optimization procedure. If N(w) is 
the density of state per unit volume and per unit energy, 
then the number of states with energy difference Sf within a 
distance R from a particular atom is given by,

4ir R3 N(W) W

The electron can leave its site only if the number of 
accessible sites is at least one. Taking this into account 
one gets for the average energy spacing between states near 
Fermi lev-el,

3 
>3"W

47IR-3 N(Ep)

and for the jump probability
4 n 
3

... (3.23)

p = yLu exp £-2ocR - ( — ) N(Ep)R3 kTJ ~1
ph ... (3.24)
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The most probable jump distance is found by minimizing the 

exponent of the above expression as function of R,

R =
87T(X K (Ep) kT

1/4
... (3.25)

This gives a jump frequency of the form,

P = )>ph exp ( ~?v ) ... (3.26)

where A = 2.1 <x3 An (Ep)J] 1/4
(3.27)

Mott's treatment of variable hopping leads to a temperature 

dependence for the conductivity of the form.

( i )e2 R2 )^h N(Ep) exp ( - -jy-- ) ... (3.28)
A

or <T0 (T) exp ( ... (3.29)

In Motts derivation the prefactor <5^ (T) is given by

€ (T)o .e*
6

e2 N(Ep) 9

L SJiaN^EpJkT

[
j 1/2

2(8H) 1/2
N (Eji) I 1/2 
akT J ... (3.30)

-1 o , . 10—3 —1Assuming a = 10A ; N (Ep) = 10 cm eV ,
—l/ 4 f* oone finds R = 250 T A° which yields 80A° at 100 k.

Several authors have investigated the effect of
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Departure from a constant density of states and have 
clearly demonstrated that energy distribution of the density 
of states is of major importance in the theory of variable 
range hopping. A review of article on hopping conductivity 
in disordered solids has recently been published by 
Cverhof

3.2. THERMO-ELSCTRIC EFFECT IN SEMICONDUCTOR :

Fundamental information about the mechanism of 
conduction in solids can be obtained from studies of the 
thermoelectric effect. In 1821, Thomas seeback found that if 
a metal is connected at its two ends with a second metal, 
and if one of the junctions is heated, a voltage is developed 
across the open ends of the second metal. The schematic 
circuit for the measurement of thermoelectric voltages for 
a semiconductor is given in Figure (3.2). If the metal 
contacts are applied to the two ends of a semiconductor rod 
and if one junction is maintained at a higher temperature 
than the other, a potential difference will be developed 
between the two electrodes. This thermoelectric or seeback 
voltage is produced partly because of the majority carriers 
in semiconductor defused from hot to cold junction per second, 
thus giving a potential difference between the two ends. This 
voltage builds up a value such that the return current just 
balances the diffusion current, when a steady stage is reached.

In the experimental arrangement of Figure (3.2), if
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the charge carriers in semiconductors are predominantly 
electrons, the cold junction becomes negatively charged, if 
the carriers are positive holes, the cold junction becomes 
positively charged. The magnitude of the voltage V_ is pro- 
portional to the difference in temperature between the hot 
and the cold junction.

From the sign of thermoelectric voltages, it is thus 
possible to deduce whether a specimen exhibits n-type or 
P-type conductivity; further from the magnitude of the thermo­
electric voltage one can determine the concentration of 
charge carriers in the specimen.

Semiconductors exhibit thermoelectric behaviour in 
circuits with metals the magnitudes of the thermoelectric 
quantities exhibited by semiconductors are often much larger
than those exhibited by metals. The electric properties of

\

semiconductors can be used to know the position of Fermi 
level with respect to band edges.

