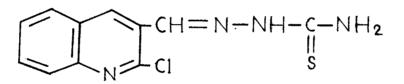
## CHAPTER - II

SPECTROPHOTOMETRIC DETERMINATION OF COPPER(II) WITH 2CHLOROQUNOLINE 3-CARBALDEHYDE THIOSEMICARBAZONE This chapter gives a detailed account of the use of 2-chloroquinoline-3-carbaldehyde thiosemicarbazone (QAT) in photometric determination of copper(II). The method described is simple and rapid.

### EXPERIMENTAL

# Synthesis of 2-chloroquinoline-3-carbaldehyde thiosemicarbazone : Preparation of 2-chloroquinoline-3-carbaldehyde :

2 chloroquinoline-3-carbaldehyde was prepared by standard method  $^{68}$  using vilsmeier reagents (VR) as follows.


Dimethyl formamide (9.6 ml, 0.125 mol.) was cooled to  $0^{\circ}$ C in a flask equipped with a drying tube and phosphoryl chloride (32.2 ml, 0.35 mol.) was added dropwise with stirring. To this solution was added the acetanilide (C.05 mol.) and after 5 min. the solution was heated at 75°C under reflux for 16.5 hours. Then the reaction mixture was worked up as below.

The reaction mixture was poured into ice water (300 ml) and stirred for 30 min at  $0 - 10^{\circ}$ C. The product was filtered off and washed well with water (100 ml), dried (68 %, 6.5 gm). Then the product was recrystallised from ethyl acetate m.p. 147°C (reported m.p.148°-9°c). Due to the lack of reactivity of 2chlorogroup<sup>69</sup>, it does not interfere with the derivative formed.

## Synthesis of 2chloroquinoline 3-carbaldehyde thiosemicarbazone

The 2chloroquinoline-3-carbaldehyde thiosemicarbazone (QAT) was synthesised by refluxing equimolar quantity of 2chloroquinoline-3-carbaldehyde and thiosemicarbazide in minimum amount of ethanol for one hour. The white crystalline product was obtained, washed with distilled water, ether and finally with ethanol. It was recrystallised from ethanol m.p.225<sup>o</sup> - 226<sup>o</sup>C.

Structure of QAT



### Reagent Solution :

0.055 gm QAT was dissolved in DMF and water (1:1) and diluted to 100 ml. The molarity of the solution is  $2.07 \times 10^{-3}$ . The solution was found to be stable for more than a week.

## Standard copper(II) solution

Standard copper(II) solution (1 mg/ml) was prepared by dissolving copper sulphate pentahydrate in distilled water containing a drop of sulphuric acid. The solution was standardised by volumetrically<sup>70</sup>. Further dilution for experimental purposes were made by diluting the stock solution with distilled water.

### Other reagents :

Reagent grade chemicals were used for preparing the solutions required for the study of various diverse ions. The common cations were used as either chlorides or nitrates and the anions used were either sodium or ammonium salts solutions.

### Preparation of buffer solutions :

The buffer solutions of pH 1 to 10 were parpared by the following procedure.

|   | рH | Composition of the mixture                                                                                  |
|---|----|-------------------------------------------------------------------------------------------------------------|
| 1 |    | 47.5 ml of $\frac{N}{5}$ HCl + 25 ml $\frac{N}{5}$ KCl and dilute to 100 ml                                 |
| 2 |    | 5.3 ml $\frac{N}{5}$ HCl + 25 ml $\frac{N}{5}$ KCl, dilute to 100 ml.                                       |
| 3 |    | 20.55 ml of Na <sub>2</sub> HPO <sub>4</sub> ( $\frac{N}{5}$ ) + 79.45 ml of ( $\frac{N}{10}$ ) citric acid |
| 4 |    | 41.0 ml of 0.2 M $CH_3COOH + 9$ ml of 0.2 M $CH_3COONa$                                                     |
| 5 |    | 14.75 ml 0.2 M CH <sub>3</sub> COOH + 35.26 ml CH <sub>3</sub> COONa                                        |
| 6 |    | 9 ml of 0.2 M CH <sub>3</sub> COOH + 191.0 ml 0.2 M CH <sub>3</sub> COONa                                   |
| 7 |    | 12 ml 0.05 M borax + 188 ml solution containing                                                             |
|   |    | 12.40 g boric acid and 2.93 g of NaCl in 1 lit.                                                             |
| 8 |    | ll ml 0.05 M borax + 29 ml solution containing 12.40 g                                                      |
|   |    | of boric acid and 2.93 g of NaCl in 1 lit.                                                                  |
| 9 |    | 40 ml 0.05 M borax + 10 ml solution containing 12.40 g                                                      |
|   |    | of boric acid + 2.93 g of NaCl in 1 lit.                                                                    |

20

- equal parts of 0.025 N NaHCO3 and 0.025 N Na2CO3
- 5.5 51.4 ml of 1 N CH<sub>3</sub>COOH + 50 ml of 1 N NaOH and dilute to 500 ml
- 6.5 31.3 ml of (1/15) M NaH $_2$ PO $_4$  and dilute to 100 ml with (1/15)M KH $_2$ PO $_4$ .

In addition to these buffer solutions standard buffer of pH 4 was prepared by dissolving 10.21 g of potassium hydrogen phthalate in 1 lit.

## Apparatus :

All the spectral measurements over visible region were done on a Carl Zeiss grating spectrophotometer spekol by using 10 mm matched pair of glass cuvettes. For the measurement of pH values Philips pH meter PR 9405 L was used. A glass calamel combination electrode Philips PV 9014 was used. Standard phthalate buffer (0.05 M) was used for the standardization of the pH meter.

### SPECTROPHOTOMETRIC DETERMINATION OF COPPER(II)

#### INTRODUCTION

Copper was probably the first metal known to man **it** and it is associated with the development of human civilization. It is less abundant in the earth crust than any other metals, for ages it has served mankind as metal, alloys and salts. Analytical chemistry of copper covers macrolevels. Studies to traces in biological samples and is one of the widely studied subject.