A typical thermoelectric circuit containing a semi­
conductor is shown in Figure (3.2). The semiconductor is 
shaped into long thin rod with metal contacts at its two 
ends. One end of the bar is kept at a reference temperature 
To while the other end is placed at To + aT. Let us suppose 
that a linear temperature gradient exists along the bar, 
which is P type. Under these conditions, the Fermi level 
in the metal and semiconductor and the edges of the semi-
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conductor band assume the position shown in the lower part 
of figure. The semiconductor band edges become tilted as 
indicated. While the Fermi level also becomes tilted# with 
a somewhat different slope. The Fermi level in the semi­
conductor is continuous with the Fermi levels in the metals 
at two contacts. The Fermi level in metal wires leading 
away from the contacts do not change with temperature as 
compared to the magnitude of change in Fermi level in semi­
conductor? hence the Fermi level in metal wires are shown 
horizontal in Figure (3.3) and seeback voltages of the circuit 
is essentially given by the difference in the Fermi level 
from one end of the semiconductor bar to the other end. In 
the case of uniform P-type semiconductor taken as an example# 
the right end of bar becomes negative with respect to left 
hand side. The tilting of the energy levels in the figure 
is greatly exagerated in order to illustrate the arguments 
to be presented.

If the temperature difference is small the effects 
depicted in figure (3.3) will be linear with temperature and 
hence linear with horizontal distance across the diagram.
The quotient between V_ and aT is called the "thermoelectric 
power". Its physical dimensions are volt per degree# it is 
designated by a symbol Q. If both the hot and cold junctions 
are raised or lowered in temperature keeping T same# it will 
be found that Q varies with mean temperature. The variation 
of Q with temperature can just be well observed by keeping
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the cold junction at temperature,To and plotting the thermo­
electric voltage Vs against the variable temperature To + aT 
of the hot junction. The slope of this plot at temperature T 
gives the value of Q at that temperature.

The tilting of the energy bands and Fermi level in 
the semiconductor sustaining a temperature gradient can be 
explained as follows :

Suppose the temperature T and To + aT written within 
the impurity dominated temperature range of the semi-conductor, 
assuming the specimen to be uniformly doped. Then the 
concentration of the impurity carriers, positive holes, will 
be higher at right hand end than at left hand end in figure 
(3.3). Consequently there will be a diffusion of positive 
holes down the temperature gradient from right to left.
The cooler end of the specimen, therefore, becomes positively 
charged and a steady state potential difference just counter 
balances the diffusion flow. The potential difference in 
question is given by the vertical distance S on the diagram.

Even if there were no concentration gradient of 
majority carriers (as would be the case if the temperature 
To and To + aT were in such a range that the acceptor were 
all saturated), there would still be a small potential 
difference generated between the two ends of the specimen.
This difference would result from the fact that those holes
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thermal motion would be going alightly faster in the right to 
left direction than in left to right because they come from 
a warmer region of the specimen and hence have higher thermal 
kinetic energies. For semi-conductor in the impurity dominated 
and intrinsic temperature range, however, this effect is small 
compared with the effect of diffusion and may be neglected 
in approximate theory.

3.3. 5BEBACK EFFECT AND THERMOELECTRIC POWER :

The Fermi level in P type semiconductor rises with 
temperature towards the middle of the forbidden gap. Hence 
the total rise of the Fermi level in figure (3.3) from cold 
of the specimen to the warm end is given by the sum of rise 
in the upper edge of the valence band and the additional 
increase due to the rise of the Fermi level above the valence 
band edge. In other wards,

dVF
V = S + -- at ... (3.31)

dT
This Vs is voltage which would be indicated by a high 
resistance voltmeter in the metallic part of the circuit.

The calculation of the thermoelectric quantity Vg 
in terms of basic physical quantities is straight forward 
for simple cases of semiconductors in which only ohe type 
of conducting particles need be considered. In the p-type 
specimen indicated in figure (3.3) the right to left current 
density due to diffusion is,
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_ ^ dp
^ P dx .. (3.32)

where Dp - Diffusion constant

~ * rate of change of holes with distance dx

q - charge on hole.

The left to right return current due to electric field set 
up by this process is#

*RL ” p ^ Ex

where Ex - is electric field# p-number of holes 
u - hole mobility

It

In steady state# these two currents are equal giving#

(3.33)

For Dp we may write KT jip/q from the Einstein relationship 
and assuming the electric field to be uniform (as it will 
be for a small temperature difference and uniform gradient) 
we may set S/L for E where L is the length of the specimen 
with these substitutions# and rearranging equation 3.33 becomes#

<3p pq s
(3.34)

dx kT L
dp dp dT dp aT

However
dx dT dx dT L

So equation (3) becomes#
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dp pq S 
dT kT aT

... (3.35)

From the Fermi statistics.