The industrially important alloys of copper are brass, bronze and gun metals. Copper is one of the trace metals of greatest interest in the petroleum analysis. It is also associated with iron, sulphur etc. in the principal minerals. Copper plays an important role in living organism. It is one of the important micronutrients for crops. Also large number of copper compounds are used as insecticides. The trace determination of copper in foods, beverages, feeds, soils and biological materials is of great interest and also in research industries and in quality control. Trace amounts of copper in various substances may be vital and objectionable.

Copper is an element which gives sensitive colour reactions with innumerable organic compounds. Many colourimetric reagents have been proposed for the determination of copper, but few are sensitive and selective. A well known reagents for copper is diethyl dithiocarbamate<sup>1-3</sup> but suffers from several interferences. Other classic reagents for copper are derivatives of bipyridines and phenanthroline, cuproin<sup>4-6</sup> and neocuproin<sup>7,8</sup> and bathocupron<sup>9</sup> suffer from interferences and are not selective. Also hydroxy substituted 1,10-phenanthroline<sup>10</sup> and termethylthiurams<sup>11</sup> are not selective and in the latter case the rate of formation of complex is slow and so heating is necessary.

Among other Dithiozone<sup>12</sup> is also one of the most sensitive copper reagent but it is not specific because of its strong colour and low stability of its solutions, are disadvantages of its. The methods involving phenyl thiosemicarbazide<sup>13</sup>, catechol sulphonephthalein<sup>14</sup>, neocuproin<sup>15</sup>, T-sulphonamidine<sup>16</sup>, stilbazo<sup>17</sup>, biacetyl monoxime thiosemicarbazone<sup>18</sup>, 3-5-dimethyl pyrazole<sup>19</sup>, pentyl-2-pyridyl ketoxime<sup>20</sup> form complexes of copper very slowly and require a time period of 15 minutes to 2 hours. Complex of 6-amino-4-hydroxy-2-mercaptc-5-nitrosopyrimidine<sup>21</sup> is unstable. Sensitivity of 2,2'-biqunoline<sup>22</sup> and 2,9-dimethyl-1, 10-phenanthroline<sup>22</sup> is much less (0.01 and 0.008 µg/cm<sup>2</sup> resply). Sensitive reagents nitroso-R-salt<sup>23</sup>, orotic acid<sup>24</sup>, Zephiramine<sup>25</sup>, calichrome<sup>26</sup> and ammonium pyrophosphate<sup>27</sup> are not selective.

Different thiosemicarbazones<sup>28-33</sup> of aldehydes and ketones can effectively be used in the estimation of copper, such as 1,3-cyclohexanedione bithiosemicarbazone monohydrochloride<sup>54</sup>, has been used for the determination of copper ion in milk, vegetable oils and sheep liver samples. Another classic sensitive and selective reagents for copper determinations are 2,4-dihydroxy acetophenone thiosemicarbazone<sup>55</sup>, furoin thiosemicarbazone<sup>56</sup>, p-Anisaldehyde thiosemicarbazone<sup>59</sup>. Quinoline-2aldehyde thiosemicarbazone required extraction while the proposed method is in aqueous medium. Biacetyl monoxime-4-phenyl-3-thiosemicarbazone<sup>66</sup>, di-2-pyridyl ketone thiosemicarbazone<sup>67</sup> are sensitive reagents for copper determination.

The detailed summary of reported photometric methods for copper determination is given in table 2.1.

| Reagent                                                              | Hq                       | Amax<br>nm | Molar extinction<br>coefficient,<br>sensitivity, | tion<br>Interference and<br>remarks                                        | Ref. |
|----------------------------------------------------------------------|--------------------------|------------|--------------------------------------------------|----------------------------------------------------------------------------|------|
| l                                                                    | 5                        | e          | 4 to find                                        | 5                                                                          | 9    |
| 3-Methyl-l-thiocarbamoyl-<br>2-pyrozoline-5-one                      | 3.7 to<br>9.6            | 410        | 0.5 to 80 µg                                     | Fe(III),Co(II),Zn,Hg,Bi<br>SCN <sup>-</sup> interfere                      | 34   |
| 2'-hydroxy-3'-5-dimethyl<br>azobenzene-4-sulphonic acid              | ω                        | 480        | Sensitivity is<br>0.013 µg/cm                    | Cr(III),Fe(II),Fe(III) and<br>Zn interfere.                                | 35   |
| l-Hydroxy-3-methyl-l-phenyl<br>-2-thiourea                           | 5.4 to<br>8.9<br>aq.ÉtCH | 430        | <b>6</b> = 24,600                                | Cations and anions do not interfere.                                       | 36   |
| Oximidobenzotetronic acid<br>(4-hydroxy-3-nitroso coum <b>a</b> rin) | 5.3 to<br>7.5            | 427        | I                                                | <pre>Bi(III),Sb(III),Sn(II),Sn(IV) &amp; W are masked with tartrate.</pre> | 37   |
| l-benzoyl benzimidazole-2-<br>aldoxime                               | 6.8 to<br>8.0            | 337        | 6 = 14,500                                       | Selective                                                                  | 38   |
| Quinoline aldehyde 2 <del>-</del><br>quinolyl hydrazone              | 6 to 7                   | 540        | I                                                | Cd, Zn, Fe, Hg interfere<br>'                                              | 39   |
| 6-(benzothiazol-2-ylazo)-<br>2-4-xylenol.                            | 2<br>•<br>2              | 635        | <b>6</b> = 16,000                                | Ni(II), Co(II) & Fe(II)<br>interfere.                                      | 40   |
| l-benzoyl-3-methyl-2-<br>thiourea                                    | 9                        | 355        | .1                                               | Fe(III),Co(II),Ni(II),V(V)<br>& Zn interfere.                              | 41   |
| l-benzoyl-3-(2-pyridyl)-<br>2-thiourea                               | ſŨ                       | 340        | 1                                                | Cr(II),Mn(II),V(V),Th(IV)<br>& Ce(W) interfere.                            | 42   |

Review of the methods for the photometric determination of copper(II). Table 2.1

.

| (contd. |
|---------|
| 2.1     |
| Table   |

|                                                                                                              | 2                       | m   | 4                                                                           | 5                                                         | 9      |
|--------------------------------------------------------------------------------------------------------------|-------------------------|-----|-----------------------------------------------------------------------------|-----------------------------------------------------------|--------|
| Pyridoin phenyl hydrazone                                                                                    | ł                       | 450 | $\epsilon = 2.1 \times 10^4$                                                |                                                           | 43     |
| 2-quinoline aldehyde-2-<br>quinolyl hydrazone                                                                | 10                      | 536 | $\epsilon = 47300$                                                          | Many cations and anions                                   | 44     |
| 2-Thioquinalidinanilide                                                                                      | −<br>ອີ<br>ອີ           | 550 | <pre>€ = 8.1 x 10<sup>3</sup> Sensitivity _2 0.0017 µg cm<sup>2</sup></pre> | Ag(I),Cr(VI),Os(VI) interfere<br>highly selective method. | 4<br>5 |
| Phenanthraquinone<br>monoxime                                                                                | 6.2 to<br>8.5 to        | 460 | <b>6</b> = 8700                                                             | ł                                                         | 46     |
| Pyrrolidine-l-carbodithioa <b>t</b> e                                                                        | 4.7 to<br>6.1           | 440 | E = 15700                                                                   | Cd,Fe(III),Mn(II),Co(II)<br>& CN <sup>-</sup> interfere.  | 47     |
| Phenylpyruvic acid 2-quinolyl<br>hydrazone.                                                                  | 9.5 to<br>12.5          | 450 | 6 = 31,500                                                                  | ł                                                         | 48     |
| Chlorosulphophenols                                                                                          | 2 <b>-</b> 4 <b>.</b> 3 | 645 | 6 = 22,000                                                                  | Al,Bi,Ga,Th & EDTA<br>strongly interfere                  | 49     |
| Alzarin maroon                                                                                               | വ<br>പ<br>വ             | 585 | $\epsilon = 1400$                                                           | CN <sup>-</sup> interfere seriously                       | 20     |
| 4-hydroxy-3-(Salicylidene-<br>-amino)benzene sulphonic acid                                                  | 5.0                     | 406 | E = 14,500                                                                  | <pre>Fe(III),Mo(VI), Al &amp; V(V) interfere.</pre>       | 51     |
| Acenophthene quinone<br>monoxime                                                                             | ດ<br>ື<br>ໝ             | 430 | Sensitivyty is<br>0.0047 µg cm <sup>-2</sup>                                | I                                                         | 52     |
| Nitroxaminazo[4-amino-3-<br>(2-hydroxy-5-nitro-3-sulpho-<br>phenylazo)-naphthalene-2,<br>7-disulphonic acid] | 3 to<br>5               | 542 | <b>E</b> = 36300                                                            | 1                                                         | 53     |
| 7                                                                                                            |                         |     |                                                                             |                                                           | •      |

| $\sim$  |
|---------|
| (contd. |
| 2.1     |
| Table   |

| I ante Z.T / Collen. /                                                     |                               |       |                                                                   |                                                                                                  |            |
|----------------------------------------------------------------------------|-------------------------------|-------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|
|                                                                            | 2                             | ю     | 4                                                                 | ũ                                                                                                | 9          |
| <pre>1,3-Cyclohexanedione bis thiosemicarbazone mono hydro- chloride</pre> | 6.0 to<br>7.0                 | 390   | Sensitivity is<br>0.00127 μg/cm <sup>2</sup>                      | I                                                                                                | 54         |
| 2-4-Dihydroxy acetophenone<br>thiosemicarbazone                            | 3 <b>to</b> 6                 | 360   | $\mathbf{c} = 1.4 \times 10^4$                                    | Better sensitivity                                                                               | <b>5</b> 5 |
| Furoin thiosemicarbazone                                                   | ო                             | 355   | I                                                                 | I                                                                                                | 26         |
| Thenoyl trifluoro acetone                                                  | 5.4 with<br>acetate<br>buffer | 344   | $\epsilon = 49000$                                                | Al,Fe(II),Cr(III) interfere                                                                      | 57         |
| Thiobenzoyl acetone                                                        | 9                             | 410   | $\epsilon = 34600$                                                | I                                                                                                | 53         |
| p-Anisaldehyde thiosemi- O.<br>carbazone                                   | 0.1-0.75 M<br>NaCH            | 402   | $\mathbf{\varepsilon} = \epsilon_{\bullet} 1 \times 10^3$         | I                                                                                                | 59         |
| 2-phenyl aceto hydroxamic<br>acid                                          | 3.7 73                        | 0-750 | ł                                                                 | Ni(II),Th(IV),Zn(IV) inter-<br>fere severely.                                                    | 60         |
| 3-(U-Acetophenyl)-l-phenyl<br>triazene-N-oxide                             | 7.5                           | 435   | $0.4-4.0 \text{ ppm}_{\odot}$<br>$\varepsilon = 1.09 \times 10^4$ | Co(II), Ce(IV), Pd(II), V(VI),<br>Fe(III), EDTA, oxalate,<br>Thiophosphate interfere.            | 61         |
| 3-hydroxy-3-methyl-l-o-<br>chloro phenyl triazine                          | 5.0 to                        | 415   | Sensitivity is<br>0.0605 µg cm <sup>-2</sup>                      | 1                                                                                                | 62         |
| l-(2-Quinolylazo)-2,4,5-<br>trihydroxy benzene                             | 7.0 to<br>9.0                 | 550   | $\epsilon = 2.54 \times 10^4$                                     | <pre>Sb(II),Sn(III),Ni,Ce,Th,V(V),<br/>Cl-,I-,Br-,F<sup>-</sup>,thiocyarate<br/>interfere.</pre> | 63         |
| Pivaloyl acetyl methane<br>5,5'-dimethyl hexane-2-4-dion                   | 4.5 to<br>5.0                 | 436   | $\epsilon = 13700$                                                | Fe(III), Pd(II), EDTA, citrate interfere.                                                        | 64         |