P = 2UT3/2 e”q VKT
where U * 2.42 X 1015 cm“3 Ab s' 3/2

Differentiating with respect to T. and substituting the 
result into equation (3.35) and simplifying we get.

-avF VF 3Ks = ( —i + — + — ). at
dT T 2q

Combining equations (3.36) and (3.31)

VF 3kv = ( — + — ) at 
T 2q

Since Q = --
AT

Q = 5?
T

+
3 k
2 q

... (3.36)

... (3.37)

... (3.38)

These last two equations for seeback voltage and thermo­
electric power are only approximate. Their deviation neglected 
the effect described earlier in which a small contribution 
to S comes from the difference in mean thermal kinetic 
energy of particles diffusing randomly in two directions in 
the specimen. The correction to take account of this effect 
yields for Vg and Q.



60

VF 2k
V_ = ( —• + —— ) AT ... (3*39)

T T
V« 2k

a = -- + — ... (3.40)
T q
K Ej*

Q = — ( 2 + — ) ... (3.41)
g kT

A similar derivation holds for a n type semiconductor leading 
to equations similar to the two above except that the signs 
of Vs and Q will be eegative and that (Vg - Vp) will appear 
instead of Vp

Equation (3.40) gives us an independent method for determining 
Vp in a p type semiconductor sample and hence for obtaining 
by calculation a value for the hole concentration P. Therefore, 
from equation (3.40),

„ 3/2 -qQ/k + 2P = 2 UT e H (3.42)

In case of an n-type Semiconductor above formula becomes,

-K E-Ep
Q = — ( 2 +--- )

q KT

3.4. THERMOELECTRIC POWER :

Important information about the transport mechanism 
in amorphous semiconductor has been obtained from thermopower 
data. In this section we shall derive the formulas for 
thermoelectric power associated with the three processes 
of conduction.
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3 7Pritzsche * has given general equation for 

thermoelectric power#

-K r E-Ep d" (E)
S = — I ---- ----- dE ... (3.43)e J kT &

Substituting value of 6~ (E) from conductivity equation we get

S
k

Jli(E) N(E) kT [_ (E-EpJ/kT^/
a f

e b f
\k (E)N(E) kT--- dE

a E

(3.44)

where f is Ferrni-Birac distribution function#

a f
---- = _ f(l - f) / kT ... (3.45)a e

then
-k

S = — 
e

f tl(E)N(E) f (E-EpJ/kTj f(l-f)dE
-----------------1------------ — ... (3.46)J (E)N(E) f(l-f) dE

For non-degenerate semiconductor classical Boltzmann statistics 

is appropriate. In this case f(l-f) in equation (3.46) reduces 

to Boltzmann factor#

f * exp (E - Ep)/kT^j

3.4.1 MOTION OF CARRIERS IN EXTENDED STATES :

Under the assumption of a constant density of states 

and an energy independent nobility the thermoelectric power 

can be given by integration of equation (3.46).
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This gives expression for motion of Electrons

-k E-Ef
s = — (---  + A ) ... (3.47)

e kT

where A = 1
In crystalline semiconductors the term A depends on the

3 Sscattering mechanism. Bindley * has found a similar expre­
ssion for using the random phase model. If both the electrons 
and holes contribute to the conductivity, then the thermo­
electric power is the algebraic sum of individual contri­
butions Se and .3^. Thus we have,

S =
<*e + <5^

... (3.48)

where Se - Thermoelectric power of electron 
Sft - Thermoelectric power of holes.
6". - conductivity of electrons 
<5^ - conductivity of holes

3.4.2 MOTION OF CARRIER IN LOCALIZED STATE NBAR THE 
MOBILITY EDGE s

The thermoelectric power by carrier in the localized 
state of band tails will be given by,

_k [(E-Ep)AT exp f-(E-E-)/kTj M(E) dE
s * —  ----------- —1=----- -------------- ... (3.49)

e n
If density of localized state behave like some power 's' 
of the energy E,
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N (E)
NCEc)

(e":e“P (E - Ea)
s

then we get

S
-k

e

C* 
— ) 
c

(3.50)

where C* =
AE/kT

I
o

-X S+le x cbc

Here aE = Ec _ ea is the width of tails and x *
E-Ea 
------- ).