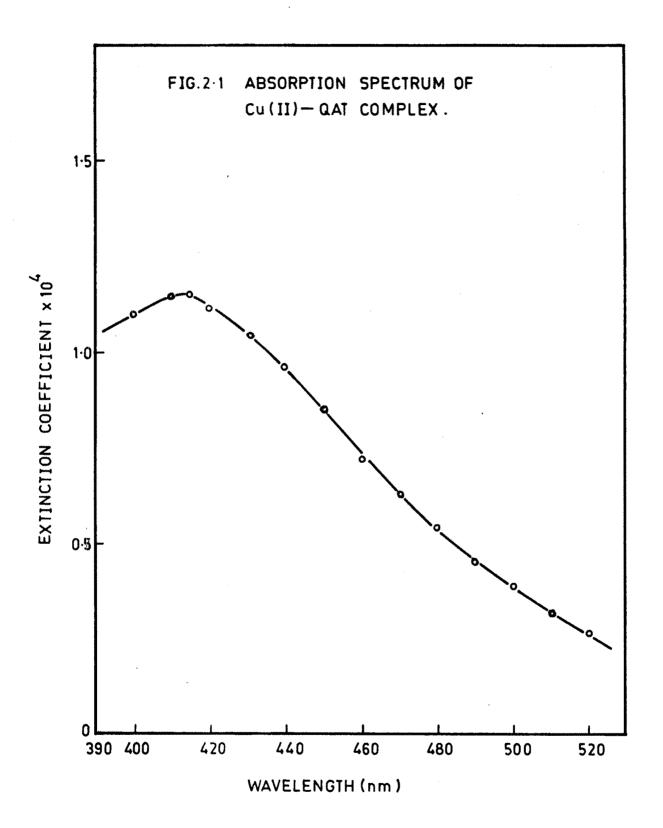
The present work accounts for the spectrophotometric determination of copper(II) by 2-chlorcquinoline-3-carbaldehyde thiosemicarbazone. Copper forms yellow coloured complex with 2-chloroquinoline-3-carbaldehyde thiosemicarbazone (QAT) at pH 6. Beer's law is obeyed upto 3.5 ppm of copper(II) at 415 nm. The effect of pH, reagent concentration and diverse ions have been studied. The molar absorptivity and Sandell sensitivity are 1.144 x  $10^4$  L mole<sup>-1</sup> cm<sup>-1</sup> and 0.0055 µg cm<sup>-2</sup> respectively. The dissociation constant of the complex is 4.80 x  $10^{-6}$ . Cations like Zn(II), Pd(II) and Fe(II) while anions like tart#rate, and fluoride strongly interfere but Pb(II), Mn(II) and Ni(II) tolerated at tracer concentration in the determination of copper(II).

## Recommended Procedure :

To an aliquot of the solution containing upto 3.5 ppm of copper, add 1 ml of  $2.07 \times 10^{-3}$  M reagent solution and a buffer solution of pH 6 (sodium acetate acetic acid). Dilute this to 10 ml with DMF and water (3:2) in a volumetric flask. Measure the absorbance against reagent blank.

### RESULTS AND DISCUSSION

## Spectral characteristics :


Fig.2.1 shows the absorption spectrum of the copper(II) QAT complex containing 5.509 x  $10^{-5}$  M of copper(II) and 2.07 x  $10^{-4}$  M reagent at pH 6 using reagent blank. Absorption

measurement were made in the spectral region 395 to 520 nm and recorded in Table 2.2. From the graph, it was found that 415 nm will be suitable wavelength for the copper determination. The molar absorptivity of the complex is to 1.44 x  $10^4$  L mole<sup>-1</sup> cm<sup>-1</sup> at 415 nm.

Table 2.2 Molar extinction coefficients of Cu(II)-QAT complex

| (QAT) = 2.07 x |                       | рH | = | 6 |  |
|----------------|-----------------------|----|---|---|--|
| Cu(II) = 5.509 | x 10 <sup>-5</sup> M. |    |   |   |  |

| Wave length<br>nm | Molar extinction coefficients<br>of the complex x 10 <sup>4</sup> L mole <sup>-1</sup> cm <sup>-1</sup> |
|-------------------|---------------------------------------------------------------------------------------------------------|
| 395               | 1.0620                                                                                                  |
| 400               | 1.1000                                                                                                  |
| 405               | 1.1181                                                                                                  |
| 410               | 1.1363                                                                                                  |
| 415               | 1.1454                                                                                                  |
| 420               | 1.1090                                                                                                  |
| 425               | 1.0818                                                                                                  |
| 430               | 1.0363                                                                                                  |
| 435               | 1.000                                                                                                   |
| 440               | 0.9636                                                                                                  |
| 445               | 0,9000                                                                                                  |
| 450               | 0 <b>.</b> 836 <b>3</b>                                                                                 |
| 460               | 0.7181                                                                                                  |
| 470               | 0.6272                                                                                                  |
| 480               | 0,5363                                                                                                  |
| 490               | 0 <b>.</b> 4545                                                                                         |
| 500               | 0.3909                                                                                                  |
| 510               | 0.3181                                                                                                  |
| 520               | 0.2545                                                                                                  |



## Effect of time on absorbance :

In order to study effect of time on the absorbance of copper(II)-QAT complex containing 5.509 x  $10^{-5}$  M Cu(II) at pH 6, the absorbance measurements were recorded at different time intervals at 415 nm. It was observed that there is instantaneous development of colour and the absorbance remains constant for 1 hour and decreases after that. Hence the complex is stable for 1 hr.

## Effect of reagent concentration :

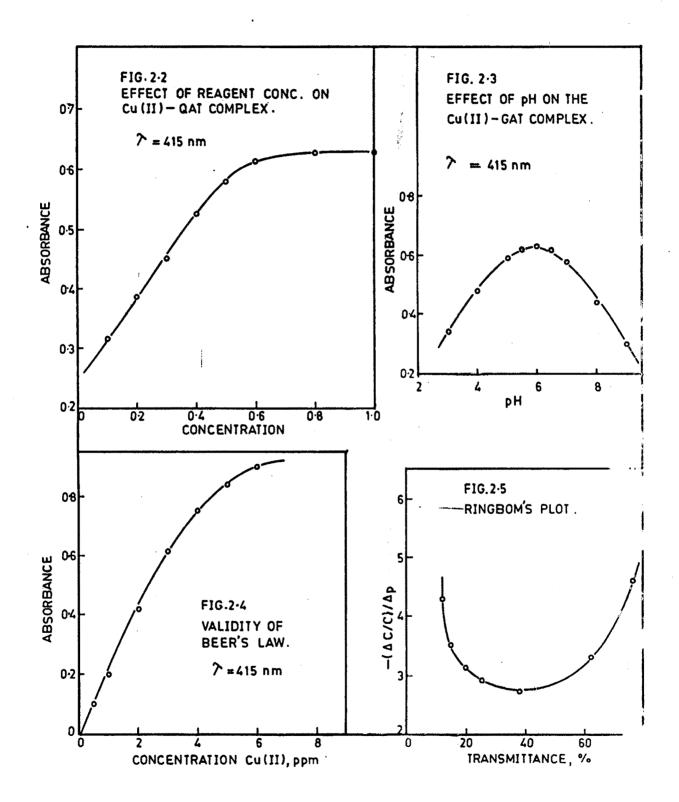
Solutions containing the same amount of copper  $(5.509 \times 10^{-5} \text{ M})$  but different amounts of reagent varying from 0.1 to 1.2 ml of 2.07 x  $10^{-3}$  M reagent solutions were prepared. The pH 6 buffer was added and the solution was made upto 10 ml with DMF:water (3:2). Absorbance measurements were recorded at 415 nm against the simultaneously prepared reagent blank. The data given in Table 2.2, Fig.2.3 show that  $5.509 \times 10^{-5}$  M reagent solution for maximum complexation. At higher concentration of the reagent there was insignificant increase in absorbance. However, 1 ml of 2.07 x  $10^{-3}$  M reagent solution was employed for further studies to ensure maximum colour intensity of the copper complex.

# Table 2.3 : Effect of reagent concentration on the absorbance of Cu - QAT complex. (Cu) = $5.509 \times 10^{-5}$ M, (QAT) = $2.07 \times 10^{-3}$ M pH = 6

| Reagent<br>ml | Absorbance at<br>415 nm |
|---------------|-------------------------|
| 0.1           | 0.315                   |
| 0.2           | 0.390                   |
| 0.3           | 0.450                   |
| 0.4           | 0.525                   |
| 0.5           | 0.580                   |
| 0.6           | 0.625                   |
| 0.8           | 0.630                   |
| 1.0           | 0.630                   |
| 1.2           | 0.635                   |

## Effect of pH :

A series of solutions containing 5.509 x  $10^{-5}$  M Cu(II) and 2.07 x  $10^{-4}$  M of the reagent but varying in pH from 3 to 9 were prepared and the absorption measurements were recorded at 415 nm. The results are summarised in Table 2.4. It was observed that maximum absorbance was obtained at the pH 6. The absorbance of the solutions decreases at higher or lower pH values than this which is shown in Fig.2.3. Hence the pH 6 was maintained in further studies.


## Table 2.4 : Effect of pH on the absorbance of Cu = QAT complex $(Cu) = 5.509 \times 10^{-5} \text{ M} (QAT) = 2.07 \times 10^{-4} \text{ M}$

| рН  | Absorbance at 415 |
|-----|-------------------|
| 3.0 | 0.340             |
| 4.0 | 0.480             |
| 5.0 | 0.590             |
| 5.5 | 0,625             |
| 6.0 | 0.635             |
| 6.5 | 0.620             |
| 7.0 | 0.580             |
| 8.C | 0.440             |
| 9.0 | 0.300             |
|     |                   |

## Validity of Beer's law and Sensitivity :

The solutions (final volume 10 ml) containing different amounts of Copper (range of final concentration 1.5738 x  $10^{-5}$ M to 1.1016 x  $10^{-4}$  M) and the same amounts of reagents (final concentration 2.07 x  $10^{-4}$  M) with the pH maintained at 6 were used for the study. The absorption measurements were recorded against the reagent blank at 415 nm (Table 2.5, Fig. 2.4). Beer's law is obeyed upto a concentration of 3.5 ppm of Cu(II). The Sandell sensitivity<sup>71</sup> of the reaction is 0.0055 µg cm<sup>-2</sup> of copper(II) at 415 nm for log  $\frac{I_0}{I} = 0.001$ . The Ringbom's plot<sup>72</sup> (Fig.2.5) indicated that the optimum range is 1 to 3 ppm of Cu(II).

CHIVEN ONIVENEITY, KOLIAPHE



## Table 2.5 : Varification of validity of Beer's law for Cu-QAT complex. (QAT) = 2.07 x $10^{-4}$ M, pH = 6.

| Absorba <b>nce</b> at<br>415 nm |
|---------------------------------|
| 0.100                           |
| 0.195                           |
| 0.410                           |
| 0.605                           |
| 0.750                           |
| 0.840                           |
| 0.900                           |
|                                 |

## Composition of the complex :

The combining ratio of metal to reagent was ascertained by Job's method of continuous variations<sup>73</sup> and Mole ratio method<sup>74</sup>. For Job's method of continuous variation, a series of solutions were prepared by mixing equimolar solutions of copper(II) and the reagent (1.57 x  $10^{-4}$  M). The pH of the solution was adjusted to 6. The absorbances of the solutions after diluting to 10 ml in volumetric flask were recorded at 415 nm against simultaneously prepared reagent blank (Fig.2.6, Table 2.6). The plot indicates the existance of 1:1 complex with respect to metal and reagent represented as ML. 3\$

Table 2.6 : Determination of the fomula of the Cu-QAT complex by Job's method of continuous variation.  $(Cu) = (QAT) = 1.57 \times 10^{-4} M$ , pH = 6.

| Metal ion<br>ml | Reagent<br>ml | M <b>ole</b> fra <b>cti</b> on<br>of metal | Absorbance at<br>415 nm |
|-----------------|---------------|--------------------------------------------|-------------------------|
| 0.1             | 0.9           | 0.1                                        | 0.275                   |
| 0.2             | 0.8           | 0.2                                        | 0.420                   |
| 0.3             | 0.7           | 0.3                                        | 0.560                   |
| 0.4             | 0.6           | 0.4                                        | 0,680                   |
| 0.5             | 0.5           | 0.5                                        | 0.710                   |
| 0.6             | 0,4           | 0.6                                        | 0.585                   |
| 0.7             | 0.3           | 0.7                                        | 0.550                   |
| 0.8             | 0.2           | 0.8                                        | 0.430                   |
| 0.9             | 0.1           | 0.9                                        | 0.325                   |

For mole ratio method, solutions containing the same final metal concentration  $(3.75 \times 10^{-5} \text{ M})$  and different amounts of the reagent ranging from  $1.775 \times 10^{-6}$  to  $1.50 \times 10^{-4}$  M concentration were prepared keeping the pH 6. Absorbances of the solutions were measured at 415 nm against the reagent blank. The curve showed break at the metal to ligand ratio 1:1, confirming the results obtained by the application of Job's method of continuous variations (Fig.2.7, Table 2.7).