kT

The value of C*/C depends on the energy distribution of the 

density of localized states. For linear variation of N(E)

's' can be represented by,

*

ci -2

-k E - 
( ----

EF Cl*
-=- ) ... (3. 51)

e kT C1

-AE AE AE 21
exp (----- ) f 2+2 ( —- ) 4 ( — > J * * • (3 • 52)

kT \ kT kT

r- ""AS aE ~- [ (----- > (1 + ( — )
L kT kT J

If the carriers move by hopping in the localized states, 

the conductivity varies linearly exponentially with 

temperature and measured activation energy is the sum of 

the activation energies for carrier creation and for hopping. 

The activation energy for hopping does not appear in to
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expression for S and therefore one expects a difference in 
slopes between the conductivity and thermoelectric power.

3.4.3 MOTION OF CARRIERS IN LOCALIZED STATES AT THE FERMI 
ENERGY s

At low temperature# charge transport can arise from
3 Qelectron tunneling between states at Ep. Cutler and Mott 

suggested that the thermoelectric power in this regime should 
be identical to equation used for metallic conduction.

s
ir2k2T

3e
din O' (E) 

d€ f
(3.53)

Since the Fermi level lies in a region where the density of 
states is finite. The thermoelectric power is small. Its 
sign may be positive or negative depending on whether the 
major contribution to the current will lie below or above 
the Fermi energy. Several authors2 have calculated

the thermoelectric power in the variable range hopping regime.

3.5 CONDUCTION BY SMALL-PQLARON MOTION :

The formation of small polaron in non-crystalline
3 14materials has been discussed by Em^n * .He argued that 

the probability of small polaron formation in disorder state 
is largely increased as compared to the crystalline state.
It may be remembered in Davis and Mott model that existence 
of mobility edges at the energies which separates the 
localized tail states from the extended states. The existence
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of such tail states does not appear in a small polaron band.

If the charge carrier remains in the vicinity of a 
particular atomic site over a time interval long enough for 
displacements of the surrounding atoms to take place a 
potential well may be created which can lead to trapping of 
the carrier. The unit built up by the trapped carrier and 
its induced lattice deformation is called a polaron. The 
polaron has a lower energy than the free electron but has a 
higher effective mass since it must carry its induced defor­
mation with it# as it moves through the lattice. The decreases 
in energy of the small polaron relative to that of the 
electron in the undistorted lattice is called the small 
polaron binding energy. The reduction in energy of small 
polaron is the net result of two opposite contributions. On 
the one hand# a lowering due to the displacements of the 
surrouhding atoms and on the other hand# an increase due to 
the strain energy originating from the induced lattice 
disortion. Holstein found that for a crystal the small
polaron states overlap sufficiently to form a polaron band.

In order to find the conductivity for hopping motion 
of snail polarons# one can make use of the Einstein relation 
which relates the mobility to the diffusion coefficient D

eE>d* - neu = ne ~ ... (3.54)kT

The diffusion coefficient can be written as product of the
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hopping probability p with square of the interatomic dis­

tance a. Thus, dc conductivity for small polarons, being 

proportional to the probability for hopping and given by

2 2 ne a
( ----- ) p

kT

At coincidence event the carrier will have certain probability 

to jump. Let P-^ be probability for occurrence of coincidence 

event and Pj be the probability of charge transfer during 

this event.

w <aaa>W
p, = -2- exp ( —- ) ... (3.55)

2 n kT

"o
where — is an average phonon frequency and W is the 

2 n

minimum energy. W is related to small polaron binding energy

Eb
Efc given by w = — . Then the total probability P becomes

wQ -W
P = exp ( — ) P2 ... (3.56)

271 kT

In non-adiabatic regime where the carrier is slow, P2 

Hoistain derived the following equation,

2” 1/2 2
where P = (-----) J ...

1 n wQ WkT

1.

(3.57)

The electronic transfer integral J is measure of the over­

lapping of wave functions. Using (3.56) we get for non- 

adiabatic regime.
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ea 1 * ,1/2 2ji = -- . - (--- ) j exp ( — )
c kT hi WkT kT

(3.58)

The mobility will increase exponentially over a broad tempera­
ture range. This thermally activated behaviour is essential 
features of small polaron theory.