The dissociation constant of the complex K, is calculated from the mole ratio plot by using following equation:

$$K = \frac{\alpha c (n \alpha c)^{n}}{c(1-\alpha)}$$

where n = 1

c = molarity of the solution of the complex and  $\alpha$  = degree of dissociation defined by

$$\alpha = \frac{A_m - A_s}{A_m}$$

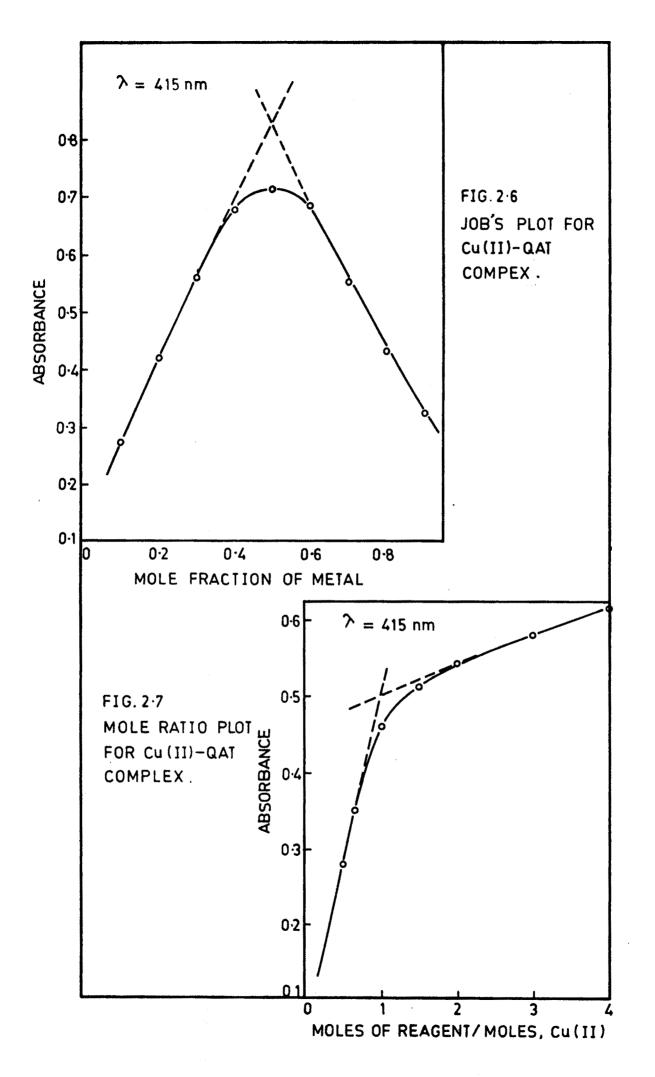

 $\boldsymbol{A}_m$  is the maximum absorption obtained from horizontal portion of the curve and  ${\rm A}_{\rm S}$  is the absorbance at stoichiometric molar ratio of teagent to copper in &@ the complex. The value of K comes out to be  $4.80 \times 10^{-6}$ .

Table 2.7 : Determination of the formula of Cu-QAT complex by mole ratio method  $(Cu) = (QAT) = 3.75 \times 10^{-4} M.$ 

| Metal ion Reagent<br>ml ml |      | Reagent to metal ratio | Absorbance at<br>at 415 nm |  |
|----------------------------|------|------------------------|----------------------------|--|
| 1                          | 0.5  | 0.5                    | 0.275                      |  |
| 1                          | 0.65 | 0.63                   | 0.350                      |  |
| 1                          | 1.0  | 1.0                    | 0.460                      |  |
| 1                          | 1.5  | 1.5                    | 0.510                      |  |
| 1                          | 2.0  | 2.0                    | 0.540                      |  |
| 1                          | 3.0  | 3.0                    | 0,580                      |  |
| 1                          | 4.0  | 4.0                    | 0,590                      |  |
|                            |      |                        |                            |  |

formula inclusion and all ALETAS VERAN

CHIVALI UNIVERSITY. XGLARSS MARS



31

3Б

## Effect of diverse ions :

The effect of diverse ions was studied using  $5.50 \text{ gox } 10^{-5} \text{ M}$  of copper and 2.07 x  $10^{-4}$  M reagent in a final volume of 10 ml at pH 6. An error of less than 2 % in absorbance was considered to be tolerable. The results indicated that zinc, iron and palladium and anions like tartarate, fluoride interfere strongly. The tolerance for various foreign ions tested has been shown in table 2.8.

# Table 2.8 : Effect of diverse ions.

 $[Cu(II)] = 5.5 \times 10^{-5} M$  $[QAT] = 2.07 \times 10^{-4} M$ 

| Metal<br>ion | Added as                                                          | Tolerance<br>limit,ppm | Metal<br>ion         | Added as                                                        | Tolerance<br>limit,ppm |
|--------------|-------------------------------------------------------------------|------------------------|----------------------|-----------------------------------------------------------------|------------------------|
| Zn(II)       | ZnSO <sub>4</sub> 7H <sub>2</sub> O                               | none                   | V(V)                 | NH4V03H20                                                       | 15                     |
| Ca(II)       | CaC1 <sub>2</sub>                                                 | 100                    | Ce(IV)               | Ce(SO <sub>4</sub> ) <sub>2</sub>                               | 50                     |
| Mn(II)       | MnCl <sub>2</sub> 6H <sub>2</sub> O                               | 5                      | W(VI)                | Na2WO42H2O                                                      | 200                    |
| Co(II)       | CoCl <sub>2</sub> 6H <sub>2</sub> O                               | 15                     | Ti(IV)               | Titanium                                                        | 20                     |
| Al(III)      | AlCl <sub>3</sub> 6H <sub>2</sub> O                               | 10                     |                      | oxalate                                                         |                        |
| Pb(II)       | Pb(NO <sub>3</sub> ) <sub>2</sub>                                 | 5                      | Mo(VI)               | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub> | 15                     |
| Sn(II)       | SnCl <sub>2</sub> 2H <sub>2</sub> 0                               | 200                    | EDTA                 | Na-EDTA                                                         | 30                     |
| Pd(II)       | PdC1 <sub>2</sub> 2H <sub>2</sub> O                               | none                   | Tartarat             | e Tartaric                                                      | none                   |
| Bi(III)      | Bi(NO <sub>3</sub> ) <sub>3</sub>                                 | 15                     |                      | acid                                                            |                        |
| Ni(II)       | NiCl, 6H,0                                                        | 5                      | Acetate              | CH 3 COON a                                                     | 100                    |
| Fe(III)      | FeCl <sub>3</sub> 6H <sub>2</sub> O                               | 2                      | Fluoride             | NaF                                                             | none                   |
| Cr(VI)       | K <sub>2</sub> Cr <sub>2</sub> 0 <sub>7</sub>                     | 15                     | Chloride             | KCl                                                             | 100                    |
| Mg(II)       | MgS047H20                                                         | 20                     | Citrate              | Citric acid                                                     | 10                     |
| Ba(II)       | BaC1 <sub>2</sub> 2H <sub>2</sub> O                               | 10                     | нр0 <mark>-</mark> 2 | Na <sub>2</sub> HPO <sub>4</sub>                                | 50                     |
| U(VI)        | UO <sub>2</sub> (NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O | 30                     | c204-2               | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub>                    | 30                     |

17.4

## REFERENCES

.

| 1.  | Callon,T. & Handerson,J.A.R. Analyst, <u>54</u> , 650 (1929).         |
|-----|-----------------------------------------------------------------------|
| 2.  | Picotti, and Baldassi, Mikrochemie, <u>30</u> , 77 (1942).            |
| 3.  | Clauosan,A. & Blastings,L.Z., Anal.Chem., <u>153</u> , 30 (1956).     |
| 4.  | Breckenridge, J.G., Lewis, $R.W.J.$ and $Quick, L.A.$ , Can.J.,       |
|     | Research, B <u>17</u> , 258 (1939).                                   |
| 5.  | Hoste,J., Research (London), <u>1</u> , 713 (1948).                   |
| 6.  | Hoste,J., Gills,J. & Eckhoat,J., Anal.Chim.Acta, <u>9</u> ,           |
|     | 253 (1953).                                                           |
| 7.  | Smith, G.E. and McCurdy, W.H.Jr., Anal.Chem., <u>24</u> , 371 (1952). |
| 8.  | Luka,C.L. & Cambell,M.E., Anal.Chem., <u>25</u> , 1588 (1953).        |
| 9.  | Jackwerth,E. and Doring,E.Z. Anal.Shem., <u>255</u> , 194 (1971).     |
| 10. | Dunbar, W.E. and Schilt, A.A., Talanta, <u>19</u> , 1025 (1972).      |
| 11. | Dhoke,M.P. & Joshi,A.P., J.Ind.Chem.Soc., <u>53</u> , 413 (1966).     |
| 12. | Iwantscheft,G., Das Dithizone & Seine Anwendung in der                |
|     | Mikro & Spurenanalyse, Springer Verlag, Weinheim (1958).              |
| 13. | Komatu,S. and Utiyama,H.J., Chem.Soc. Japan, Pura.Chem.               |
|     | Sect., <u>75</u> , 1280 (1954).                                       |
| 14. | Srach,M.Z., Anal.Chem., <u>149</u> , 417 (1956).                      |
| 15. | Yoshihiro,I. & Yasurc,T., Japan Analyst, <u>6</u> , 588 (1957).       |
| 16. | Billman,J.H. & Chernin,R., Anal.Chem., <u>36</u> , 552 (1964).        |
| 17. | Bashiror,E.A., Akhmedi,M.K. & Abdullaeva,T.E., Uchem.Zap.             |
|     | azerb, gos, Univ.Ser.Khim., Nauk, <u>1</u> , 29 (1966).               |
| 18. | Valcarcel,M. and Bendit,D.P., Inf.Quim.Analit.Pura.apl.               |
|     | Ind., <u>24</u> , 49 (1970).                                          |
| 19. | Janik,B. Gawron,H. & Weyers,J., Mikrochim., Ichnoanalyst.             |
|     | Acta., <u>5-6</u> , 1142 (1970).                                      |
|     |                                                                       |

- 20. Trusell, F. & Liberman, K., Anal. Chim. Acta, <u>30</u>, 269 (1964).
- 21. Przeszlakowaski, S. and Walesmundzki, A. Chemia. Analit., <u>9</u>, 919 (1964).
- 22. Sandell, E.B. "Colourimetric Determination of Traces of Metsls" Interscience Publication INC New York, P 443 (1965).
- 23. Sangal, S.P., J.Prakt, Chem., 29, 76 (1965).
- 24. Capitan, F.G. and Arrebola, A., Revta. Univ. Ind. Santander, <u>7</u>, 241 (1965).
- 25. Hiroshi,M., Sokichi,C. and Shigeki,H. Japan Analyst, <u>15</u>, 125 (1986).
- 26. Hajime, J. and Hisahike, E., Bull.Chem.Soc. Japan, <u>39</u>, 1154 (1966).
- 27. Keattch, C.J., Talenta, <u>3</u>, 351 (1966).
- 28. Gorski, W. and Lipiec, T., Chemia Analit, <u>11</u>, 759 (1966).
- 29. Gurman, M. Bendito, D. P. and Pino, P. F., Inf. Quim. Analit, Pura apl. Ind., <u>27</u>, 209 (1973).
- 30. Burgas, F.S., Marthinez, M.P. and Pino, P.F., Inf. Quim. Analit, Pura apl. Ind., <u>29</u>, 17 (1969).
- 31. Cano Pavon J.M., Vazguez, Aller, J., Bendilo, D.P. and Pino, P.F., Inf. Quim. Analit. Pura apl. Ind., <u>25</u>, 149 (1971).
- 32. Munoz, Levya J.A., Cano Pavan, J.M. and Pino, P.F., Ann. Quim., <u>69</u>, 251 (1973).
- 33. Martinez, M.P., Bendito, D.P. and Pino, P.F., Ann. Quim., 69, 747 (1973).
- 34. Boleslaw, J. and Halina, G., Chemia analit. 16, 1347 (1971).
- 35. Gholse, S.B., Sharma, O.P. and Kharat, R.B., J.Ind.Chem.Soc., <u>55</u>, 776 (1978).