3 16For triangular lattice Friedman and Holstein * 
derived the following expression for the non-adiabatic case

hi
2ea

h
J (

n

!2kTW
Wexp ( ---- )
2kT

and

l*Hw. mm

*c

2 kT 
3 \/T~ J

2 Wexp ( - — )
3 kT

... (3.59)

... (3.60)

The Hall mobility is thermally activated with an activation 
energy which is one-third of that associated with the condu­
ctivity mobility since the pre-exponential term decreases 
with increasing temperature; the Hall mobility will reach a 
maximum at kT = w/3. The calculation of the Hall mbbility 
of small polarons in a square lattice has been carried out
by Smin3*14*

/ , 0 ,3/2 
% < ( " }

W
exp (----- )

3kT
... (3.61)

Another transport property which has received special 
attention in the experimental studies on small polarons is 
the thermoelectric power. For small polaron hopping 's' 
was found * to be expressed by a formula of classical form
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-& ES = — (-- + A ) ... (3.62)
e kT

where 3 is the energy associated with the thermal generation 
of the carriers. The term a could be very small if there is 
no transfer of vibrational energy associated with a small- 
polaron hop.

3.6 SWITCHING IN N ON-CRYSTALLIKE SEMICONDUCTORS

Current-voltage behaviour of a bulk semiconductor 
stowing negative resistance is unstable. This is because of 
a random fluctuation of charge carrier density at any point in 
the semiconductor produces momentary space charge which 
grows exponentially in space and time. The -ve resistance 
can be divided into two groups (i) voltage controlled negative 
resistance (ii) current controlled negative resistance# as 
shown in Figure 3.4. The tunnel diode shows a voltage 
controlled -ve resistance while a semiconductor controlled 
rectifier shows the current controlled negative resistance.
As we are dealing here the amorphous semiconductor# mostly 
in these materials the current controlled negative resistance 
is observed. The earliest mechanism to understand the 
negative phenomenon was thought in terms of the heterogeneous 
nature of the material. When the electric field was applied# 
for current controlled negative resistance# high current 
filaments are formed in the bulk of the material.

O IQHanxsch, Fagan, Ovshinsky *xo explain the -ve
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resistance phenomena using the concept of energy band model
in amorphous semiconductors. It is already discussed in
Chapter III, the existence of bands in amorphous material and
their overlapping in the forbidden zones. The localized
states are near valence and conduction bands. When voltage
is applied to metal semiconductor metal (M-3-M) system
(Figure 3.5). The electrons are injected from the cathode

3 19and holes from the anode. Lampert * theory of double 
injection is being used to understand the phenomenon. At 
very low voltage the density of electrons injected from the 
cathode is very small. The thermal excitation of carriers 
from the localized states just below the conduction band will 
give the current in the circuit. The number of carriers 
thermally excited is very small and hence current will be 
small. At low voltage the current is directly proportional 
to voltage following thereby ohms Law. As the applied voltage 
is increased gradually, the number of electrons injected at 
the electrode will increase. There may be gradual increase 
in current in the circuit. When the voltage is further 
increased, the number carriers goes on increasing. All 
electrons injected by the cathode are not cleared from the 
electrode quickly and they are held up at electrodes only. 
This creates an internal negative space charge near the 
electrodes and because of this the injection of carrier from 
outside is blocked. In short the electrodes which injected 
the carrier in the beginning act as blocking electrodes at 
higher voltages. At the cathode the negative space charge
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will be built, because of electrons injection while at anode 
positive space will be built because of holes injection. The 
positive and negative space charges are held up at the 
electrodes till sufficiently high internal field is built up 
inside the amorphous semiconductor. Because of the internal 
field the positive and negative space charges move towards 
each other and they will recombine where the high current 
will be shown in the circuit. This is the ON state for the 
material. At this point the material behaves like conductor 
giving high current in the circuit and the resistance of 
material become very small.

Recently the non-linear I-V behaviour in such material 
has been discussed on the basis of charge defect states 
existing in the material. The details of this mechanism are 
discussed in Chapter V.

• •
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