5074

- 36. Mathur, S.P. and Bhandari, M.R. Chemy. Ind., <u>17</u>,745 (1975).
- 37. Manku,G.S., Gupta,R.J., Bhat,A.N. and Jain,B.D., Mikrochim.Acta., <u>5</u>, 836 (1970).
- 38. Bogdasarov,K.N., Chernovyants,M.S., Chernoivanova,T.M. and Tsupak,E.B., Zav.Lab., <u>42</u>, 143 (1976).
- 39. Sims, G.G. and Ryan, D.F., Anal. Chim. Acta, <u>44</u>, 139 (1969).
- 40. Arias Leon, J.J.Perez, Trujillo, J.P. and Garcia Montelongo, F., Ann.Quim., <u>74</u>, 606 (1978).
- 41. Kashikar, S.M. and Joshi, A.P., Curri, Sci., 45, 99 (1976).
- 42. Wandalkar, D.N. and Joshi, A.P., Z.analyst chem., <u>280</u>, 220 (1975).
- 43. Silva, M. and Valcarcel, M., Mikrochim. Acta, <u>11</u>(3-4), 121(1977).
- 44. Betteridge, D. and Rangaswamy, R., Anal. Chim. Acta., <u>42</u>, 293 (1968).
- 45. Anil,K.Chakrabarti, Ind.J.Chem. <u>21A</u>, 439 (1982).
- 46. Kamil Fasitiuddin, Sindhawani,S.K. and Singh R.P., Ann.Chim., <u>68</u>, 71 (1978).
- 47. Hayashi,K., Doukan,H. and Yamomoto,A., Bunseki Kagaku, <u>27</u>, 405 (1978).
- 48. Katyal Mchan T., Kundra, S.K., Goel, D.P. and Singh, R.P., J.Ind.Chem.Soc., <u>51</u>, 576 (1974).
- 49. Ishikura, F. and Tonosaki, K., Sci. Rep. Hirosaki Univ., <u>23</u>(1), 34 (1976).
- 50. K.A.Idriss, M.M.Seleim, M.S.Abu-bakar and Magada M.S.saheb, Ind.J.Chem., <u>21A</u>, 395 (1982).
- 51. Zenki, M., Hori, K. and Encomoto, N., Bunseki Kagaku, <u>27</u>, 510 (1978).
- 52. Fasihuddin Kamil, S.K.Sindhawani and R.P.Singh, Ind.J. Chem., <u>19</u>, 609 (1980).

2+2

- 53. Dedkov,Yu.M. and Kolotyrkina,N.G., Zh.Anal.Khim., <u>33</u>, 2335 (1978).
- 54. K.Hyssain Reddy and D.Venkata Reddy, Acta Cienica Indica, 10, 207 (1984).
- 55. K.Hussain Reddy and K.G.Reddy and D.V.Reddy, Ind.J.Chem. 23A, 535 (1984).
- 56. Bhaskare, C.K. and Devi Surekha, Talenta, 25, 544 (1978).
- 57. Akaiwa, H., Kawamoto, H. and Izumi, F. Talenta, 23,403 (1976).
- 58. Murti, M.V.R. and Khopkar, S.M., Talenta, <u>25</u>, 165 (1978).
- 59. K.N.Thimmaiah, H.Sanke Gowda and Maqbool Ahmad, Ind.J. Chem. <u>22</u>, 690 (1983).
- 60. B.Sethuram, Damodar Reddy and T.Navaneeth Rao, Ind.J. Chem., <u>19</u>, 495 (1980).
- 61. K.B.Saran, B.C.Ray and S.Lahiri, Ind.J.Chem., 24, 541 (1985).
- 62. D.N.Purohit, M.P.Tyagi and Mrs Sushma Shivpuri, Acta Cieneia Indica, <u>10</u>, 134 (1984).
- Ishwar Singh, Mrs.Poonam and P.S.Kadyam, Talenta, <u>32</u>, 384 (1985).
- 64. Koshimura H., Japan Czech.Chem.Commun., <u>40</u>, 1358 (1975).
- 65. Khasanis, D.V. and Shinde, V.M., Chimica analit (Warsaw) communicated.
- 66. J.M.CanoPavan, Sanchez, J.C. and Pino, F. Analytica Chim. Acta, <u>75</u>, 335 (1975).
- 67. Martinez M.P., Valcavcel M. and Pino F., Analytica Chim. Acta, <u>81</u>, 157 (1976).
- 68. Otto Meth-Cohn, Bramha Narine & Brian Tarnowski, J.C.S. Perkin-I. <u>5</u>, 1520 (1981).

4.5

- 69. Otto Meth-Cohn, Bramha Narine & Brian Tarnawski, Roy Hayes, Amitis Keyzad, Salah Rhouati & Andrew Robinson J.C.S.perkin-I <u>9</u>, 2509 (1981).
- 70. A.I.Vogel, 'A Text Book of Quantitative Inorganic Analysis', Longman Group Ltd., London, 3rd Edn., p.358.
- 71. E.B.Sandell, 'Colorimetric Determination of Traces of Metals', 3rd Edn., Interscience, New York, p 83 (1959).
- 72. Ringbom, A., Z. Anal. Chem., <u>115</u>, 332 (1939).
- 73. P.Job, Ann.Chim. (Paris), 1928, 113.
- 74. J.H.Yoe and A.K.Jones, Ind.Eng.Chem.Anal.Ed., 16, 111 (1944).